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Abstract
This paper presents a novel adaptive finite-time tracking control scheme for nonlinear
systems. During the design process of control scheme, the unmodeled dynamics in
nonlinear systems are taken into account. The radial basis function neural networks
(RBFNNs) are adopted to approximate the unknown nonlinear functions. Meanwhile,
based on RBFNNs, the assumptions with respect to unmodeled dynamics are also
relaxed. This paper provides a new finite-time stability criterion, making the adaptive
tracking control scheme more suitable in the practice than traditional methods.
Combining RBFNNs and the backstepping technique, a novel adaptive controller is
designed. Under the presented controller, the desired system performance is realized
in finite time. Finally, a numerical example is presented to demonstrate the
effectiveness of the proposed control method.
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Backstepping; Radial basis function neural networks; Finite-time stability

1 Introduction
In recent years, the adaptive control of nonlinear systems has achieved remarkable break-
throughs by combining with the backstepping technology [1–24]. Many of the technical
limitations in traditional adaptive control, such as matching condition and relative-degree
constraint, can be eliminated by an adaptive backstepping control scheme. Fuzzy logic
systems and neural networks (NNs) provide useful tools for designing control schemes of
uncertain nonlinear systems, because of their capability of nonlinear approximation [7,
25–52]. One of the breakthroughs in neural networks control is the introduction of adap-
tive algorithms for tuning the weighs of NNs [53]. However, the application of this method
is limited by the large computation. This phenomenon is due mainly to the fact that the
number of adaptive parameters is always affected by the nodes of the neural network. This
problem has been resolved by the adaptive control scheme proposed in [54] to a certain
extent. In [54], the key technique to relaxing the limitation lies in employing norms of un-
known neural weight vectors as the estimated parameters. It is also well known that the
applicability of the adaptive backstepping control method is limited by unmodeled dy-
namics existing in many practical nonlinear systems. Consequently, adaptive control for
nonlinear systems with unmodeled dynamics has been given widely attention in the past
several years [55, 56].
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Unmodeled dynamics are caused by many factors, such as measuring errors, model-
ing errors and uncertain perturbations. The traditional adaptive control methods are not
suitable in the presence of unmodeled dynamics. There are two possible ways to eliminate
the influence of unmodeled dynamics. The first way is to introduce a dynamics signal to
dominate the dynamics perturbation. In [57], K-filters and dynamic signal are introduced
to estimate the unmeasured states and deal with the dynamic uncertainties, respectively.
This method also was employed in nonlinear systems with fuzzy dead zone and dynamic
uncertainties based on fuzzy adaptive algorithm [58]. The second avenue is to make the
assumption with respect to unmodeled dynamics satisfying a lower triangular condition
[59, 60]. The control laws designed in [59] did not require an extra dynamic signal to prove
Lagrange stability. The same method was also employed in nonlinear systems with many
types of uncertainties, such as unknown dead-zone inputs, time-varying delay uncertain-
ties, unknown dynamic disturbances [60]. However, the control schemes proposed in the
above literature can only achieve desired system performance when the time tends to in-
finity. In practical engineering, it is necessary to ensure that the performance of the system
can be realized in finite time.

Finite-time control has received much attention because it can provide many benefits
such as strong robustness and better disturbance resistance capability [3, 4, 61]. The Lya-
punov theory of finite-time stability for nonlinear systems has been clearly established
by several authors [62, 63]. It is necessary to point out that the nonlinear functions in
these systems all meet the linear growth condition. However, in practice, the nonlinear
functions are often completely unknown for the constraints of the modeling method or
unknown dynamic disturbances. In this case, the linear growth condition might not be
satisfied. To eliminate this limitation, a new finite-time stability criterion was proposed in
[64]. However, the controller proposed in [64] cannot be applied to the nonlinear system
with unmodeled dynamics. In other words, there is still some room for improvement in
making the finite-time control scheme implemented more efficiently. These facts moti-
vate us to provide a new finite-time adaptive backstepping control scheme for uncertain
nonlinear system with unmodeled dynamics. In contrast with the existing literature, the
control scheme in this note offers the following benefits.

(1) The traditional adaptive neural or fuzzy control strategies can only guarantee the
system performance when time tends to infinity. These existing adaptive fuzzy control
methods are not suitable for the finite-time tracking control for uncertain nonlinear sys-
tem. Based on the Lyapunov theory of finite-time stability of nonlinear systems, this paper
constructs a neural network controller which can ensure the tracking performance of the
system in finite time. Therefore, to a certain extent, the control strategy proposed in this
paper is more meaningful than the control methods presented in [1, 2, 5, 56] in the prac-
tical application fields.

(2) During the design process of control scheme, the unmodeled dynamics are consid-
ered. Meanwhile, based on RBFNNs, the assumptions with respect to unmodeled dynam-
ics are also relaxed. Moreover, in the presence of unknown dynamic disturbances and
unmodeled dynamics, finite-time control can provide many benefits such as strong ro-
bustness and better disturbance resistance capability.

(3) The classical stability criteria draw a conclusion on finite-time stability based on
inequality V̇ ≤ –a0V ℘ with a0 > 0 and 0 < ℘ < 1. In contrast with the existing finite-time
control methods, the corresponding approximation errors in this paper will result in a
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positive constant d0 appearing in the right side of the inequality V̇ ≤ –a0V ℘ . These facts
motivate us to provide a novel criterion of finite-time stability, say V̇ ≤ –a0V ℘ + d0 with
d0 > 0. With the new adaptive control scheme based on the novel criterion of finite-time
stability proposed in this article, the nonlinear functions can be completely unknown and
they are only required to be continuous. Consequently, in contrast with the existing finite-
time control methods in [62–64], the control method in this note is more adaptable to the
realistic systems.

The paper is organized as follows. The control problem of the nonlinear system with
unmodeled dynamics is formulated in Sect. 2. The main results are presented in Sect. 3,
where the adaptive neural networks controller is presented to achieve the control objec-
tive in finite time. Simulation results are presented in Sect. 4. The paper ends with the
conclusion in Sect. 5.

2 Preliminaries and problem formulation
2.1 System description
The nonlinear systems with unmodeled dynamics in this paper can be expressed as fol-
lows:

ṡ = ϕ(t, s, z1),

ẋi = xi+1 + fi(x̄i) + pi(t, s, x),

ẋn = u + fn(x) + pn(t, s, x),

y = x1,

(1)

where x̄i = [x1, . . . , xi]T , fi denotes unknown smooth nonlinear function, u represents the
control input, z1 = x1 – yd and yd denotes the desired trajectory. Unmodeled dynamics
are represented by s(t) ∈ Rn̆, while x = [x1, x2, . . . , xn]T denotes part of the measured states.
pi(t, s, x) (i = 1, . . . , n) are the uncertain dynamic disturbances. In this paper, it is assumed
that pi(t, s, x) are unknown Lipschitz continuous functions.

In this article, the adaptive neural networks controller u is proposed, so that the control
performance can be guaranteed in finite time.

Definition 1 ([65]) The solution {z(t), t ≥ 0} of ż = f (z,ν) is semi-globally uniformly finite-
time bounded (SGUFB), if for all z(t0) = z0 ∈ �0 (some compact set containing the origin),
there exist ε > 0 and a settling time T(ε, z0) < ∞, such that ‖z(t)‖ < ε, for all t ≥ t0 + T .

Assumption 1 Assume that the desired trajectory yd = y(0)
d and its kth time derivative y(k)

d
(1 ≤ k ≤ n) are continuous and bounded.

Assumption 2 Consider ṡ = ϕ(t, s, z1) and pi(t, s, x) in (1). Suppose that:
• The equilibrium s = 0 of ṡ = ϕ(t, s, 0) – ϕ(t, 0, 0) is globally exponentially stable

equilibrium point, and there is a Lyapunov function Vϕ(t, s) that satisfies

k1‖s‖2 ≤ Vϕ(t, s) ≤ k2‖s‖2, (2)

∂Vϕ

∂t
+

∂Vϕ

∂s
(
ϕ(t, s, 0) – ϕ(t, 0, 0)

) ≤ –k3‖s‖2, (3)
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∣∣
∣∣
∂Vϕ

∂s

∣∣
∣∣ ≤ k4‖s‖, (4)

∥
∥ϕ(t, 0, 0)

∥
∥ ≤ k5, ∀t ≥ 0, (5)

where k1, k2, k3, k4 and k5 are unknown positive constants.
• ϕ and pi (i = 1, . . . , n) satisfy the inequalities

∥
∥ϕ(t, s, z1) – ϕ(t, s, 0)

∥
∥ ≤ e0ρ0

(‖z1‖
)
, (6)

∥∥pi(t, s, x)
∥∥ ≤ eiσi1

(‖x̄i‖
)

+ ei‖s‖σi2(x̄i), i = 1, . . . , n, (7)

where e0 and ei (i = 1, . . . , n) are unknown positive constants, ρ0(‖z1‖) ∈ C1 is
unknown continuous function, ρ0(0) = 0, σi1(‖x̄i‖) and σi2(x̄i) are unknown positive
continuous functions.

Remark 1 Assumption 2 is similar to assumptions used in [59, 66]. However, in this article,
ρ0, σi1 and σi2 can be completely unknown. To a certain extent, the control method in this
note is more adaptable to realistic systems, in contrast with [59].

Lemma 1 ([67]) For aj ∈ R, j = 1, . . . , M, 0 < � ≤ 1, we have

( M∑

j=1

|aj |
)�

≤
M∑

j=1

|aj |� ≤ M1–�

( M∑

j=1

|aj |
)�

. (8)

Lemma 2 ([68]) For ∀(x0, y0) ∈ R2 and positive constants μ, ρ , λ, the following inequality
holds:

|x0|μ|y0|ρ ≤ μ

μ + ρ
λ|x0|μ+ρ +

ρ

μ + ρ
λ

– μ
ρ |y0|μ+ρ . (9)

Lemma 3 Consider the system

ż = f (z,ν). (10)

Let V (z) ∈ C1 satisfy the inequality

V̇ (z) ≤ –c0V ℘(z) + d0, t ≥ 0 (c0 > 0, 0 < ℘ < 1, d0 > 0), (11)

where c0, ℘ and d0 are constants. Then the solution of the nonlinear system ż = f (z,ν) is
semi-globally uniformly finite-time bounded (SGUFB).

Proof It follows from (11) that

V̇ (z) ≤ –ζ c0V ℘(z) – (1 – ζ )c0V ℘(z) + d0, ∀0 < ζ ≤ 1.

Let �z = {z|V ℘(z) ≤ d0
(1–ζ )c0

} and �̃z = {z|V ℘(z) > d0
(1–ζ )c0

}.
Let z(t) ∈ �̃z . Then we have

V̇ (z) ≤ –ζ c0V ℘(z). (12)
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Therefore

∫ T

0

V̇ (z)
V ℘(z)

dt ≤ –
∫ T

0
ζ c0 dt. (13)

Hence

V 1–℘(z(T))
1 – ℘

–
V 1–℘(z(0))

1 – ℘
≤ –ζ c0T . (14)

Let

Tr =
1

(1 – ℘)ζ c0

[
V 1–℘

(
z(0)

)
–

(
d0

(1 – ζ )c0

)(1–℘)/℘]
, (15)

where z(0) denotes the initial value of z(t). Then one has zt ∈ �z for ∀T ≥ Tr . If zt ∈ �z , zt

does not exceed the set �z . In conclusion, the solution of the nonlinear system ż = f (z,ν)
is SGUFB. �

Remark 2 It is difficult to achieve the asymptotic stability of the nonlinear system in the
presence of uncertain perturbations. The system performance we can expect to realize is
that the solution of the system is bounded in finite time and the bound can be sufficiently
small.

2.2 RBF neural networks
In the following design, the radial basis function neural networks (RBFNNs) will be uti-
lized to approximate the unknown function f (ζ ) defined on some compact set � ∈ Rp.
�(ζ ) = [�1(ζ ),�2(ζ ), . . . ,�κ (ζ )]T is the basis function vector and hT = [h1, h2, . . . , hκ ]T de-
notes the weight vector. In this research, the following Gaussian basis function �i(ζ ) will
be utilized:

�i(ζ ) = exp

[
–

(ζ – ιi)T (ζ – ιi)
ω2

i

]
, i = 1, 2, . . . ,κ , (16)

where κ is the neural networks node number, ιi = [ιi1, ιi2, . . . , ιip]T denotes the center of the
receptive field and ωi represents the width of the Gaussian function.

Lemma 4 ([69]) Let f (ζ ) be a continuous function defined on a compact set �. Then, for
∀ε > 0, there exists a neural network h∗T�(ζ ) such that

f (ζ ) = h∗T�(ζ ) + ε(ζ ), (17)

where h∗ = arg minh∈Rκ {supζ∈� |f (ζ ) – hT�(ζ )|} and ε(ζ ) ≤ ε.

3 Adaptive tracking controller design and stability analysis
3.1 Controller design
In this section we propose a novel adaptive backstepping controller in which the uncertain
nonlinear function is approximated by RBFNNs.
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The controller design is based on the coordinate transformation as follows:

z1 = x1 – yd,

zk = xk – ξk–1, k = 2, . . . , n,
(18)

where ξk–1 denotes an intermediate controller, which will be established later.
Before the design procedure, we define a positive constant as follows:

τk =
∥
∥h∗

k
∥
∥2, k = 0, 1, 2, . . . , n. (19)

Obviously, τk is an unknown positive constant because ‖h∗
k‖ is unknown. Define τ̂k as the

estimate of τk , and τ̌k = τk – τ̂k . The control law is defined as

u = –
1

2μ2
n

znτ̂n�T
n �n –

1
2

zn – lnz2℘–1
n , (20)

where ln > 0, 0 < ℘ < 1, μn are design parameters.
The adaptive laws are designed as

˙̂τk =
qk

2μ2
k

z2
k�T

k �k – ζk τ̂k , (21)

where qk , μk and ζk are positive constants.

3.2 Stability analysis
Theorem 1 Consider the uncertain nonlinear system with unmodeled dynamics (1). If the
state feedback controller is designed as (20) and the adaptive laws are designed as (21), then
all the signals in the system are SGUFB for any bounded initial conditions and the tracking
error converges to a small neighborhood of the origin.

Proof Step 1. Consider a Lyapunov function candidate

V̄ϕ(t, s, z1) =
1
γ0

Vϕ(t, s) +
1
4

z2
1, (22)

where γ0 is a positive constant and Vϕ(t, s) is given in Assumption 2. In the light of As-
sumption 2, the time derivative of Vϕ(t, s) along the solutions of (1) satisfies

V̇ϕ(t, s) =
∂Vϕ

∂t
+

∂Vϕ

∂s
ϕ(t, s, z1)

=
∂Vϕ

∂t
+

∂Vϕ

∂s
(
ϕ(t, s, z1) – ϕ(t, s, 0)

)

+
∂Vϕ

∂s
(
ϕ(t, s, 0) – ϕ(t, 0, 0)

)
+

∂Vϕ

∂s
(
ϕ(t, 0, 0)

)

≤ –k3‖s‖2 + k4k5‖s‖ + k4‖s‖e0ρ0
(|z1|

)
. (23)

According to Lemma 2, one has

1
γ0

k4k5‖s‖ ≤ k3

8γ
‖s‖2 +

2
γ0k3

k2
4k2

5 (24)
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and

k4‖s‖
γ0

e0ρ0
(‖z1‖

) ≤ k3

8γ0
‖s‖2 +

2
γ0k3

k2
4e2

0ρ
2
0
(|z1|

)

≤ k3

8γ0
‖s‖2 + ρ4

0
(|z1|

)
+

1
γ 2

0 k2
3

k4
4e4

0. (25)

Now, by substituting (23)–(25) into (22) we obtain

V̄ϕ(t, s, z1) ≤ –
3k3

4γ
‖s‖2 +

2
γ0k3

k2
4k2

5 + ρ4
0
(|z1|

)
+

1
γ 2

0 k2
3

k4
4e4

0 +
1
2

z1ż1. (26)

According to Assumption 2 and Lemma 2, we also obtain

|zi||pi| ≤ k3

2i+1γ0
‖s‖2 +

22i–3γ 2
0

α2
i1k2

3
z4

i σ
4
i2 +

z2
i σ

2
i1

2β2
i1

+
β2

i1e2
i

2
+

α2
i1e4

i
2

(27)

and

–zi

i–1∑

j=1

∂ξi–1

∂xj

pj ≤ k3

2i+1γ0
‖s‖2 +

i–1∑

j=1

22i–3γ 2
0 (i – 1)2

α2
j1k2

3

(
σj2zj ∂ξj–1

∂xj

)4

+
i–1∑

j=1

((
∂ξj–1

∂xj

)2 z2
j σ

2
j1

2β2
j1

+
β2

j1e2
j

2
+

α2
j1e4

j

2

)
, (28)

where αi1 and βi1 (i = 1, 2, . . . , n) are design parameters.
Now consider the Lyapunov function candidate V1

V1 = V̄ϕ(t, s, z1) +
1
4

z2
1 +

τ̆ 2
1

2q1
. (29)

Differentiating (29) with respect to time and using (27)–(28) yield

V̇1 = z1ż1 +
1
γ0

V̇ϕ –
1
q1

τ̆1 ˙̂τ1

= z1
(
x2 + f1(x̄1) + p1 – ẏd

)
+

1
γ0

V̇ϕ –
1
q1

τ̆1 ˙̂τ1

≤ z1z2 + z1ξ1 + z1f1 + |z1||p1| – z1ẏd +
1
γ0

V̇ϕ –
1
q1

τ̆1 ˙̂τ1

≤ –
k3

2γ0
‖s‖2 + �1 + �0 + z1 f̂1 +

1
2

z2
2 + z1ξ1 –

1
q1

τ̆1 ˙̂τ1, (30)

where

�0 =
2

γ0k3
k2

4k2
5 +

1
γ 2

0 k2
3

k4
4e4

0 + ρ4
0
(‖z1‖

)
,

�1 =
β2

11e2
1

2
+

α2
11e4

1
2

,

f̂1 =
1
2

z1 + f1 – ẏd +
z11σ

2
11

2β2
11

+
γ 2

0
2α2

11k2
3

z3
1σ

4
12 +

z1

k2
1
ρ4

0 .

(31)
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Obviously, f̂1 is an unknown function because σ11, σ12 and f1 are unknown. According to
Lemma 4, for ∀ε1 > 0, there is a RBFNN h∗T

1 �1 such that

f̂1 = h∗T
1 �1(X1) + ε1(X1),

∣∣ε1(X1)
∣∣ ≤ ε1, (32)

where X1 = [y, yd, ẏd]T . Based on Lemma 4 and (19), one has

z1 f̂1 = z1h∗T
1 �1(X1) + z1ε1(X1)

≤ 1
2μ2

1
z2

1τ1�T
1 �1 +

1
2
μ2

1 +
1
2

z2
1 +

1
2
ε2

1. (33)

Choose the virtual control signal as

ξ1 = –
1

2μ2
1

z1τ̂1�T
1 �1 –

1
2

z1 – l1z2℘–1
1 , (34)

where ℘ and l1 are design parameters. Substituting (21), (33) and (34) into (30) yields the
following:

V̇1 ≤ –
k3

2γ0
‖s‖2 + �1 + �0 +

1
2

z2
2 +

1
2
μ2

1 +
1
2
ε2

1 +
ζ1

q1
τ̆1τ̂1 – l1z2℘

1 . (35)

Step m (2 ≤ m ≤ n – 1). Let Vm–1 = Vm–2 + 1
2 z2

m–1 + 1
2qm–1

τ̆ 2
m–1, where qm–1 > 0 are design

parameters. Assuming that Vm–1 satisfies the following inequality:

V̇m–1 ≤ –
k3

2m–1γ0
‖s‖2 +

m–1∑

i=0

�i +
1
2

z2
m +

m–1∑

i=1

(
1
2
μi

2 +
1
2
εi

2
)

+
m–1∑

i=1

ζi

qi
τ̆iτ̂i –

m–1∑

i=1

liz2℘

i , (36)

where �i = β2
i1e2

i
2 + α2

i1e4
i

2 (1 ≤ i ≤ n).
Consider the Lyapunov function candidate

Vm = Vm–1 +
1
2

z2
m +

1
2qm

τ̆ 2
m. (37)

Establish the virtual control signal as

ξm = –
1

2μ2
m

zmτ̂m�T
m�m –

1
2

zm – lmz2℘–1
m , (38)

where ℘ and lm are design parameters. Differentiating ξm–1 with respect to time yields

ξ̇m–1 =
m–1∑

j=1

∂ξm–1

∂xj

(
xj+1 + fj (x̄j )

)
+ �m–1 +

m–1∑

j=1

∂ξm–1

∂xj

pj , (39)

where �m–1 =
∑m–1

j=1 ( ∂ξm–1
∂ ˙̂τ j

+ ∂ξm–1
∂y(j–1)

d
y(j )

d ).
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Differentiating Vm with respect to time and using (39) yield

V̇m = V̇m–1 + zmżm –
1

qm
τ̆m ˙̂τm

≤ –
k3

2mγ0
‖s‖2 +

m∑

i=0

�i + zmf̂m + zmξm –
1

qm
τ̆m ˙̂τm +

1
2

z2
m+1, (40)

where

f̂m =
1
2

zm + fm +
m–1∑

j=1

∂ξm–1

∂xj

(
xj+1 + fj (x̄j )

)
+ �m–1 +

zmσ 2
m1

2β2
m1

+
22m–3γ 2

0
α2

m1k2
3

z3
mσ 4

m2.

Obviously, f̂m is an unknown function. According to Lemma 4, for ∀εm > 0, there is a
RBFNN h∗T

m�m such that

f̂m = h∗T
m�m + εm(Xm),

∣∣εm(Xm)
∣∣ ≤ εm, (41)

where Xm = [x̄T
m, ξm–1, ȳ(m)

d , ¯̂̇
τm]T . Based on Lemma 4 and (19), one has

zmf̂m = zmh∗T
m�m(Xm) + zmεm(Xm)

≤ 1
2μ2

m
z2

mτm�T
m�m +

1
2
μ2

m +
1
2

z2
m +

1
2
ε2

m, (42)

where

ȳ(m)
d =

[
y(1)

d , . . . , y(m)
d

]
,

¯̂̇
τm = [ ˙̂τ1, . . . , ˙̂τm].

Substituting (21), (38), (41) and (42) into (40) yields the following:

V̇m ≤ –
k3

2mγ0
‖s‖2 +

m∑

j=0

�m +
m∑

j=1

(
1
2
μ2

m +
1
2
ε2

m

)
+

m∑

j=1

ζm

qm
τ̆mτ̂m

+
1
2

z2
m+1 –

m∑

j=1

lj z2℘
j . (43)

Step n. Consider the Lyapunov function candidate

Vn = Vn–1 +
1
2

z2
n +

1
2qn

τ̆ 2
n , (44)

where qn–1, qn > 0. Establish the control signal as (20).
Differentiating ξn–1 with respect to time yields

ξ̇n–1 =
n–1∑

j=1

∂ξn–1

∂xj

(
xj+1 + fj (x̄j )

)
+ �n–1 +

n–1∑

j=1

∂ξn–1

∂xj

pj , (45)

where �n–1 =
∑n–1

j=1( ∂ξn–1
∂ ˙̂τj

+ ∂ξn–1
∂y(j–1)

d
y(j )

d ).
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Differentiating Vn with respect to time and using (45) yield

V̇n = V̇n–1 + znżn –
1
qn

τ̆n ˙̂τn

≤ –
k3

2nγ0
‖s‖2 +

n∑

i=0

�i + znf̂n + znu –
1
qn

τ̆n ˙̂τn, (46)

where

f̂n = fn +
n–1∑

j=1

∂ξn–1

∂xj

(
xj+1 + fj (x̄j )

)
+ �n–1

+
znσ

2
n1

2β2
n1

+
22n–3γ 2

0
α2

n1k2
3

z3
nσ

4
n2.

Obviously, f̂n is an unknown function. According to Lemma 4, for ∀εn > 0, there is a
RBFNN h∗T

n �n such that

f̂n = h∗T
n �n + εn(Xn),

∣
∣εn(Xn)

∣
∣ ≤ εn, (47)

where Xn = [x̄T
n , ξn–1, ȳ(n)

d , ¯̂̇
τn]T . Based on Lemma 2, one has

znf̂n = znh∗T
n �n(Xn) + znεn(Xn)

≤ 1
2ν2

n
z2

nτn�T
n �n +

1
2
ν2

n +
1
2

z2
n +

1
2
ε2

n. (48)

Performing in the same way as in step m, one has

V̇n ≤ –
k3

2nγ0
‖s‖2 +

n∑

j=0

�j +
n∑

j=1

(
1
2
μ2

j +
1
2
ε2
j

)
+

n∑

j=1

ζj

qj

τ̆j τ̂j – l̂
n∑

j=1

z2℘
j , (49)

where l̂ = minj=1,...,n{lj }.
Nothing that τ̌j = τj – τ̂j , the following inequality holds for j = 1, . . . , n:

ηj τ̌j τ̂j = ηj τ̌j (–τ̌j + τj ) = ηj

(
–τ̌ 2

j + τ̌j τj

)

≤ ηj

(
–τ̌ 2

j +
1

2â
τ̌ 2
j +

â
2
τ 2
j

)

=
–ηj (2â – 1)

2â
τ̌ 2
j +

âηj

2
τ̌ 2
j , (50)

where â is a positive constant satisfying â ≥ 1
2 , and ηj = ζi

qi
.

According to Lemma 1 and Lemma 2, we get

–2℘ l̂V ℘ ≥ –l̂
n∑

j=1

z2℘
j – l̂

( n∑

j=1

1
qj

τ̌ 2
j

)℘

–
k3

2nγ0
‖s‖2

≥ –l̂
n∑

j=1

z2℘
j – l̂

( n∑

j=1

1
q℘

j

τ̌ 2℘
j

)

–
k3

2nγ0
‖s‖2 (51)
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Figure 1 y and yd

and

l̂
1

q℘
j

τ̆ 2℘
j ≤ ηj (2â – 1)

2â
τ̆ 2
j + (1 – ℘)

(
2â℘

ηj (2â – 1)

) ℘
1–℘

(
l̂

q℘
j

) 1
1–℘

. (52)

From (49)–(52) we have

V̇n ≤ –c̄0V ℘ + d̄0, (53)

where c̄0 = –2℘c0, c0 = min{l̂, k3
(2nγ )℘ } and

d̄0 =
n∑

j=0

�j +
n∑

j=1

(
1
2
μ2

j +
1
2
ε2
j

)
+

n∑

j=1

âηj

2
τ̌ 2
j

+
n∑

j=1

(1 – ℘)
(

2â℘

ηj (2â – 1)

) ℘
1–℘

(
l̂

q℘
j

) 1
1–℘

. (54)

Define a positive constant ς0 = d̄0
(1–ζ0)c̄0

, where ζ0 is a constant which satisfies 0 < ζ0 < 1.
Let

Tr =
1

(1 – ℘)ζ0c̄0

[
V 1–℘

n
(
X(0)

)
– ς

1–℘
℘

0
]
, (55)

where Vn(X(0)) represents the initial of Vn(X) with X = [x̄T
n , ξn–1, ȳ(n)

d , ¯̂̇
τn]T . Then according

to Lemma 3, the time to reach the set X(t) ∈ �z , is bounded as Tr where �z = {X|V ℘
n (X) ≤

d̄0
(1–ζ0)c̄0

}. Consequently, all signals in the resulting system are SGUFB. �
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Figure 2 u

Figure 3 Unmodeled dynamic

4 Simulation example
In this section, an example will be used to expound our design scheme and verify the
results obtained.

The nonlinear system with unmodeled dynamics is given as

ṡ = –s +
1
8

x2
1 sin t,
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Figure 4 Adaptive parameters

Figure 5 y and yd with ℘ = 0.99

ẋ1 = x2 + 2x2
1 + p1,

(56)
ẋ2 = u + x1x2 + p2,

y = x1,

where s(t) represents the unmodeled dynamics, p1 = s2 + 0.5x1 sin t and p2 = 5s2 +
0.2 cos(0.5x2). The reference signal is chosen as yd = sin( 1

2 t) + 0.5 sin( 3
2 t).
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Figure 6 y and yd with ℘ = 0.8

Figure 7 y and yd with the controller in [29]

The intermediate control function, adaptive laws and control law are, respectively, cho-
sen as (20), (21), (34). The related simulation parameters are selected as μ1 = 0.3, μ2 =
0.36, l1 = 0.1, l2 = 0.1, ℘ = 0.8, ζ1 = 0.01 and ζ2 = 0.05. Choose the initial conditions as
x1(0) = 0.6, x2(0) = 10, s(0) = 0, τ̂1(0) = 1 and τ̂2(0) = 12. Gaussian basis function �j (Xj ) is
chosen as (16), where X1 = [x1, yd, ẏd]T and X2 = [x1, x2, ξ1, ẏd, ÿd, ˙̂τ1, ˙̂τ2]T . The results of the
simulation are shown in Figs. 1, 2, 3, 4.
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In order to give some suggestions in choosing the design parameter ℘ , we select ℘ =
0.99, while the rest of parameters remain the same. Compared with the existing control
strategies, a previous adaptive fuzzy control scheme proposed in [29] is also utilized to
control this system with the above controller parameter. The simulation results are shown
in Figs. 5, 6, 7. From Figs. 5, 6, we see that the tracking errors converge to a small neigh-
borhood of the origin in finite time Tr ≈ 1.7 and Tr ≈ 2.2, respectively. It can be seen
from Figs. 5, 6, 7 that the control system with the developed finite-time adaptive neural
controller has a smaller tracking error.

5 Conclusion
In this paper, the issue of finite-time control for a class of uncertain nonlinearity systems
with unmodeled dynamics is investigated. During the design process of the adaptive NN
control scheme, the unmodeled dynamics are considered. The proposed adaptive NN con-
trol can guarantee that all the signals in the closed-loop system are semi-globally uniformly
finite-time bounded.
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