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Ayşegül Çetinkaya1, İ. Onur Kıymaz1* , Praveen Agarwal2 and Ravi Agarwal3

*Correspondence:
iokiymaz@ahievran.edu.tr
1Department of Mathematics, Ahi
Evran University, Kırşehir, Turkey
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Abstract
In this paper, we present further generalizations of the beta function;
Riemann–Liouville, Caputo and Kober–Erdelyi fractional operators by using confluent
hypergeometric function with six parameters. We also define new generalizations of
the Gauss F, Appell F1, F2 and Lauricella F3D hypergeometric functions with the help of
new beta function. Then we obtain some generating function relations for these
generalized hypergeometric functions by using each generalized fractional operators,
separately. One of the purposes of the present investigation is to give a chance to the
reader to compare the results corresponding to each generalized fractional operators.
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1 Introduction and definitions
Many researchers used various generalizations of the beta function to introduce new gen-
eralizations of hypergeometric functions and fractional operators. They also used gener-
alized fractional operators for obtaining some generating function relations of these hy-
pergeometric functions [1–10]. Özarslan and Özergin [8] introduced the generalization of
the Riemann–Liouville fractional operator with a one parameter exponential function and
obtained the results for negative values of the order. Srivastava et al. [10] generalized the
results which were obtained in [8]. Agarwal et al. [2] and Luo et al. [7] introduced the same
generalization of Riemann–Liouville fractional operator with a five parameter confluent
hypergeometric function and obtained the results for positive and negative values of the
order, respectively. Agarwal and Agarwal [1] used the same five parameter confluent hy-
pereometric function to define the generalization of Caputo fractional operator. Kıymaz
et al. [5] and Agarwal et al. [3] introduced the generalizations of Caputo fractional deriva-
tives with one and two parameter exponential functions, respectively. Baleanu et al. [4]
introduced the generalization of Riemann–Liouville fractional operator with a different
two parameter exponential function and obtained the results for negative values of the
order. Kıymaz et al. [6] introduced the generalization of Caputo fractional operator with
the same two parameter exponential function in [4]. In all the above works, the authors
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had to define different types of hypergeometric functions for the same type of fractional
operators and none of them made a comparison between the corresponding results.

Motivated by the above works, we decided to define further generalizations of the hy-
pergeometric functions which we can compare the results for different types of fractional
operators by using the following generalization of the beta function.

Definition 1 The generalized beta function is defined by

B(α,β ;κ ,μ)
p,q (x, y) :=

∫ 1

0
tx–1(1 – t)y–1

1F1

(
α;β ; –

p
tκ

–
q

(1 – t)μ

)
dt, (1)

(
min

{�(p),�(q)
} ≥ 0, min

{�(x),�(y)
}

> 0, min
{�(α),�(β),�(κ),�(μ)

}
> 0

)
.

Note that this generalized beta function has the following symmetry property

B(α,β ;κ ,μ)
p,q (x, y) = B(α,β ;μ,κ)

q,p (y, x),

and has the functional relation

B(α,β ;κ ,μ)
p,q (x, y + 1) + B(α,β ;κ ,μ)

p,q (x + 1, y) = B(α,β ;κ ,μ)
p,q (x, y).

Clearly, the special case of (1) becomes the generalized beta function that has been dis-
cussed in [11] when κ = μ = 1; in [12] when p = q and κ = μ = 1; in [13] when α = β and
κ = μ = 1; and in [14] when α = β , p = q and κ = μ = 1. Also in the case of p = q = 0, it gives
the original beta function [15].

Throughout this paper, we assume min{�(α),�(β),�(κ),�(μ)} > 0, min{�(p),�(q)} > 0,
and we use the notation B̂ instead of B(α,β ;κ ,μ)

p,q .

Definition 2 The generalizations of Gauss F , Appell F1, F2 and the Lauricella F3
D hyper-

geometric functions are as follows:

F (α,β ;κ ,μ;p,q)(a, b; c; z; m1, m2)

:=
∞∑

n=0

(a)n(b)n

(c)n

B̂(b – m1 + n, c – b + m2)
B(b – m1 + n, c – b + m2)

zn

n!
(2)

(|z| < 1
)
,

F (α,β ;κ ,μ;p,q)
1 (a, b, c; d; x, y; m1, m2)

:=
∞∑

n,k=0

(a)n+k(b)n(c)k

(d)n+k

B̂(a – m1 + n + k, d – a + m2)
B(a – m1 + n + k, d – a + m2)

xn

n!
yk

k!
(3)

(|x| < 1, |y| < 1
)
,

F (α,β ;κ ,μ;p,q)
2 (a, b, c; d, e; x, y; m1, m2)

:=
∞∑

n,k=0

[
(a)n+k(b)n(c)k

(d)n(e)k

B̂(b – m1 + n, d – b + m2)
B(b – m1 + n, d – b + m2)

× B̂(c – m1 + k, e – c + m2)
B(c – m1 + k, e – c + m2)

xn

n!
yk

k!

]
(4)



Çetinkaya et al. Advances in Difference Equations  (2018) 2018:156 Page 3 of 11

(|x| + |y| < 1
)
,

F3;(α,β ;κ ,μ;p,q)
D (a, b, c, d; e; x, y, z; m1, m2)

:=
∞∑

n,k,r=0

[
(a)n+k+r(b)n(c)k(d)r

(e)n+k+r

× B̂(a – m1 + n + k + r, e – a + m2)
B(a – m1 + n + k + r, e – a + m2)

xn

n!
yk

k!
zr

r!

]
(5)

(|x| < 1, |y| < 1, |z| < 1
)
,

where m1 and m2 are arbitrary parameters.

Remark 1 It is easy to see that when p = q = 0 these hypergeometric functions immediately
reduce to their original forms. Also the reader can easily obtain various integral represen-
tations of these functions by using the integral representation of the new beta function (1)
in the same way as in [1–6, 8–10].

We also use the notations F̂ , F̂1, F̂2 and F̂3
D instead of F (α,β ;κ ,μ;p,q), F (α,β ;κ ,μ;p,q)

1 , F (α,β ;κ ,μ;p,q)
2

and F3;(α,β ;κ ,μ;p,q)
D , respectively.

Now we give the definitions of new generalized fractional operators.

Definition 3 Let m ∈ N. The generalized Riemann–Liouville fractional operator is de-
fined as

Dν;(α,β ;κ ,μ;p,q)[f (z)
]

:=

⎧⎨
⎩

1
Γ (–ν)

∫ z
0 (z – t)–ν–1f (t)1F1(α;β ; –p( z

t )κ – q( z
z–t )μ) dt (�(ν) < 0),

dm

dzm (Dν–m;(α,β ;κ ,μ;p,q)[f (z)]) (m – 1 < �(ν) < m).
(6)

The generalized Caputo fractional derivative operator is defined as

Dν;(α,β ;κ ,μ;p,q)[f (z)
]

:= Dν–m;(α,β ;κ ,μ;p,q)[f (m)(z)
]

=
1

Γ (m – ν)

∫ z

0
(z – t)m–ν–1f (m)(t)

× 1F1

(
α;β ; –p

(
z
t

)κ

– q
(

z
z – t

)μ)
dt, (7)

where m – 1 < �(ν) < m.
The generalized Kober–Erdelyi fractional integral operator is defined as

Iν;(α,β ;κ ,μ;p,q)
η

[
f (z)

]
:= z–ν–ηD–ν;(α,β ;κ ,μ;p,q)[zηf (z)

]

=
z–ν–η

Γ (ν)

∫ z

0
tη(z – t)ν–1f (t)

× 1F1

(
α;β ; –p

(
z
t

)κ

– q
(

z
z – t

)μ)
dt, (8)

where �(ν) > 0, η ∈C.
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Remark 2 Note that the reduced forms of generalized fractional operators for α = β , κ =
μ = 1 defined and studied in [4, 6] and for α = β , p = q, κ = μ = 1 defined and studied in
[5, 8]. Also for p = q = 0 all the operators reduce to their original forms [16].

For the sake of shortness we use the notations D̂ν , D̂ν and Îν
η instead of Dν;(α,β ;κ ,μ;p,q),

Dν;(α,β ;κ ,μ;p,q) and Iν;(α,β ;κ ,μ;p,q)
η , respectively. We also assume that m ∈ N in the following

sections.

2 Fractional derivative and integral formulas
We start our examination by obtaining the fractional derivatives and integrals of some
functions with each fractional operators.

Theorem 1
(a) Let �(ν) < 0, �(λ) > –1, then

D̂ν
[
zλ

]
=

Γ (λ + 1)
Γ (λ – ν + 1)

B̂(λ + 1, –ν)
B(λ + 1, –ν)

zλ–ν . (9)

(b) Let �(ν) > 0, �(λ + η) > –1, then

Îν
η

[
zλ

]
=

Γ (λ + η + 1)
Γ (λ + η + ν + 1)

B̂(λ + η + 1,ν)
B(λ + η + 1,ν)

zλ.

(c) Let m – 1 < �(ν) < m, �(λ) > –1, then

D̂ν
[
zλ

]
=

Γ (λ + 1)
Γ (λ – ν + 1)

B̂(λ + 1, m – ν)
B(λ + 1, m – ν)

zλ–ν .

(d) Let m – 1 < �(ν) < m, �(λ) > m – 1, then

D̂ν
[
zλ

]
=

Γ (λ + 1)
Γ (λ – ν + 1)

B̂(λ – m + 1, m – ν)
B(λ – m + 1, m – ν)

zλ–ν .

Proof For �(ν) < 0 and �(λ) > –1, with direct calculations, we have

D̂ν
[
zλ

]
=

1
Γ (–ν)

∫ z

0
tλ(z – t)–ν–1

1F1

(
α;β ; –p

(
z
t

)κ

– q
(

z
z – t

)μ)
dt

=
zλ–ν

Γ (–ν)

∫ 1

0
uλ(1 – u)–ν–1

1F1

(
α;β ; –

p
uκ

–
q

(1 – u)μ

)
du

=
zλ–ν

Γ (–ν)
B̂(λ + 1, –ν)

=
Γ (λ + 1)

Γ (λ – ν + 1)
B̂(λ + 1, –ν)
B(λ + 1, –ν)

zλ–ν ,

which completes the proof of the first case.
On the other hand, taking f (z) = zλ in (6), (7) and (8) we have the following relations:
For �(ν) > 0, �(λ + η) > –1,

Îν
η

[
zλ

]
= z–ν–ηD̂–ν

[
zλ+η

]
, (10)
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for m – 1 < �(ν) < m, �(λ) > –1,

D̂ν
[
zλ

]
=

dm

dzm

(
D̂ν–m[

zλ
])

, (11)

for m – 1 < �(ν) < m and �(λ) > m – 1,

D̂ν
[
zλ

]
=

Γ (λ + 1)
Γ (λ – m + 1)

D̂ν–m[
zλ–m]

. (12)

Thus, the proofs of the other cases are straightforward from Eqs. (10), (11) and (12) by
using (9). �

Theorem 2 If f (z) is an analytic function at the origin with its Maclaurin expansion given
by f (z) =

∑∞
n=0 anzn for |z| < r, then

D̂ν
[
f (z)

]
=

∞∑
n=0

anD̂ν
[
zn],

Îν
η

[
f (z)

]
=

∞∑
n=0

an̂Iν
η

[
zn] (�(ν) > 0

)
,

D̂ν
[
f (z)

]
=

∞∑
n=0

anD̂ν
[
zn] (

m – 1 < �(ν) < m
)
.

Proof Under the hypothesis of the theorem, term-by-term integration is guaranteed. �

Theorem 3 For |az| < 1, the following results hold true:
(a) Let 0 < �(λ) < �(ν), then

D̂λ–ν
[
zλ–1(1 – az)–ρ

]
=

Γ (λ)
Γ (ν)

zν–1F̂(ρ,λ;ν; az; 0, 0).

(b) Let �(λ – ν) > 0, �(λ + η) > 0, then

Îλ–ν
η

[
zλ–1(1 – az)–ρ

]
=

Γ (λ + η)
Γ (2λ + η – ν)

zλ–1F̂(ρ,λ + η; 2λ + η – ν; az; 0, 0).

(c) Let m – 1 < �(λ – ν) < m, �(λ) > 0, then

D̂λ–ν
[
zλ–1(1 – az)–ρ

]
=

Γ (λ)
Γ (ν)

zν–1F̂(ρ,λ;ν; az; 0, m).

(d) Let m – 1 < �(λ – ν) < m < �(λ), then

D̂λ–ν
[
zλ–1(1 – az)–ρ

]
=

Γ (λ)
Γ (ν)

zν–1F̂(ρ,λ;ν; az; m, m).

Proof Using the power series expansion of

(1 – az)–ρ =
∞∑

n=0

(ρ)n
(az)n

n!
, |az| < 1,
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and considering Theorem 1 and Theorem 2 together, we get the results by simple calcu-
lations. �

Due to the proofs of the following theorems in this section being similar to Theorem 3,
we omit these proofs. The interested reader can find the detailed proofs of similar theo-
rems in [1–10].

Theorem 4 For |az| < 1 and |bz| < 1, the following results hold true:
(a) Let 0 < �(λ) < �(ν), then

D̂λ–ν
[
zλ–1(1 – az)–ρ(1 – bz)–σ

]
=

Γ (λ)
Γ (ν)

zν–1F̂1(λ,ρ,σ ;ν; az, bz; 0, 0).

(b) Let �(λ – ν) > 0, �(λ + η) > 0, then

Îλ–ν
η

[
zλ–1(1 – az)–ρ(1 – bz)–σ

]

=
Γ (λ + η)

Γ (2λ + η – ν)
zλ–1F̂1(λ + η,ρ,σ ; 2λ + η – ν; az, bz; 0, 0).

(c) Let m – 1 < �(λ – ν) < m, �(λ) > 0, then

D̂λ–ν
[
zλ–1(1 – az)–ρ(1 – bz)–σ

]
=

Γ (λ)
Γ (ν)

zν–1F̂1(λ,ρ,σ ;ν; az, bz; 0, m).

(d) Let m – 1 < �(λ – ν) < m < �(λ), then

D̂λ–ν
[
zλ–1(1 – az)–ρ(1 – bz)–σ

]
=

Γ (λ)
Γ (ν)

zν–1F̂1(λ,ρ,σ ;ν; az, bz; m, m).

Theorem 5 For |az| < 1, |bz| < 1 and |cz| < 1, the following results hold true:
(a) Let 0 < �(λ) < �(ν), then

D̂λ–ν
[
zλ–1(1 – az)–ρ(1 – bz)–σ (1 – cz)–τ

]

=
Γ (λ)
Γ (ν)

zν–1F̂3
D(λ,ρ,σ , τ ;ν; az, bz, cz; 0, 0).

(b) Let �(λ – ν) > 0, �(λ + η) > 0, then

Îλ–ν
η

[
zλ–1(1 – az)–ρ(1 – bz)–σ (1 – cz)–τ

]

=
Γ (λ + η)

Γ (2λ + η – ν)
zλ–1F̂3

D(λ + η,ρ,σ , τ ; 2λ + η – ν; az, bz, cz; 0, 0).

(c) Let m – 1 < �(λ – ν) < m, �(λ) > 0, then

D̂λ–ν
[
zλ–1(1 – az)–ρ(1 – bz)–σ (1 – cz)–τ

]

=
Γ (λ)
Γ (ν)

zν–1F̂3
D(λ,ρ,σ , τ ;ν; az, bz, cz; 0, m).
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(d) Let m – 1 < �(λ – ν) < m < �(λ), then

D̂λ–ν
[
zλ–1(1 – az)–ρ(1 – bz)–σ (1 – cz)–τ

]

=
Γ (λ)
Γ (ν)

zν–1F̂3
D(λ,ρ,σ , τ ;ν; az, bz, cz; m, m).

Theorem 6 For |x| + |az| < 1, the following results hold true:
(a) Let 0 < �(λ) < �(ν), then

D̂λ–ν

[
zλ–1(1 – az)–ρ F̂

(
ρ,σ ; τ ;

x
1 – az

; 0, 0
)]

=
Γ (λ)
Γ (ν)

zν–1F̂2(ρ,σ ,λ; τ ,ν; x, az; 0, 0).

(b) Let �(λ – ν) > 0, �(λ + η) > 0, then

Îλ–ν
η

[
zλ–1(1 – az)–ρ F̂

(
ρ,σ ; τ ;

x
1 – az

; 0, 0
)]

=
Γ (λ + η)

Γ (2λ + η – ν)
zλ–1F̂2(ρ,σ ,λ + η; τ , 2λ + η – ν; x, az; 0, 0).

(c) Let m – 1 < �(λ – ν) < m, �(λ) > 0, then

D̂λ–ν

[
zλ–1(1 – az)–ρ F̂

(
ρ,σ ; τ ;

x
1 – az

; 0, m
)]

=
Γ (λ)
Γ (ν)

zν–1F̂2(ρ,σ ,λ; τ ,ν; x, az; 0, m).

(d) Let m – 1 < �(λ – ν) < m < �(λ), then

D̂λ–ν

[
zλ–1(1 – az)–ρ F̂

(
ρ,σ ; τ ;

x
1 – az

; m, m
)]

=
Γ (λ)
Γ (ν)

zν–1F̂2(ρ,σ ,λ; τ ,ν; x, az; m, m).

3 Generating function relations
The proofs of following theorems can be given similar to the proofs of the corresponding
results in [15, Sects. 5.2 and 5.3]. Besides, the proofs of similar theorems can be found in
many papers, such as [1–6, 8–10]. That is why we omit the proofs.

Theorem 7 For |z| < min{1, |1 – t|} and |t| < |1 – z|, the following relations hold true:
(a) Let 0 < �(λ) < �(ν), then

∞∑
n=0

(ρ)n

n!
F̂(ρ + n,λ;ν; z; 0, 0)tn = (1 – t)–ρ F̂

(
ρ,λ;ν;

z
1 – t

; 0, 0
)

.
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(b) Let �(λ – ν) > 0, �(λ + η) > 0, then

∞∑
n=0

(ρ)n

n!
F̂(ρ + n,λ + η; 2λ + η – ν; z; 0, 0)tn

= (1 – t)–ρ F̂
(

ρ,λ + η; 2λ + η – ν;
z

1 – t
; 0, 0

)
.

(c) Let m – 1 < �(λ – ν) < m, �(λ) > 0, then

∞∑
n=0

(ρ)n

n!
F̂(ρ + n,λ;ν; z; 0, m)tn = (1 – t)–ρ F̂

(
ρ,λ;ν;

z
1 – t

; 0, m
)

.

(d) Let m – 1 < �(λ – ν) < m < �(λ), then

∞∑
n=0

(ρ)n

n!
F̂(ρ + n,λ;ν; z; m, m)tn = (1 – t)–ρ F̂

(
ρ,λ;ν;

z
1 – t

; m, m
)

.

Theorem 8 For |z| < min{1, | 1–t
t |} and |t| < |1 – z|–1, the following relations hold true:

(a) Let 0 < �(λ) < �(ν), then

∞∑
n=0

(ρ)n

n!
F̂(σ – n,λ;ν; z; 0, 0)tn = (1 – t)–ρ F̂1

(
λ,ρ,σ ;ν;

–zt
1 – t

, z; 0, 0
)

.

(b) Let �(λ – ν) > 0, �(λ + η) > 0, then

∞∑
n=0

(ρ)n

n!
F̂(σ – n,λ + η; 2λ + η – ν; z; 0, 0)tn

= (1 – t)–ρ F̂1

(
λ + η,ρ,σ ; 2λ + η – ν;

–zt
1 – t

, z; 0, 0
)

.

(c) Let m – 1 < �(λ – ν) < m, �(λ) > 0, then

∞∑
n=0

(ρ)n

n!
F̂(σ – n,λ;ν; z; 0, m)tn = (1 – t)–ρ F̂1

(
λ,ρ,σ ;ν;

–zt
1 – t

, z; 0, m
)

.

(d) Let m – 1 < �(λ – ν) < m < �(λ), then

∞∑
n=0

(ρ)n

n!
F̂(σ – n,λ;ν; z; m, m)tn = (1 – t)–ρ F̂1

(
λ,ρ,σ ;ν;

–zt
1 – t

, z; m, m
)

.

Theorem 9 For |z| < 1, | 1–u
1–z t| < 1 and | z

1–t | + | ut
1–t | < 1, the following relations hold true:

(a) Let 0 < �(λ) < �(ν), 0 < �(σ ) < �(τ ), then

∞∑
n=0

(ρ)n

n!
F̂(ρ + n,λ;ν; z; 0, 0)̂F(–n,σ ; τ ; u; 0, 0)tn

= (1 – t)–ρ F̂2

(
ρ,λ,σ ;ν, τ ;

z
1 – t

,
–ut
1 – t

; 0, 0
)

.
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(b) Let �(λ – ν) > 0, �(λ + η) > 0, �(σ – τ ) > 0, �(σ + ξ ) > 0, then

∞∑
n=0

[
(ρ)n

n!
F̂(ρ + n,λ + η; 2λ + η – ν; z; 0, 0)

× F̂(–n,σ + ξ ; 2σ + ξ – τ ; u; 0, 0)tn
]

= (1 – t)–ρ F̂2

(
ρ,λ + η,σ + ξ ; 2λ + η – ν, 2σ + ξ – τ ;

z
1 – t

,
–ut
1 – t

; 0, 0
)

.

(c) Let m – 1 < �(λ – ν) < m, �(λ) > 0, m – 1 < �(σ – τ ) < m, �(σ ) > 0, then

∞∑
n=0

(ρ)n

n!
F̂(ρ + n,λ;ν; z; 0, m)̂F(–n,σ ; τ ; u; 0, m)tn

= (1 – t)–ρ F̂2

(
ρ,λ,σ ;ν, τ ;

z
1 – t

,
–ut
1 – t

; 0, m
)

.

(d) Let m – 1 < �(λ – ν) < m < �(λ), m – 1 < �(σ – τ ) < m < �(σ ), then

∞∑
n=0

(ρ)n

n!
F̂(ρ + n,λ;ν; z; m, m)̂F(–n,σ ; τ ; u; m, m)tn

= (1 – t)–ρ F̂2

(
ρ,λ,σ ;ν, τ ;

z
1 – t

,
–ut
1 – t

; m, m
)

.

Theorem 10 For |az| < min{1, |1 – t|}, |t| < |1 – az|, |bz| < 1, |cz| < 1, the following relations
hold true:

(a) Let 0 < �(λ) < �(ν), then

∞∑
n=0

(ρ)n

n!
F̂3

D(λ,ρ + n,σ , τ ;ν; az, bz, cz; 0, 0)tn

= (1 – t)–ρ F̂3
D

(
λ,ρ,σ , τ ;ν;

az
1 – t

, bz, cz; 0, 0
)

.

(b) Let �(λ – ν) > 0, �(λ + η) > 0, then

∞∑
n=0

(ρ)n

n!
F̂3

D(λ + η,ρ + n,σ , τ ; 2λ + η – ν; az, bz, cz; 0, 0)tn

= (1 – t)–ρ F̂3
D

(
λ + η,ρ,σ , τ ; 2λ + η – ν;

az
1 – t

, bz, cz; 0, 0
)

.

(c) Let m – 1 < �(λ – ν) < m, �(λ) > 0, then

∞∑
n=0

(ρ)n

n!
F̂3

D(λ,ρ + n,σ , τ ;ν; az, bz, cz; 0, m)tn

= (1 – t)–ρ F̂3
D

(
λ,ρ,σ , τ ;ν;

az
1 – t

, bz, cz; 0, m
)

.
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(d) Let m – 1 < �(λ – ν) < m < �(λ), then

∞∑
n=0

(ρ)n

n!
F̂3

D(λ,ρ + n,σ , τ ;ν; az, bz, cz; m, m)tn

= (1 – t)–ρ F̂3
D

(
λ,ρ,σ , τ ;ν;

az
1 – t

, bz, cz; m, m
)

.

4 Concluding remarks
Recent developments in the theory of fractional calculus show its importance; therefore,
the generalized Riemann–Liouville fractional operator D̂ν , the Caputo fractional operator
D̂ν and the Kober–Erdelyi fractional operator Îν

η will be useful for investigators in various
disciplines of applied sciences and engineering physics. We also try to find certain pos-
sible applications of these results presented here to some other research areas due to the
presence of the generalized beta function B̂ possessing the advantage that a number of
special functions happen to be particular cases of these functions.

We conclude this investigation by noting that the results deduced above are significant
and can lead to numerous other fractional integral and derivative formulas and integral
transforms involving various special functions by suitable specializations of arbitrary pa-
rameters in the main findings. More importantly, they are expected to find some applica-
tions in probability theory and to the solutions of differential equations.
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