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Abstract
This paper deals with the problem of estimating the unknown parameters in a
long-memory process based on the maximum likelihood method. The mean-square
and the almost sure convergence of these estimators based on discrete-time
observations are provided. Using Malliavin calculus, we present the asymptotic
normality of these estimators. Simulation studies confirm the theoretical findings and
show that the maximum likelihood technique can effectively reduce the
mean-square error of our estimators.
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1 Introduction
Brownian motion has been widely used in the Black–Scholes option-pricing framework
to model the return of assets. Consequently, several papers have already focused on the
valuation of options when the underlying asset of stock price is modeled by a geometric
Brownian motion. In this situation, one dimensional distributions of the stock prices are
log-normal and the log-returns of the stocks are independent normal random variables.
However, empirical studies show that log-returns of financial asset often have the prop-
erties of self-similarity and long-range dependency (see Casas and Gao [1]; Los and Yu
[2]). To model these observed properties, it is possible to use one of the fractal processes,
namely fractional Brownian motion (hereafter fBm), to replace the driving standard Brow-
nian motion (see, for example, Willinger et al. [3]). Since fBm is not a semi-martingale (ex-
cept in the Brownian motion case), we cannot use the usual stochastic calculus to analyze
it. Fortunately, the research was re-encouraged by new insights in stochastic analysis based
on the Wick product (see Duncan et al. [4]; Hu and Øksendal [5]), namely the fractional-
Itô-integral. Thereafter, many scholars considered the problem of applying fBm in finance
in a large setting, such as Elliott and van der Hoek [6]; Elliott and Chan [7]; Guasoni [8];
Rostek [9]; Azmoodeh [10].

When the fBm is used to describe the fluctuation of some financial phenomena, it is
important to identify the parameters in stochastic models driven by fBm. This is because
all the models involve unknown parameters or functions, which should be estimated from
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observations of the process. The estimation of these processes driven by fBm is therefore
a crucial step in all applications, particularly in applied finance. For example, a crucial
problem with the applications of these option-pricing formulas in the fractional Black–
Scholes market in practice is how to obtain the unknown parameters in geometric frac-
tional Brownian motion (hereafter gfBm). Otherwise, applying these models with long
memory and self-similarity requires efficient and accurate synthesis of discrete gfBm. Even
though fBm has stationary self-similar increments, it is neither independent nor Marko-
vian. This means that state space models and Kalman filter estimators cannot be applied to
the parameters of these processes driven by fBm. However, in the literature, several heuris-
tic methods (such as the maximum likelihood approach and the least squares technique)
are available to sort out these problems in this kind. For example, several contributions
have been already reported for parameter estimation problems concerning continuous-
time models where the driving processes are fractional Brownian motions (see Kleptsyna
et al. [11]). Actually, the problem of maximum likelihood estimation (hereafter MLE) of
the drift parameter has also been extensively studied (see, for example, Kleptsyna and Le
Breton [12]; Tudor and Viens [13]). A similar problem for stochastic processes driven by
fractional noise in the path-dependent case was investigated in Cialenco et al. [14]. Hu and
Nualart [15] obtained least squares estimation (hereafter LSE) for the fractional Ornstein–
Uhlenbeck process and proposed the asymptotic normality of LSE using Malliavin calcu-
lus. More recently, there has been increased interest in studying asymptotic properties
of LSE for the drift parameter in the univariate case with fractional processes (see, Az-
moodeh and Morlanes [16]; Cheng et al. [17]). Moreover, Xiao and Yu [18] and Xiao and
Yu [19] considered the LSE in fractional Vasicek models in the stationary case, the explo-
sive case, and the null recurrent case. For a general theory, including the Girsanov theorem
and some results on statistical inference, for finite dimensional diffusions driven by frac-
tional noise see also the well summarized monograph by Prakasa Rao [20].

All the papers mentioned above focused on parametric estimating of stochastic mod-
els driven by fBm in the continuous-time case. However, in practical terms, as stated in
Tudor and Viens [13], it is usually only possible to observe this process in discrete-time
samples (e.g., stock prices collected once a day). Thus the hypothesis of the continuous
sampling observations is unreasonable since in practice it is obviously impossible to ob-
serve a process continuously over any given interval, due, for instance, to the limitations
on the precision of the measuring instrument or the unavailability of observations at every
point in time. Therefore, statistical inference for discretely observed processes is of great
interest for practical purposes, and at the same time, it poses a challenging problem (see,
for example, Xiao et al. [21]; Long et al. [22], Liu and Song [23]; Barboza and Viens [24]; El
Onsy et al. [25]; Bajja et al. [26]). In ground-breaking work, Fox and Taqqu [27] used the
Fourier method to estimate the long memory coefficient in stationary long-memory pro-
cess. Dahlhaus [28] considered the unknown parameters in fractional Gaussian processes
based on the Whittle function in the frequency domain. Tsai and Chan [29] considered
a general order differential equation driven by fBm, and its derivatives. They considered
the estimation of the continuous time parameters using possibly irregularly spaced data
by maximizing the Whittle likelihood. Tsai and Chan [30] showed that the parameters
in their model were identifiable and that the Whittle estimator had desirable asymptotic
properties. Bhansali et al. [31] estimated the long memory parameter in the stationary
region by frequency domain methods. Significant work has been done by Bertin et al.
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[32] and Bertin et al. [33], who constructed maximum likelihood estimators for both the
drift fBm and drift Rosenblatt process. Recently, the parameter estimation problem for
the discretely observed fractional Ornstein–Uhlenbeck was studied in Brouste and Iacus
[34] and Es-Sebaiy [35]. Kim and Nordman [36] studied a frequency domain bootstrap
for approximating the distribution of Whittle estimators for a class of long memory lin-
ear processes. Bardet and Tudor [37] presented the theory of the long-memory parameter
estimation for non-Gaussian stochastic processes using the Whittle estimator. Xiao et al.
[38] used the quadratic variation to estimate unknown parameters of gfBm from discrete
observations. In this paper, inspired by Hu et al. [39] and Bertin et al. [32], we estimate the
unknown parameters of a special long-memory process with discrete-time data, namely
gfBm, based on MLE. The maximum likelihood technique is chosen in this paper because
of two reasons: one is that this technique has been applied efficiently in a large set; the
other is that it has well-documented favorable properties, such as being asymptotically
consistent, unbiased, efficient and normally distributed about the true parameter values.
The main contributions of this paper are to determine the estimators for the process of
gfBm and to prove the asymptotic properties of these estimators. For these purposes, we
first construct estimators of the gfBm, which is observed with random noise errors in the
discrete framework. Then we present the asymptotic results. Finally, we perform some
simulations in order to study numerically the asymptotic behavior of these estimators.

The remainder of this paper proceeds as follows. Section 2 contains some basic nota-
tions on Malliavin calculus that will be used in the forthcoming sections. Section 3 con-
cretely addresses estimators of gfBm. Section 4 deals with the mean-square convergence,
the almost surely convergence and the asymptotic normality of these estimators. In Sect. 5,
we give simulation examples to show the performance of these estimators, and the stan-
dard error is proposed as a criterion of validation. Finally, Sect. 6 makes the concluding
remarks. For the sake of the presentation, some difficult technical details are deferred to
the Appendix.

2 Preliminaries
In this section we recall some basic results that will be used in this paper and also fix some
notations. We refer to Nualart [40] or Hu and Nualart [15] for further reading.

The fBm {BH
t , t ∈R} with the Hurst parameter H ∈ (0, 1) is a zero mean Gaussian process

with covariance

E
(
BH

t BH
s
)

= RH (s, t) =
1
2
(|t|2H + |s|2H – |t – s|2H)

. (1)

We assume that BH is defined on a complete probability space (�,A, P) such that A is
generated by BH . Fix a time interval [0, T]. Denote by E the set of real valued step functions
on [0, T] and letH be the Hilbert space defined as the closure of E with respect to the scalar
product

〈1[0,t], 1[0,s]〉H = RH (t, s),

where RH is the covariance function of the fBm, given in (1). The mapping 1[0,t] �−→ BH
t can

be extended to a linear isometry between H and the Gaussian space H1 spanned by BH .
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We denote this isometry by ϕ �−→ BH (ϕ). For H = 1
2 we have H = L2([0, T]), whereas for

H > 1
2 we have L

1
H ([0, T]) ⊂H and for ϕ,ψ ∈ L

1
H ([0, T]) we have

〈ϕ,ψ〉H = αH

∫ T

0

∫ T

0
ϕsψt|t – s|2H–2 ds dt, (2)

where αH = H(2H – 1).
Let S be the space of smooth and cylindrical random variables in the form of

F = f
(
BH (ϕ1), . . . , BH (ϕn)

)
, (3)

where f ∈ C∞
b (Rn) (f and all its partial derivatives are bounded). For a random variable F

of the form (3), we define its Malliavin derivative as the H-valued random variable

DF =
n∑

i=1

∂f
∂xi

(
BH (ϕ1), . . . , BH (ϕn)

)
ϕi. (4)

By iteration, one can define the mth derivative DmF , which is an element of L2(�;H⊗m),
for every m ≥ 2. For m ≥ 1, Dm,2 denotes the closure of S with respect to the norm ‖ · ‖m,2,
defined by the relation

‖F‖2
m,2 = E

[|F|2] +
m∑

i=1

E
(∥∥DiF

∥∥2
H⊗i

)
.

We shall make use of the following theorem for multiple stochastic integrals (see Nualart
and Peccati [41] or Nualart and Ortiz-Latorre [42]).

Theorem 2.1 Let Fn, n ≥ 1 be a sequence of random variables in the pth Wiener chaos,
p > 2, such that limn→∞ E(F2

n) = σ 2. Then the following conditions are equivalent:
(i) Fn converges in law to N(0,σ 2) as n tends to infinity;

(ii) ‖DFn‖2
H converges in L2 to a constant as n tends to infinity.

Remark 2.2 In Nualart and Ortiz-Latorre [42], it is proved that (i) is equivalent to the fact
that ‖DFn‖2

H converges in L2 to pσ 2 as n tends to infinity. If we assume (ii), the limit of
‖DFn‖2

H must be equal to pσ 2 because

E
(‖DFn‖2

H
)

= pE
(
F2

n
)
.

3 Maximum likelihood estimators
In the literature, it is common to use the following form to model the underlying asset
price St of a derivative:

dSt = μSt dt + σSt dBH
t , t ≥ 0, (5)

where μ, σ and H are constants to be estimated, and (BH
t , t ≥ 0) is a fBm with the Hurst

parameter H ∈ ( 1
2 , 1). In fact, the process of (5) has received much attention these days due

to its diverse application such as in physical, biological and mathematical finance models.
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Hence the parameter estimation is an important problem. Using the Wick integration, Hu
and Øksendal [5] stated that the solution of (5) is

St = S0 exp

(
μt –

1
2
σ 2t2H + σBH

t

)
, t ≥ 0. (6)

Hence, estimating the parameters in (5) is equal to estimate the parameters from the
following model:

Xt = μt –
1
2
σ 2t2H + σBH

t , t ≥ 0. (7)

Let μ = a, – 1
2σ 2 = b and σ = c. Then we consider a general model as follows:

Yt = at + bt2H + cBH
t , t ≥ 0. (8)

We assume that the process is observed at discrete-time instants (t1, t2, . . . , tN ). This is
a natural situation that one encounters in practice. In this situation, we have a sample of
discrete observations and try to estimate parameters for the process of (8) generating the
sample. In the case of stochastic processes driven by Brownian motion, this problem have
been well studied. The Markov structure of Brownian motion is essential for most of the
methods used and therefore studying this problem in non-Markovian models seems chal-
lenging in this paper. On the other hand, for Gaussian processes estimation techniques
have been quite extensively developed and it becomes apparent that some of these tech-
niques work fine for an estimation of the unknown parameters for the process of (8). The
reasons why we do not use the likelihood given by the Girsanov transformation for es-
timating the unknown parameters (Cialenco et al. [14]) are twofold. First of all, the Gir-
sanov transformation gives the likelihood for continuous observations of the process. In
practice we have discrete observations so we need to approximate the integrals appearing
in the likelihood by discrete analogs. This requires the time between observations to be
small, which is not always the case. Furthermore, the Girsanov transformation gives the
likelihood as a function of a and b. It cannot provide us with insights for estimating H ,
which in most practical situations will be unknown. This differs from the classical case
where H = 1/2 is known. Hence, although the Girsanov transformation is theoretically
interesting, it does not seem very practical to use it in the context of parameter estima-
tion for the process (8). Consequently, our technic used in this paper is inspired from
Hu et al. [39], which seems the best way to estimate (8). To simplify notations, we as-
sume tk = kh, k = 1, 2, . . . , N , for some fixed length h > 0. Thus the observation vector is
Y = (Yh, Y2h, . . . , YNh)′ (where the superscript ′ denotes the transpose of a vector). There
are two reasons for us to study the general case of (8). One is because we can obtain the
explicit estimators. The other is that it is also widely applied in various fields. The loga-
rithm of a widely used gfBm, which is popular in finance (see Hu and Øksendal [5]), is of
the form (8). Moreover, the motivation of the model of (8) is the extension of gfBm. Now,
we introduce the following notations:

Y = at + bt2H + cBH
t , (9)

where t = (h, 2h, . . . , Nh)′, t2H = (h2H , (2h)2H , . . . , (Nh)2H)′ and BH
t = (BH

h , . . . , BH
Nh)′.
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First, let us discuss the estimation of the Hurst parameter in the model (9). From Corol-
lary 2 in Kubilius and Melichov [43], we immediately obtain the estimator of H from the
observation Y:

Ĥ =
1
2

–
1

2 ln 2
ln

∑N–1
i=1 [exp(Y(i+1)h) – exp(Yih)]2

∑ N
2 �–1

i=1 [exp(Y2(i+1)h) – exp(Y2ih)]2
, (10)

where z� denotes the greatest integer not exceeding z.
Thus it is easy to obtain an estimator for the Hurst parameter by using such quadratic

variations. Moreover, using the same argument of Kubilius and Melichov [43], we find
that the estimator Ĥ (defined by (10)) is a strong consistent estimator of H as N goes to
infinity. Essentially, the problem of estimating the Hurst parameter in fractional processes
has been extensively studied (see Shen et al. [44]; Kubilius and Mishura [45]; Salomónab
and Fortc [46]). Therefore, throughout this paper, we assume that the Hurst coefficient
is known. Thus, the aim of this paper is to estimate the unknown parameters a, b and c2

from observations Y = Yih, 0 ≤ i ≤ N , for a fixed interval h and study their asymptotic
properties as N → ∞.

Actually, as the law of Y is Gaussian, the likelihood function of Y can be explicitly eval-
uated. Thus the estimators of a, b and c2 can be provided by the following theorem.

Theorem 3.1 The maximum likelihood estimators of a, b and c2 from the observation Y
are given by

â =
t′�–1

H Y · (t2H )′�–1
H t2H – Y′�–1

H t2H · t′�–1
H t2H

t′�–1
H t · (t2H )′�–1

H t2H – (t′�–1
H t2H )2 , (11)

b̂ =
t′�–1

H t · Y′�–1
H t2H – Y′�–1

H t · t′�–1
H t2H

t′�–1
H t · (t2H )′�–1

H t2H – (t′�–1
H t2H )2 , (12)

ĉ2 =
1
N

1
t′�–1

H t · (t2H)′�–1
H t2H – (t′�–1

H t2H )2

[
Y′�–1

H Y · t′�–1
H t · (t2H)′

�–1
H t2H

–
(
Y′�–1

H t
)2 · (t2H)′

�–1
H t2H – t′�–1

H t · (Y′�–1
H t2H)2

+ 2 · Y′�–1
H t · (t2H)′

�–1
H Y · t′�–1

H t2H – Y′�–1
H Y · (t′�–1

H t2H)2], (13)

where

�H =
[
Cov

[
BH

ih, BH
jh
]]

i,j=1,2,...,N =
h2H

2
(
i2H + j2H – |i – j|2H)

i,j=1,2,...,N .

Proof Since Y is Gaussian, the joint probability density function of Y is

g
(
Y; a, b, c2) =

(
2πc2)– N

2 |�H |– 1
2 exp

(
–

1
2c2

(
Y – at – bt2H)′

�–1
H

(
Y – at – bt2H))

.

Then we obtain the log-likelihood function

L
(
Y; a, b, c2)

= ln g
(
Y; a, b, c2)

= –
N
2

ln(2π ) –
1
2

ln
(
c2N |�H |) –

1
2c2

(
Y – at – bt2H)′

�–1
H

(
Y – at – bt2H)

. (14)
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The MLE of a, b and c2 are obtained by maximizing the log-likelihood function
L(Y; a, b, c2) with respect to a, b and c2, respectively. Finally, we obtain (11), (12)
and (13). �

4 The asymptotic properties
In this section we will discuss the L2-consistency, the strong consistency and the asymp-
totic normality for the MLEs of a, b and c2.

First, we consider the L2-consistency of (11) and (12).

Theorem 4.1 Both MLEs of a (defined by (11)) and b (defined by (12)) are unbiased and
converge in mean square to a and b, respectively, as N → ∞.

Proof Substituting Y by at + bt2H + cBH
t in (11), we have

â = a + c
(t2H )′�–1

H t2H · t′�–1
H BH

t – t′�–1
H t2H · (t2H )′�–1

H BH
t

t′�–1
H t · (t2H )′�–1

H t2H – (t′�–1
H t2H )2 . (15)

Then we have

E[â] = a + c
(t2H )′�–1

H t2H · t′�–1
H E[BH

t ] – t′�–1
H t2H · (t2H )′�–1

H E[BH
t ]

t′�–1
H t · (t2H )′�–1

H t2H – (t′�–1
H t2H )2 = a.

Thus â is unbiased. On the other hand, using (15), we have

Var[â] = c2 Var

[
(t2H)′�–1

H t2H · t′�–1
H BH

t – t′�–1
H t2H · (t2H )′�–1

H BH
t

t′�–1
H t · (t2H )′�–1

H t2H – (t′�–1
H t2H )2

]

= c2
E

[
(t2H )′�–1

H t2H · t′�–1
H BH

t – t′�–1
H t2H · (t2H)′�–1

H BH
t

t′�–1
H t · (t2H)′�–1

H t2H – (t′�–1
H t2H )2

]2

= c2 (t2H)′�–1
H t2H

t′�–1
H t · (t2H )′�–1

H t2H – (t′�–1
H t2H )2

=
c2

t′�–1
H t – (t′�–1

H t2H )2

(t2H )′�–1
H t2H

.

Denote

�H = (�ij)i,j=1,...,N , where �ij =
h2H

2
(
i2H + j2H – |i – j|2H)

,

and denote by �–1
ij the entry of the inverse matrix �–1

H of �H . Then we shall use the follow-
ing inequality (with x = N = (1, 2, . . . , N)):

x′�–1
H x ≥ ‖x‖2

2
λmax(�H )

=
‖N‖2

2
λmax(�H )

,

where λmax(�H ) is the largest eigenvalue of the matrix �H . Since ‖N‖2
2 = 12 + 22 + · · ·+ N2 =

N(N+1)(2N+1)
6 , we know that ‖N‖2

2 ≈ 1
3 N3. On the other hand, we have by the Gerschgorin
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Circle Theorem (see Golub and van Loan [47]: Theorem 8.1.3, p. 395)

λmax(�H ) ≤ max
i=1,...,N

N∑

j=1

|�ij| ≤ CN2H+1,

where C is a positive constant. Thus we have

t′�–1
H t ≥ CN2–2H . (16)

Moreover, a similar computation, combined with Theorem 1 of Zhan [48], implies that

(t′�–1
H t2H )2

(t2H )′�–1
H t2H ≤ λmax(�H )

14H + 24H + · · · + N4H

(
11+2H + 21+2H + · · · + N1+2H

λmin(�H )

)2

≤ ĈN6–2H , (17)

with Ĉ a positive constant.
Consequently, using (16) and (17), we see that Var[â] converges to zero as N → ∞. In

the same way we can prove the convergence of b̂. �

In what follows, we study the mean-square convergence of the estimator ĉ2 defined by
(13).

Theorem 4.2 The estimator ĉ2 (defined by (13)) of c2 has “normal” N–2
N bias and it con-

verges in mean square to c2 as N → ∞. That is to say,

E
(
ĉ2) =

N – 2
N

c2 and Var
[
ĉ2] N→∞−−−→ 0. (18)

Proof By replacing Y with at + bt2H + cBH
t in (13), we have

ĉ2 =
c2

N

[
(
BH

t
)′
�–1

H BH
t –

1
t′�–1

H t · (t2H)′�–1
H t2H – (t′�–1

H t2H )2

· (((BH
t
)′
�–1

H t2H)2 · t′�–1
H t +

(
t′�–1

H BH
t
)2 · (t2H)′

�–1
H t2H

– 2 · t′�–1
H t2H · t′�–1

H BH
t · (t2H)′

�–1
H BH

t
)
]

. (19)

Now, using (28) in the Appendix we have

E
(
ĉ2) =

N – 2
N

c4.

Finally, using (28) and (29) in the Appendix, we have

Var
[
ĉ2] = E

[(
ĉ2)2] –

(
E

[
ĉ2])2 =

2c2

N
,

which is convergent to 0 as N goes to infinity. Thus we proved the theorem. �

Now we can show the strong consistency of the MLEs of â, b̂ and ĉ2 as N → ∞.
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Theorem 4.3 The estimators â, b̂ and ĉ2 defined by (12), (13) and (14), respectively, are
strongly consistent, that is,

â → a a.s. as N → ∞, (20)

b̂ → b a.s. as N → ∞, (21)

ĉ2 → c2 a.s. as N → ∞. (22)

Proof First, we will discuss the convergence of â. To this end, we will show that

∑

N≥1

P
(

|â – a| >
1

Nε

)
< ∞, (23)

for some ε > 0.
Take 0 < ε < 1 – H . Since the random variable â – a is a Gaussian random variable, from

Chebyshev’s inequality and the property of the central absolute moments of Gaussian ran-
dom variables, we have

P
(

|â – a| >
1

Nε

)
≤ Nqε

E
(|â – a|q) ≤ CqNqε

(
E

(|â – a|2))q/2

≤ Cqσ
qh(H–1)qNqε+(H–1)q,

where Cq is a constant depending on q. For sufficiently large q, we have qε + (H – 1)q < –1.
Thus (23) is proved, which implies (20) by the Borel–Cantelli lemma.

Moreover, (21) and (22) can be obtained in a similar way. �

Now we are in the position to present the asymptotic normality for the estimators â, b̂
and ĉ2. First from (15), it is clear that

√

t′�–1
H t –

(t′�–1
H t2H )2

(t2H )′�–1
H t2H (â – a) L−→N

(
0, c2) as N tends to infinity,

where L−→ denotes convergence in the distribution.
Similarly, we obtain

√

t′�–1
H t –

(t′�–1
H t2H )2

(t2H )′�–1
H t2H (b̂ – b) L−→N

(
0, c2) as N tends to infinity.

Hence, only the asymptotic distribution of ĉ2 is left to be studied in the following theo-
rem.

Theorem 4.4 The estimator ĉ2 (defined by (14)) of c2 is asymptotic normality. That is to
say,

1
c2

√
N
2

(
ĉ2 – c2) L−→N (0, 1) as N → ∞. (24)
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Proof Using (19), we can define

FN =
1
c2

√
N
2

(
ĉ2 – c2)

=
1√
2N

[(
BH

t
)′
�–1

H BH
t –

1
t′�–1

H t · (t2H )′�–1
H t2H – (t′�–1

H t2H )2

· (((BH
t
)′
�–1

H t2H)2 · t′�–1
H t +

(
t′�–1

H BH
t
)2 · (t2H)′

�–1
H t2H

– 2 · t′�–1
H t2H · t′�–1

H BH
t · (t2H)′

�–1
H BH

t
)
]

–
√

N
2

.

From (28) and (29) in the Appendix, we can show that

lim
N→∞E

[
F2

N
]

= lim
N→∞

N
2c4 E

[(
ĉ2 – c2)2]

= lim
N→∞

N
2c4 E

[(
ĉ2

)2 + c4 – 2ĉ2c2]

= lim
N→∞

N
2c4

[
N2 – 2N + 4

N2 c4 + c4 – 2c2 N – 2
N

c2
]

= 1.

From Theorem 4 in Nualart and Ortiz-Latorre [42] (see also Theorem 2.1 in Sect. 2),
in order to show (24), it suffices to show that ‖DFN‖2

H converges to a constant in L2 as N
tends to infinity. Using (4), we can obtain

DsFN =
√

1
2N

[
2Ds

(
BH

t
)′
�–1

H BH
t –

1
t′�–1

H t · (t2H )′�–1
H t2H – (t′�–1

H t2H )2

· (2
(
BH

t
)′
�–1

H t2H · Ds
(
BH

t
)′
�–1

H t2H · t′�–1
H t + 2t′�–1

H BH
t · t′�–1

H DsBH
t

· (t2H)′
�–1

H t2H – 2 · t′�–1
H t2H · t′�–1

H DsBH
t · (t2H)′

�–1
H BH

t

– 2 · t′�–1
H t2H · t′�–1

H BH
t · (t2H)′

�–1
H DsBH

t
)]

, (25)

where Ds(BH
t )′ = (1[0,h](s), 1[0,2h](s), . . . , 1[0,Nh](s)). Therefore, using (2), we have

‖DFN‖2
H

=
1

2N
αH

∫ T

0

∫ T

0
|u – s|2H–2

[
2Ds

(
BH

t
)′
�–1

H BH
t

–
1

t′�–1
H t · (t2H )′�–1

H t2H – (t′�–1
H t2H )2

· (2
(
BH

t
)′
�–1

H t2H · Ds
(
BH

t
)′
�–1

H t2H · t′�–1
H t + 2t′�–1

H BH
t · t′�–1

H DsBH
t

· (t2H)′
�–1

H t2H – 2 · t′�–1
H t2H · t′�–1

H DsBH
t · (t2H)′

�–1
H BH

t

– 2 · t′�–1
H t2H · t′�–1

H BH
t · (t2H)′

�–1
H DsBH

t
)
]

·
[

2Du
(
BH

t
)′
�–1

H BH
t

–
1

t′�–1
H t · (t2H )′�–1

H t2H – (t′�–1
H t2H )2

(
2
(
BH

t
)′
�–1

H t2H · Du
(
BH

t
)′
�–1

H t2H · t′�–1
H t

+ 2t′�–1
H BH

t · t′�–1
H DuBH

t · (t2H)′
�–1

H t2H – 2 · t′�–1
H t2H · t′�–1

H DuBH
t · (t2H)′

�–1
H BH

t



Sun et al. Advances in Difference Equations  (2018) 2018:154 Page 11 of 18

– 2 · t′�–1
H t2H · t′�–1

H BH
t · (t2H)′

�–1
H DuBH

t
)]

du ds

= 2
[
Ds

(
BH

t
)′
�–1

H BH
t · Du

(
BH

t
)′
�–1

H BH
t + · · · ]

= 2
[
A(1)

T + A(2)
T + · · · + A(10)

T
]
.

Since both Ds(BH
t )′�–1

H BH
t and Du(BH

t )′�–1
H BH

t are Gaussian random variables, we can
obtain

E
(∣∣A(1)

T – EA(1)
T

∣∣2)

=
1

N2 E
(∣∣Ds

(
BH

t
)′
�–1

H BH
t · Du

(
BH

t
)′
�–1

H BH
t – E

[
Ds

(
BH

t
)′
�–1

H BH
t · Du

(
BH

t
)′
�–1

H BH
t
]∣∣2)

=
α2

H
N2

∫

[0,T]4
E

[
Ds

(
BH

t
)′
�–1

H BH
t · Dr

(
BH

t
)′
�–1

H BH
t
]

·E[
Du

(
BH

t
)′
�–1

H BH
t · Dv

(
BH

t
)′
�–1

H BH
t
] · |s – u|2H–2|r – v|2H–2 ds dr du dv

=
α2

H
N2

∫

[0,T]4

[
Ds

(
BH

t
)′
�–1

H DrBH
t · Du

(
BH

t
)′
�–1

H DvBH
t
]

· |s – u|2H–2|r – v|2H–2 ds dr du dv.

Let �–1
H = (�–1

ij )i,j=1,...,N , �H = (�ij)i,j=1,...,N and δlk be the Kronecker symbol. We shall use
∫ ih

0
∫ i′h

0 |s – u|2H–2 ds du = �ii′ and
∑N

j=1 �–1
ij �i′j = δii′ . Then we have

E
(∣∣A(1)

T – EA(1)
T

∣∣2)

=
4

N2

∫

[0,T]4
1[0,ih](s)�–1

ij 1[0,jh](r) · 1[0,i′h](u)�–1
i′j′1[0,j′h](v)

· αH |s – u|2H–2αH |r – v|2H–2 ds dr du dv

=
4

N2

N∑

i,j=1

N∑

i′ ,j′=1

�–1
ij �–1

i′j′ · �ii′�jj′ =
4

N2

N∑

i,j′=1

δ2
ij′ =

4
N

,

which converges to 0 as N → ∞. In the same way, we can prove that E(|A(i)
T – EA(i)

T |2)
converges to zero as N tends to infinity, for i = 2, 3, . . . , 10. By the triangular inequality, we
see that

E
(‖DFN‖2

H – E‖DFN‖2
H

)2

= E
(
A(1)

T + · · · + A(10)
T – E

(
A(1)

T + · · · + A(10)
T

))2

≤ 100
[
E

(
A(1)

T – E
(
A(1)

T
))2 + · · · + E

(
A(10)

T – E
(
A(10)

T
))2]

→ 0. (26)

Together with

lim
N→∞E

(‖DFN‖2
H

)
= 2 lim

N→∞E
(
F2

N
)
, (27)
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we have shown that ‖DFN‖2
H converges to a constant in L2 as N tends to infinity. This

completes the proof of this theorem. �

5 Simulation
In this section, we construct Monte Carlo studies for the different values of a, b and c2 to
numerically investigate the efficiency of our estimators. Actually, the main obstacle to a
Monte Carlo simulation is to obtain fBm, in contrast to the standard Brownian motion.
However, in the literature, there are alternative methods to solve this problem (see Coeur-
jolly [49]). In this paper, we use Paxson’s algorithm (see Paxson [50]). First, we generate
fractional Gaussian noise based on Paxson’s method by fast Fourier transformation. Sec-
ond, we obtain the fBm using the result that a fBm is defined as the partial sum of the
fractional Gaussian noise. Finally, we obtain the process of (9). For N = 1000, h = 0.001
and t ∈ [0, 1], some sample trajectories of the process (9) are shown Figs. 1–3 for different
values of H , a, b and c2. The simulation results reflex main properties of fBm: a larger value
of H corresponds to smoother sample paths.

In the following, we consider the problem of estimating H , a, b and c from the obser-
vations Yh, . . . , YNh. We have simulated the observations Yh, . . . , YNh for different values of
H , a, b and c with the step h = 0.01. For each case we simulate the observations (N is
presented in the following tables) and calculate 80 estimation of estimators. Then we can
implement the observations to obtain the estimators by an exact MLE method. The sim-
ulated mean and variance of these estimators are given in the following tables (true value
is the parameter value used in the Monte Carlo simulation; the empirical mean and the
standard deviation are for the sample statistics).

From the output of the numerical computations, we find that both the standard devi-
ations and the absolute errors of H , a, b and c decrease to zero as the number of obser-
vations increases. The computation results demonstrate that the simulated mean of the
maximum likelihood estimators converges to the true value rapidly. Hence we can see that
the estimators are excellent for H > 1

2 . In summary, our estimation results also show that

Figure 1 Sample paths of model (9) for different values of Hurst parameter (Chosen parameters a = 0.10;
b = –0.2; c = 0.2)
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Figure 2 Sample paths of model (9) for different values of Hurst parameter (Chosen parameters a = 0.25;
b = 0.45; c = 0.3)

Figure 3 Sample paths of model (9) for different values of Hurst parameter (Chosen parameters a = 0.36;
b = 0.28; c = 0.40)

the MLE performs well since the estimating results match the chosen parameters exactly.
Comparing the results of Tables 1–3 above with those of Tables 1–3 in Hu et al. [39], we
can see that the standard deviation is considerably larger than those of Hu et al. [39]. The
reason for this difference is that the authors assumed that the Hurst parameter was known
in Hu et al. [39]. Our estimators of a, b and c in this paper include the estimator of H . It
is worth to emphasize that a bad estimate of H may lead to a poor estimate of a, b and c.
Obviously, more accuracy of the estimator for H leads the small standard deviation. Let
us also mention that the accuracy of the estimator for H can affect the accuracy of a, b
and c. This is because all the estimators of a, b and c involve H . Analysis of this effect is
well beyond the scope of this paper.
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Table 1 The means and standard deviations of the estimators with N = 600

H a b c H a b c

Theoretical value 0.7600 1.0000 –2.0000 2.0000 0.8600 4.0000 3.0000 4.0000
Empirical mean 0.7497 1.1264 –2.1076 2.1233 0.8701 3.9068 3.1098 3.9098
Standard deviation 0.6573 0.6866 0.5298 0.5290 0.5508 0.6109 0.5604 0.6533

Table 2 The means and standard deviations of the estimators with N = 900

H a b c H a b c

Theoretical value 0.7600 1.0000 –2.0000 2.0000 0.8600 4.0000 3.0000 4.0000
Empirical mean 0.7511 1.0976 –2.0916 2.0876 0.8678 4.0617 2.9356 3.9433
Standard deviation 0.3546 0.3325 0.4893 0.4729 0.4675 0.4667 0.3984 0.4625

Table 3 The means and standard deviations of the estimators with N = 1200

H a b c H a b c

Theoretical value 0.7600 1.0000 –2.0000 2.0000 0.8600 4.0000 3.0000 4.0000
Empirical mean 0.7589 0.9904 –2.0013 2.0198 0.8618 4.0191 2.9878 3.9986
Standard deviation 0.1235 0.1064 0.1319 0.2241 0.2126 0.1126 0.1632 0.2032

6 Conclusion
The processes of long memory have evolved into a vital and important part of the time se-
ries analysis during the last decades, as studies in empirical finance have sought to use the
“ideal” models in practical applications of importance in the financial engineering. Among
them, the gfBm has been shown by many authors to be a useful description of financial
time series. However, when employing a continuous mathematical framework to discrete
data, it is important to provide optimal methods for estimating the correct parameters
of this process. In this paper, we have extended the notion of gfBm into the discrete do-
main and then proposed the methodology of parameter estimation in time series driven
by gfBm. For these purposes we construct the estimators by MLE and provide the conver-
gence analysis for these estimators. Moreover, numerical study illustrated the effective-
ness of the methodology. As can be seen in Tables 1–3, the MLE provides a mean which
is consistent with the true value and presents a variance which is nearly equal to zero.
Hence the numerical results show that the MLE is a fast, accurate and reliable methodol-
ogy to estimate the parameters of gfBm. Although in the present paper we only develop
the asymptotic theory for a special linear long memory model driven by fBm, our method
is generally applicable to discrete-time models with a linear drift and with a constant dif-
fusion, which are driven by centered Gaussian processes. Furthermore, we can see that
model (9) can be considered as a general model of long memory property. It is obvious
that some interesting cases are included in (9). In particular:

(i) When b = 0, we can obtain the fBm with drift parameter.
(ii) For H = 1

2 , we can obtain the geometric Brownian motion.
(iii) If H = 1

2 , c = 1 and b = 0, we can get the linear regression model.
(iv) If b = 0 and c = 1, we can get the regression model with long-memory errors.
This paper has investigated the asymptotic behavior of the MLE for gfBm. However, we

just estimated these parameters separately. What should be done in the near future is to
estimate all the unknown parameters (including the Hurst index) simultaneously. Thus,
the problem of joint parameter estimation for stochastic models driven by fBm is inter-
esting and attractive. We also expect the need for these methods and for improvements



Sun et al. Advances in Difference Equations  (2018) 2018:154 Page 15 of 18

in the statistical machinery that is available to practitioners to grow further as the finan-
cial industry continues to expand and data sets become richer. The field is therefore of
growing importance for both theorists and practitioners.

Appendix
In this appendix we show how to obtain the required moment computation for ĉ2.

Proposition 7.1 Let ĉ2 be defined by (13). Then

E
(
ĉ2) =

N – 2
N

c2, (28)

E
(
ĉ4) =

N2 – 2N + 4
N2 c4. (29)

Proof First, using Theorem 10.18 in Schott [51], E[(BH
t BH

t )′] = �H and (19), we can com-
pute the expectation of ĉ2 as follows:

E
[
ĉ2] =

c2

N

[
E

[(
BH

t
)′
�–1

H BH
t
]

–
1

t′�–1
H t · (t2H )′�–1

H t2H – (t′�–1
H t2H )2

· ((t2H)′
�–1

H E
[(

BH
t
)(

BH
t
)′]

�–1
H t2H · t′�–1

H t + t′�–1
H E

[(
BH

t
)(

BH
t
)′]

�–1
H t

· (t2H)′
�–1

H t2H – 2 · t′�–1
H t2H · t′�–1

H E
[(

BH
t
)(

BH
t
)′]

�–1
H t2H)]

=
N – 2

N
c2.

To compute the variance of ĉ2, we introduce X = �–1/2
H (BH

t ). Then

E
(
XX′) = E

[
�–1/2

H BH
t
(
BH

t
)′
�–1/2

H
]

= I.

Therefore, X is a standard Gaussian vector of dimension N . For any λ small enough and
ε ∈R, we have

E
[
exp

(
λ
(
BH

t
)′
�–1

H BH
t + εt′�–1

H BH
t
)]

= E
[
exp

(
λ|X|2 + εt′�– 1

2
H X

)]

=
1

(2π ) N
2

∫

RN
e– |X|2

2 +λX2+εt′�– 1
2

H X dX.

A standard technique of completing the squares yields

E
[
exp

(
λ
(
BH

t
)′
�–1

H BH
t
)

+ εt′�–1
H BH

t )
]

= (1 – 2λ)– N
2 exp

{
ε2t′�–1

H t
2(1 – 2λ)

}
=: f (λ, ε).
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What we are only interested are the coefficients of λ2, λε2 and ε4 in the above expression
f (λ, ε). We have

f (λ, ε) =
(
1 + Nλ + N(N + 2)λ2 + · · · )

[
1 +

ε2t′�–1
H t

2
(1 + 2λ + · · · ) + · · ·

]
.

Comparing the coefficients of λ2, λε2 and ε4, we have

E
[((

BH
t
)′
�–1

H BH
t
)2] = N(N + 2),

E
[(

BH
t
)′
�–1

H BH
t
(
t′�–1

H BH
t
)2] = (N + 2)

(
t′�–1

H t
)
,

E
[(

t′�–1
H BH

t
)4] = 3

(
t′�–1

H t
)
.

Then we can obtain

E
[(

BH
t
)′
�–1

H BH
t
((

t2H)′
�–1

H BH
t
)2] = (N + 2)

(
t2H)′

�–1
H t2H ,

E
[((

t2H)′
�–1

H BH
t
)4] = 3

(
t2H)′

�–1
H t2H .

Analogously to the discussion above, we obtain

E
[
ĉ4] =

c4

N2 E

[(
BH

t
)′
�–1

H BH
t –

1
t′�–1

H t · (t2H)′�–1
H t2H – (t′�–1

H t2H )2

· (((BH
t
)′
�–1

H t2H)2 · t′�–1
H t +

(
t′�–1

H BH
t
)2 · (t2H)′

�–1
H t2H

– 2 · t′�–1
H t2H · t′�–1

H BH
t · (t2H)′

�–1
H BH

t
)
]2

=
N2 – 2N + 4

N2 c4,

which completes the proof. �
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