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Abstract
A predator–prey model, with aged structure in the prey population and the
assumption that the predator hunts prey of all ages, is proposed and investigated.
Using the uniform persistence theory for infinite dimensional dynamical systems, the
global threshold dynamics of the model determined by the predator’s net
reproductive number �P are established: the predator-free equilibrium is globally
stable if �P < 1, while the predator persists if �P > 1. Numerical simulations are given
to illustrate the results.
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1 Introduction
Predator–prey interactions are ubiquitous in the biological world, and they are one of
the most important topics in ecology and continue to be of widespread interest today.
Most existing studies on predator–prey models are focused on interacting species without
age structure (see [1–4]). However, as the importance of age structure in populations has
become more widely recognized, there is a rapidly growing literature dealing with various
aspects of interacting populations with age structure [5–19].

In the above age-structured predator–prey population models, age structure is intro-
duced into interactions of multi-species, and population models can quickly become re-
markably complex [7, 13]. Hence, it is understandable that many studies in the dynamics of
age-structured predator–prey populations assumed that age structure was only employed
in one species, either in predators or prey [5, 13–16, 20]. When considering the age struc-
ture among the prey population, we can assume that predation is dependent on the age of
the prey. This allows us to include age-specific predation into the model and to reflect on
different possible settings from biology. In [13], a general framework for age-structured
predator–prey systems is introduced. However, Mohr et al. [13] assumed that only adult
prey is involved in predation. In [11], Li et al. argued that the prey population should have
an age structure and they assumed that the functional response is of predator-dependent
type.

In this paper, we follow [8, 11, 13, 19, 21, 22] and propose a new predator–prey model
with age-structured prey population. We assume that the predator hunts both the im-
mature prey and the adult prey, and that the functional response of predators to prey is
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of Holling type II. Our primary aim of this paper is to obtain sharp criteria of the global
threshold dynamics for the system.

The paper is organized as follows. In Sect. 2, we consider age-structured prey popula-
tions, define a threshold age, age-at-maturity, distinguish immature from adult individuals,
and some assumption is introduced. In Sect. 3, we investigate the existence and stability of
equilibria, and we find persistence. In the following section, we perform numerical simu-
lations to verify our analytical results. At the end of the paper, we give a summary of the
results.

2 The model
Throughout this paper, the indices 1 and 2 indicate variables and parameters related to
larval and adult individuals, respectively.

• Let P(t) denote the total number of the predator at time t. Assume that the predator
population is governed by the Lotka–Volterra equation. c(a) is the conversion
efficiency of ingested prey into new predator individuals, and m(a) > 0 is the per
capita capture rate of prey by a searching predator, h(a) > 0 is the handling (digestion)
time per unit biomass consumed. In the absence of prey, the predator population,
P(t), decreases exponentially with rate μP > 0.

• Let u(t, a) denote the prey population density of individuals of age a at time t.
Biological interpretation suggests that lima→+∞ u(t, a) = 0, and we introduce a
threshold age, τ > 0, to distinguish immature individuals (a < τ ) from adult ones
(a ≥ τ ). Thus, we distinguish immature prey, u(t, a) = u1(t, a), a ∈ [0, τ ), from adult
prey, u(t, a) = u2(t, a), a ∈ [τ , +∞). The transition from the immature class to the
adult one occurs at age τ > 0, the age-at-maturity of the prey. The total number of
prey, U(t), is given by

U(t) =
∫ +∞

0
u(t, a) da =

∫ τ

0
u1(t, a) da +

∫ +∞

τ

u2(t, a) da = U1(t) + U2(t).

μ : [0, +∞) → [0, +∞) and β : [0, +∞) → [0, +∞) denote the age-dependent
mortality and fertility rate of the prey, respectively. Here β(·) ∈ L∞

+ ((0, +∞),R) clearly
describes the effects of the age on the fertility.

Taking all the above into account, we have to study the following model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t,a)
∂a + ∂u(t,a)

∂t = –μ(a)u(t, a) – m(a)u(t,a)
1+h(a)m(a)U(t) P(t),

dP(t)
dt =

∫ ∞
0

c(a)m(a)u(t,a)
1+h(a)m(a)U(t) P(t) da – μPP(t),

u(0, ·) = u0 ∈ L1((0, +∞),R), P(0) = P0,

u(t, 0) = f (U(t))
∫ +∞

0 β(a)u(t, a) da,

u(t, a) → 0 when a → +∞.

(2.1)

The number of newborns at time t is u(t, 0) < B+ for all t ≥ 0, B+ is a positive constant in-
dependent of age, the continuous function u0 : [0, +∞) → [0, +∞) provides the initial age
distribution. The coefficient f (U(t)) measures the effects of the predation on the fertility
of the prey, which is dependent on the total number of the prey, and we assume that the
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prey eggs will not be consumed by predators (see [11]), [18]):

f (0) = 0, f
(
U(t)

) ≥ 0, ∀U(t) ≥ 0;

f ′(U(t)
)

> 0, ∀U(t) ≥ 0, lim
U(t)→+∞

f
(
U(t)

)
= ι;

∃U∗
2 > 0 such that exp(–μ1τ )βf

(
U∗

2
)

= μ2.

(2.2)

In this paper, we assume that immature individuals are not fertile, so that f (U(t)) =
f (U2(t)), then u(t, 0) = f (U2(t))βU2(t) := b(U2(t)), it is clear that b(U2) is increasing,
by (2.2), we get exp(–μ1τ )b(U∗

2 ) = μ2U∗
2 . Note that (2.2) implies

b′(0) exp(–μ1τ ) = μ2. (2.3)

For the age-structured prey population, we choose β(a), m(a), μ(a), c(a) and h(a) in the
form that these functions are constant for a < τ and for a ≥ τ , respectively. That is,

β(a) =

⎧⎨
⎩

0 for a < τ ,

β for a ≥ τ .
m(a) =

⎧⎨
⎩

m1 for a < τ ,

m2 for a ≥ τ ,

μ(a) =

⎧⎨
⎩

μ1 for a < τ ,

μ2 for a ≥ τ .
c(a) =

⎧⎨
⎩

c1 for a < τ ,

c2 for a ≥ τ ,

h(a) =

⎧⎨
⎩

h1 for a < τ ,

h2 for a ≥ τ .

We set up a modified Lotka–Sharpe model (see [23]) for u1(t, a), a < τ :

∂u1(t, a)
∂a

+
∂u1(t, a)

∂t
= –μ1u1(t, a) –

m1u1(t, a)
1 + h1m1U(t)

P(t),

u1(t, 0) = f
(
U2(t)

)∫ ∞

0
β(a)u(t, a) da

= b
(
U2(t)

)
,

u1(0, a) = u0
1(a),

(2.4)

with u0
1(a) ≥ 0 for all a ∈ [0, τ ). Assuming that no individual dies at the very moment when

it becomes adult, u2(t, τ ) = u1(t, τ ), and that lima→+∞ u2(t, a) = 0, we have a similar system
for u2(t, a) with initial age distribution u0

2(a) ≥ 0 for all a > τ .
The total number of immature individuals satisfies

U ′
1(t) =

∫ τ

0

∂u1(t, a)
∂t

da

= –
∫ τ

0

[
∂u1(t, a)

∂a
+ μ1u1(t, a) +

m1u1(t, a)
1 + h1m1U(t)

P(t)
]

da

= u1(t, 0) – u1(t, τ ) – μ1U1(t) –
m1U1(t)

1 + h1m1U(t)
P(t)
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and for the adult population we have

U ′
2(t) =

∫ +∞

τ

∂u2(t, a)
∂t

da

= –
∫ +∞

τ

[
∂u2(t, a)

∂a
+ μ2u2(t, a) +

m2u2(t, a)
1 + h2m2U(t)

P(t)
]

da

= u2(t, τ ) – μ2U2(t) –
m2U2(t)

1 + h2m2U(t)
P(t)

= u1(t, τ ) – μ2U2(t) –
m2U2(t)

1 + h2m2U(t)
P(t). (2.5)

With the method of characteristics (see [24]) one finds the explicit solution of (2.4),

u1(t, a) =

⎧⎨
⎩

u0
1(a – t)e–

∫ t
0 (μ1+ m1P(s)

1+h1m1U(s) ) ds, a > t,

b(U2(t – a))e–
∫ a

0 (μ1+ m1P(t–a+s)
1+h1m1U(t–a+s) ) ds, a ≤ t.

(2.6)

When t < τ , we get

u1(t, τ ) = u0
1(τ – t)e–μ1t–

∫ t
0

m1P(s)
1+h1m1U(s) ds,

and for t ≥ τ ,

u1(t, τ ) = b
(
U2(t – τ )

)
e–μ1τ–

∫ τ
0

m1P(t–τ+s)
1+h1m1U(t–τ+s) ) ds.

From the above derivation, for t < τ , our age-structured prey models are as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U ′
1(t) = b(U2(t)) – μ1U1(t)

– m1U1(t)
1+h1m1U(t) P(t) – u0

1(τ – t)e–μ1t–
∫ t

0
m1P(s)

1+h1m1U(s) ds,

U ′
2(t) = u0

1(τ – t)e–μ1t–
∫ t

0
m1P(s)

1+h1m1U(s) ds – μ2U2(t) – m2U2(t)
1+h2m2U(t) P(t),

dP(t)
dt = c1 · m1U1(t)P(t)

1+h1m1U(t) + c2 · m2U2(t)P(t)
1+h2m2U(t) – μPP(t).

(2.7)

For t ≥ τ we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U ′
1(t) = b(U2(t)) – μ1U1(t) – m1U1(t)

1+h1m1U(t) P(t)

– b(U2(t – τ ))e–μ1τ–
∫ τ

0
m1P(t–τ+s)

1+h1m1U(t–τ+s) ds,

U ′
2(t) = b(U2(t – τ ))e–μ1τ–

∫ τ
0

m1P(t–τ+s)
1+h1m1U(t–τ+s) ds

– μ2U2(t) – m2U2(t)
1+h2m2U(t) P(t),

dP(t)
dt = c1 · m1U1(t)

1+h1m1U(t) P(t) + c2 · m2U2(t)
1+h2m2U(t) P(t) – μPP(t).

(2.8)

The meaning of all parameters can be found in Table 1.
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Table 1 Variables and parameters used in the model

Symbol Definition

U1(t) number of juvenile prey at time t
U2(t) number of mature prey at time t
P(t) number of the predator at time t
u1(t,a) density of the juvenile prey at time t of age a
u2(t,a) density of the mature prey at time t of age a
μ2 per capita mortality rate of mature prey
μ1 per capita mortality rate of juvenile prey
μP per capita mortality rate for the predator
c1 prey juvenile biomass encounter rate
c2 prey adult biomass encounter rate
β the age-specific fertility rate or birth rate
h(a) the handling (digestion) time per unit biomass consumed
m1 the per capita capture rate of juvenile prey by a searching predator
m2 the per capita capture rate of mature prey by a searching predator
τ maturation time of juvenile prey
u(t, 0) egg laying rate of mature prey
θ maximum per capita female egg release
f (U2) the effects of the predation on the fertility of mature prey: (θU2)/(1 + θU2)

3 Mathematical analysis
3.1 Positivity and boundedness
From the basic theory of delay differential equations (see, for example, [25]), the system
(2.8) with the initial conditions

ϕ(θ ) =
(
ϕ1(θ ),ϕ2(θ ),ϕ3(θ )

)
, ∀θ ∈ [–τ , 0],ϕi(θ ) ≥ 0,ϕi(0) > 0, i = 1, 2, 3, (3.1)

and a unique solution (U1(t), U2(t), P(t)) of system (2.8) is defined for all positive time
provided that all solutions are bounded.

Throughout this section, we always assume that (2.2) holds.

Proposition 3.1 Suppose that (2.2) holds, then all the solutions of system (2.8) are non-
negative and bounded for all t ≥ 0 on their respective initial intervals (3.1).

Proof We suppose that u0
1(a) ≥ 0, a ≥ 0 is known, we take the solution of (2.7) as history

function for (2.8) and we obtain nonnegative solutions if u0
1(a) is not known. Following

[13, p. 100], we can obtain positivity of solutions.
It follows from [26, Theorem 5.2.1] that U2(t) ≥ 0 in its maximal interval of existence.

We first show that the variables U1(t), U2(t), and P(t), with nonnegative initial data U2(0) >
0, remain nonnegative as long as they exist. In fact, by the second equation of system (2.8),
we have

U2(t) = U2(0)
(
e–μ2t + e

∫ t
0

m2P(s)
1+m2h2U(s)

)
+

∫ t

0
b
(
U2(s – τ )

)
Ṽ eμ2(s–t) ds, (3.2)

where

exp

[
–

∫ s

s–τ

(
μ1 +

m1P(η)
1 + m1h1U(η)

)
dη

]
:= Ṽ .

Thus, U2(t) > 0 for all t ≥ 0 holds, if it is not true, then there exists t̃0 > 0 such that
U2(t̃0) = 0, let t0 = min{t̃0 : U2(t̃0) = 0}, so that U2(t0) = 0 and U2(t) > 0 for all t ∈ [0, t0).
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On incorporation of the initial conditions, when s < τ for s ∈ [0, t0], we obtain

U2(0)
(
e–μ2t0 + e

∫ t0
0

m2P(s)
1+m2h2U(s)

)
+

∫ t

0
b
(
U2(s – τ )

)
Ṽ eμ2(s–t0) ds > 0,

next if s > τ for s ∈ [0, t0], then, by assuming that U2(t) > 0 for all t ∈ [0, t0), we get

U2(0)
(
e–μ2t0 + e

∫ t0
0

m2P(s)
1+m2h2U(s)

)
+

∫ t

0
b
(
U2(s – τ )

)
Ṽ eμ2(s–t0) ds > 0,

so that

U2(0)
(
e–μ2t0 + e

∫ t0
0

m2P(s)
1+m2h2U(s)

)
+

∫ t

0
b
(
U2(s – τ )

)
Ṽ eμ2(s–t0) ds > 0.

By (3.2), this is a contradiction. Consequently, U2(t) > 0 for t ≥ 0 holds.
The first equation of system (2.8) can be cast into an integral equation form, by differ-

entiation, so that

U1(t) =
∫ t

t–τ

b
(
U2(ξ )

)
exp

(∫ t

ξ

(
–μ1 –

m1P(η)
1 + m1h1U(η)

)
dη

)
dξ ,

by (2.2) and U2(t) > 0 for all t ≥ 0, we have U1(t) > 0 for all t ≥ 0. Next, by the third equation
of system (2.8),

P(t) = P(0)e
∫ t

0 (c1· m1U1(s)
1+m1h1U(s) +c2· m2U2(s)

1+m2h2U(s) –μP) ds,

by (3.1), U1(t) > 0, U2(t) > 0 for all t ≥ 0, thus P(t) > 0 for all t ≥ 0.
Next, we show that solutions remain bounded. Let

V (t) = c0U1(t) + c0U2(t) + P(t),

where c0 = max{c1, c2}, calculating the derivative of V (t) along trajectories of system (2.8),
we obtain

V ′(t) = c0b
(
U2(t)

)
– c0μ2U2(t) – c0μ1U1(t) – μPP(t)

– c0 · m2U2(t)P(t)
1 + m2h2U(t)

– c0 · m1U1(t)P(t)
1 + m1h1U(t)

+ c1 · m1U1(t)P(t)
1 + m1h1U(t)

+ c2 · m2U2(t)P(t)
1 + m2h2U(t)

≤ c0b
(
U2(t)

)
– c0μ2U2(t) – c0μ1U1(t) – μPP(t)

– c0 · m2U2(t)P(t)
1 + m2h2U(t)

– c0 · m1U1(t)P(t)
1 + m1h1U(t)

+ c0 · m1U1(t)P(t)
1 + m1h1U(t)

+ c0 · m2U2(t)P(t)
1 + m2h2U(t)

≤ c0B+ – c0μ1U1(t) – c0μ2U2(t) – μPP(t), (3.3)
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for positive constant σ (σ = min{μ1,μ2,μP}), it follows from (3.3) that

V ′(t) + σV (t) ≤ c0B+, (3.4)

and this yields

lim sup
t→+∞

V (t) <
c0B+

σ
,

where u(t, 0) < B+ for all t ≥ 0, B+ is a positive constant independent of age, apparently,
u(t, 0) = b(U2(t)) < B+ for all t ≥ 0. Then U1(t), U2(t), P(t) are bounded. Consequently, the
solution (U1(t), U2(t), P(t)) of system (2.8) with initial condition (3.1) exists for all t ≥ 0. �

3.2 Existence of the boundary equilibria
The equilibrium (U1, U2, P) of system (2.8) satisfies the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b(U2) – μ1U1 – m1U1
1+m1h1U P – b(U2)e

–μ1τ–
∫ τ

0
m1P

1+m1h1U
ds

= 0,

b(U2)e
–μ1τ–

∫ τ
0

m1P
1+m1h1U

ds
– μ2U2 – m2U2

1+m2h2U P = 0,

c1 · m1U1
1+m1h1U P + c2 · m2U2

1+m2h2U P – μPP = 0.

(3.5)

It is easy to see that the equilibrium point E0 = (0, 0, 0) always exists for all parameter
values. If (2.2) holds, there is an equilibrium with P = 0; in the predator-free equilibrium,
the U1 and U2 components are U∗

1 and U∗
2 with U∗

2 > 0 from (2.2), which satisfy

exp(–μ1τ )b
(
U∗

2
)

= μ2U∗
2 , U∗

1 =
b(U∗

2 )(1 – exp(–μ1τ ))
μ1

. (3.6)

3.3 Persistence and stability analysis
In this section, we study the global stability of the predator-free equilibrium E1 of (2.8).
Our principal result in this section can be stated as follows.

Theorem 3.1 Let �P := 1
μP

{ c1m1U∗
1 (t)

1+h1m1U∗(t) + c2m2U∗
2 (t)

1+h2m2U∗(t) }, where U∗(t) = U∗
1 (t) + U∗

2 (t). The
predator-free equilibrium E1 of (2.8) is globally asymptotically stable if �P < 1.

Proof We use the variant of system that involves the first and second equations of system
(2.8). From the second equation of system (2.8), and using positivity of solutions,

dU2(t)
dt

≤ –μ2U2(t) + exp(–μ1τ )b
(
U2(t – τ )

)
. (3.7)

Since b(·) is increasing, we may use a comparison argument (for example see [26]) to con-
clude that U2(t) is bounded by the solution of the corresponding differential equation ob-
tained from (3.7) by changing ≤ to =. Since b(·) is increasing, positive solutions of that
differential equation approach U∗

2 (see [27]). Therefore,

lim sup
t→∞

U2(t) ≤ U∗
2
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and, from the first equation of system (2.8), we have

lim sup
t→∞

U1(t) ≤ b(U∗
2 )(1 – exp{–μ1τ })

μ1
= U∗

1 .

Since �P < 1 holds, there exists a positive small constant ε such that

μP >
{

c1m1(U∗
1 + ε)

1 + h1m1(U∗ + ε)
+

c2m2(U∗
2 + ε)

1 + h2m2(U∗ + ε)

}
. (3.8)

With this ε, ∃ T , such that U1(t) ≤ U∗
1 + ε for t > T . From the third equation of system

(2.8) and for t sufficiently large we obtain

dP(t)
dt

≤ c1m1(U∗
1 + ε)P(t)

1 + h1m1(U∗ + ε)
+

c2m2(U∗
2 + ε)P(t)

1 + h2m2(U∗ + ε)
– μPP(t). (3.9)

We introduce the following auxiliary equation:

dV (t)
dt

=
c1m1(U∗

1 + ε)V (t)
1 + h1m1(U∗ + ε)

+
c2m2(U∗

2 + ε)V (t)
1 + h2m2(U∗ + ε)

– μPV (t), (3.10)

with V (0) = P(0). By the comparison theorem, we have

P(t) ≤ V (t), t ≥ 0. (3.11)

Rearranging �P < 1, thus

{
c1m1(U∗

1 + ε)
1 + h1m1(U∗ + ε)

+
c2m2(U∗

2 + ε)
1 + h2m2(U∗ + ε)

}
< μP.

By [28, Lemma 2], this implies limt→+∞ V (t) = 0. Combining Proposition 3.1 and (3.11),
we therefore have

lim
t→+∞ P(t) = 0. (3.12)

With the above analysis, we get limt→+∞(U1(t), U2(t), P(t)) = (U∗
1 , U∗

2 , 0). so that the
predator-free equilibrium E1 of (2.8) is globally asymptotically stable if �P < 1. This com-
pletes the proof of Theorem 3.1. �

Theorem 3.2 Suppose (2.2)–(2.3) hold. If �P > 1, the predator P is uniformly persists.
Namely, there exists δ > 0, which is independent of the initial conditions, such that

lim inf
t→∞ P(t) > δ.

Proof Next we apply [29, Theorem 1.3.2] to prove and establish population persistence.
Let C+([–τ , 0], R3

+) denote the space of continuous functions mapping [–τ , 0] into R3
+. De-

note

M := C+(
[–τ , 0], R3

+
)
, M0 :=

{
ϕ ∈ M : ϕi(0) > 0, i = 1, 2, 3

}
,
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and

∂M0 = M \ M0.

Clearly, M0 is an open set relative to M. Define T to be a continuous semiflow on M, i.e.,
for any t ≥ 0, T(t) is a C0-semigroup on M satisfying

T(t) : M0 → M0, T(t) : ∂M0 → ∂M0,

and

T(t)ϕ(θ ) =
(
U1(t + θ ), U2(t + θ ), P(t + θ )

)
,

where (U1(t), U2(t), P(t)) is the solution of system (2.8) with initial conditions (3.1). By the
definitions of M0 and ∂M0 and Theorem 3.1, it is easy to see that a constant t0 ≥ 0 exists
such that T(t) is compact for all t > t0; T(t) is point dissipative. Let ω(ϕ) be the omega limit
set of the orbit

γ +(ϕ) =
{

T(t)ϕ : ∀t ≥ 0
}

,

and define M∂ the particular invariant set, i.e.,

M∂ =
{
ϕ ∈ ∂M0 : T(t)ϕ ∈ ∂M0,∀t ≥ 0

}
.

From the proof of Proposition 3.1, we know that

M∂ =
{
ϕ ∈ ∂M0 : ϕ2 = 0 ∪ ϕ3 = 0

}
.

Therefore,

ω(ϕ) =
{

(0, 0, 0),
(
U∗∗

1 , U∗∗
2 , 0

)}
, ∀ϕ ∈ M∂ .

By Theorem 3.1, we can see that the flow in M∂ is isolated and acyclic.

To complete the proof of Theorem 3.2, we now need to prove the following two claims.

Claim 1 W s(E0) ∩ M0 = ∅. Assume W s(E0) ∩ M0 �= ∅, i.e., there exists a positive solu-
tion (U1(t), U2(t), P(t)) satisfying limt→+∞(U1(t), U2(t), P(t)) = (0, 0, 0). For sufficiently small
positive constant η, there exists T1 such that

U1(t) < η, U2(t) < η, P(t) < η for all t ≥ T1.

From the second equation of system (2.8) and (2.2), this implies that

U ′
2(t) > b

(
U2(t – τ )

)
e–μ1τ–m1ητ – (μ2 + m2η)U2(t)

= βf
(
U2(t – τ )

)
e–μ1τ–m1ητ U2(t – τ ) – (μ2 + m2η)U2(t), (3.13)
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for all t ≥ T1, by (2.2)–(2.3), μ2 < βf (U2(t – τ ))e–μ1τ , for sufficiently small positive constant
η, then

βf
(
U2(t – τ )

)
e–μ1τ–m1ητ > μ2 + m2η.

Consider the equation

⎧⎨
⎩

ψ ′(t) = βf (ψ(t – τ ))e–μU ,1τ–m1ητψ(t – τ ) – (μU2 + m2η)ψ(t), t ≥ T1,

ψ(t) = U2(t), t ∈ [T1, T1 + τ ].
(3.14)

By (3.13) the comparison theorem, we have U2(t) ≥ ψ(t) for all t > T1. On the other
hand, using [27, Theorem 4.9.1], we have limt→+∞ ψ(t) = ψ∗ for all solutions to system
(3.14), where ψ∗ > η is the unique positive equilibrium of system (3.14). Hence we obtain
lim supt→+∞ U2(t) ≥ ψ∗ > η, contradicting P(t) < η as t ≥ T1. We therefore conclude that
W s(E0) ∩ M0 = ∅.

Claim 2 Now we verify W s(E1)∩M0 = ∅. Assume this is not true, i.e., W s(E1)∩M0 �= ∅, then
there exists a positive solution (U1(t), U2(t), P(t)) of system (2.8) such that limt→+∞(U1(t),
U2(t), P(t)) = (U∗

1 , U∗
2 , 0), where U∗ = U∗

1 + U∗
2 . For the same value of η as that in Claim 1,

there exists a positive constant T2 ≥ T1 such that

U1(t) > U∗
1 – η, U∗

2 – η < U2(t) < U∗
2 + η, P(t) < η, for all t ≥ T2.

From the third equation of system (2.8) we have

P′(t) >
c1m1(U∗

1 – η)
1 + m1h1(U∗ – η)

P(t) +
c2m2(U∗

2 – η)
1 + m2h2(U∗ – η)

P(t) – μPP(t), (3.15)

for all t > T2 + τ . Integrating both sides of (3.15) yields

P(t) > p0 exp

{∫ t

0

[
c1m1(U∗

1 – η)
1 + m1h1(U∗ – η)

+
c2m2(U∗

2 – η)
1 + m2h2(U∗ – η)

– μP

]
ds

}
,

by �P > 1, we get

c1m1(U∗
1 – η)

1 + m1h1(U∗ – η)
+

c2m2(U∗
2 – η)

1 + m2h2(U∗ – η)
> μP,

which contradicts with P(t) < η as t ≥ T2 + τ . So that we conclude that W s(E1) ∩ M0 = ∅.
The above two claims show that E0, E1 are uniform weak repellers for M0 in the sense that

lim sup
t→+∞

∥∥T(t)ϕ – Ei
∥∥ ≥ η, ∀ϕ ∈ M0, i = 0, 1,

with the maximum norm ‖ · ‖. Thus, from [29, Theorem 1.3.2], we find that there exists a
constant δ > 0 such that

lim inf
t→+∞ P(t) > δ
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Figure 1 Density of the predator P of system (2.8) as
�P = 1.0901 > 1. The other parameters are as follows:
μ1 = 0.092, μ2 = 0.23, μP = 0.9, β = 0.99, h1 = 0.009,
m1 = 0.09, h2 = 0.0095,m2 = 0.15, c1 = 1, c2 = 1,
τ = 12

uniformly for all solutions of system (2.8), which implies that the system (2.8) is uniformly
persistent if �P > 1 holds. This completes the proof of Theorem 3.2. �

4 Numerical simulations
In this section we conduct numerical simulations to illustrate our analytical results. Pa-
rameter values are taken from Table 1. In all of the simulations we measure the time in
months. We choose the effects of the predation on the fertility of prey to be f (U2(t)) =

θU2(t)
1+θU2(t) , we choose parameters θ = 2, U1(0) = 5, U2(0) = 5, P(0) = 5, other parameters val-
ues are listed in caption of each figure, and system (2.8) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U ′
1(t) = βθ (U2(t))2

1+θU2(t) – μ1U1(t) – m1U1(t)
1+h1m1U(t) P(t)

– βθ (U2(t–τ ))2

1+θU2(t–τ ) e–μ1τ–
∫ τ

0
m1P(t–τ+s)

1+h1m1U(t–τ+s) ds,

U ′
2(t) = βθ (U2(t–τ ))2

1+θU2(t–τ ) e–μ1τ–
∫ τ

0
m1P(t–τ+s)

1+h1m1U(t–τ+s) ds

– μ2U2(t) – m2U2(t)
1+h2m2U(t) P(t),

dP(t)
dt = c1 · m1U1(t)

1+h1m1U(t) P(t) + c2 · m2U2(t)
1+h2m2U(t) P(t) – μPP(t).

(4.1)

The boundary equilibria are

E0 = (0, 0, 0), E1 =
(

μ2
2eμ1τ (eμ1τ – 1)

μ1θ (β – μ2eμ1τ )
,

μ2eμ1τ

θ (β – μ2eμ1τ )
, 0

)
.

The predator’s net reproductive number �P is

�P :=
1
μP

{Q1 + Q2},

where

Q1 =
c1m1μ

2
2eμ1τ (eμ1τ – 1)

μ1θ (β – μ2eμ1τ ) + h1m1μ
2
2eμ1τ (eμ1τ – 1)

,

Q2 =
c2m2μ2eμ1τ

θ (β – μ2eμ1τ ) + h2m2μ2eμ1τ
.

Figure 1 shows that the predator P is uniformly persists if �P > 1 (see Theorem 3.2).
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Figure 2 Solutions to the system (2.8) with different capture rates. (a):m1 = 0.08,m2 = 0.15; (b):m1 = 0.13,
m2 = 0.15; (c):m1 = 0.147,m2 = 0.15. The other parameters are as follows: μ1 = 0.005, μ2 = 0.13, μP = 0.55,
β = 0.85,m1h1 =m2h2 = 0.0001, c1 = 0.12, c2 = 0.40, τ = 6

Figure 3 The ultimate oscillation interval of the solution to system (2.8) when τ increases from 0 to 20, here
t ∈ [10, 2000]. μ1 = 0.005; μ2 = 0.13; μP = 0.85;m1 = 0.08; c1 = 0.11; c2 = 0.125;m1h1 =m2h2 = 0.0001;
m2 = 0.15; β = 0.85

Figure 2 shows that if the predator hunts juvenile prey increasingly large, the size of
the predator and mature prey to be expanded, this capture strategy will accelerate the
extinction of juvenile prey.

From Fig. 3, we see that if τ ∈ (0, 8)or(12, 15.5), approximately, the vertical amplitudes of
P(t), U1(t) and U2(t) are as small as a point, suggesting that they are asymptotically stable;
if τ increases in the interval [8, 12] or [15.5, 18.5], approximately, the vertical amplitudes
of P(t), U1(t) and U2(t) will become larger and larger, showing that they become more and
more unstable.

5 Summary and discussion
In this paper, we study a predator–prey system with stage structured on the prey. The
predator hunts both the immature prey and the adult prey. We have developed a rigor-
ous analysis of the model by applying the comparison theory of differential equations and
uniform persistence theory. Global dynamics of the model are obtained and threshold
dynamics determined by the predator’s net reproductive number �P are established: the
predators go extinct if �P < 1; and predators persist if �P > 1. Theorem 3.1 shows that the
predator-free equilibrium E1 of (2.8) is globally asymptotically stable if �P < 1. That the
predator P is uniformly persistent is also obtained in Theorem 3.2.

First, we have constructed the predator’s net reproductive number �P , and by applying
the comparison theory of differential equations, we get the predator-free equilibrium E1

of (2.8) is globally asymptotically stable if �P < 1 (see Theorem 3.1).
Second, by applying the uniform persistence theory, the predator P is uniformly persis-

tent is also obtained in Theorem 3.2 (see Fig. 1).
Besides the above systematic theoretical results for model (2.8), we also perform careful

numerical simulations to support the theoretical results. The prey have stage structure and
the highlights of this paper are the effects by delay τ . It is shown that of the immature prey τ
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largely determines stability of the immature prey and the predator, in addition τ increases
from 8 to 12/15.5 to 18.5, and the predator may lose its stability and becomes increasingly
unstable by enlarging the amplitude of the oscillation interval (see Fig. 3). Biologically, this
means that a shorter immature prey maturation period is helpful to stabilize the system.

In this paper, the stability of the predator–prey coexistence equilibrium remains unclear,
which we leave as our future work.
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