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Abstract
In this paper, a new parallel algorithm for solving parabolic equations is proposed.
The new algorithm includes two domain decomposition methods, each method is
applied to compute the values at (n + 1)st time level by use of known numerical
solutions at nth time level, respectively. Then the average of two above values is
chosen to be the numerical solutions at (n + 1)st time level. The new algorithm
obtains satisfactory accuracy while maintaining parallelism and unconditional
stability. This algorithm can be extended to solve two-dimensional parabolic
equations by alternating direction implicit (ADI) technique. Both error analysis and
numerical experiments illustrate the accuracy and efficiency of the new algorithm.
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1 Introduction
With the development of large-scale scientific and engineering computations, the paral-
lel difference method for parabolic equations has been studied rapidly. In 1983, Evans and
Abdullah [1] proposed the Group Explicit (GE) scheme for solving the parabolic equations
by Saul’yev asymmetric schemes [2]. Evans [3] first constructed the Alternating Group Ex-
plicit (AGE) scheme for the diffusion equation two years later. The Alternating Segment
Explicit–Implicit (ASE-I) scheme and the Alternating Segment Crank–Nicolson (ASC-
N) scheme were designed in [4–6]. Afterwards, the alternating segment algorithms (AGE
scheme, ASE-I scheme, and ASC-N scheme) above became very effective methods for
some parabolic equations, such as heat equation [7], convection–diffusion equation [8–
10], dispersive equation [11–16], forth-order parabolic equation [17–19]. Meanwhile, do-
main decomposition methods (DDMs) for the partial differential equations have been
studied extensively [20–29]. The concept called “intrinsic parallelism” was presented in
[30–32]. In 1999, the alternating difference schemes were presented, the unconditional
stability analysis was given in [33]. The unconditionally stable domain decomposition
method was obtained by the alternating technique in [34–36]. In fact, an alternating seg-
ment algorithm is also a form of the domain decomposition method, which is not only
suitable for parallel computation but also unconditionally stable. However, the accuracy
of alternating segment algorithm is unsatisfactory.

Inspired by the alternating segment algorithm, we present a new parallel algorithm for
parabolic equations in this paper. The new parallel algorithm consists of two DDMs. Each
one is applied to compute the values at (n + 1)st time level by use of known numerical
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solutions at nth time level, respectively. Then the average of two above values is chosen
to be the numerical solutions at (n + 1)st time level. The new algorithm can be stated as
follows:

1. DDM I is applied to compute the values at (n + 1)st time level noted as V n+1 by use of
known value Un at nth time level.

2. DDM II is also applied to compute the values at (n + 1)st time level noted as W n+1 by
use of known value Un at nth time level.

3. In order to improve accuracy, let Un+1 = (V n+1 + W n+1)/2 be the numerical solutions
at (n + 1)st time level.

This paper is organized as follows: In Sect. 2, we introduce a Crank–Nicolson scheme
and four corresponding Saul’yev asymmetric difference schemes to construct the parallel
algorithm for parabolic equations. For simplicity of presentation, we focus on a model
problem, namely one-dimensional parabolic equations. The new parallel algorithm and
detailed presentations are given. The accuracy of the new algorithm is given in Sect. 3.
The existence and uniqueness of solution by the new algorithm are discussed in Sect. 4,
while the stability of the new algorithm is given in Sect. 5. In Sect. 6, we extend the new
parallel algorithm to solve two-dimensional parabolic equations by ADI technique. Finally,
we give some numerical experiments, which illustrate the accuracy and efficiency of the
new algorithm proposed in this paper.

2 Algorithm presentation
Considering the model problem of one-dimensional parabolic equations

∂u
∂t

– a
∂2u
∂x2 = f (x, t), x ∈ (0, l), t ∈ (0, T], (1)

with the initial and boundary conditions

u(x, 0) = u0(x), x ∈ [0, l], (2)

u(0, t) = g0(t), u(l, t) = gl(t), t ∈ (0, T], (3)

where a > 0 is a constant.
Let h and τ be the spatial and temporal step sizes, respectively. Denote xj = jh, j =

0, 1, . . . , m, tn = nτ , n = 0, 1, . . . , N . Let un
j be the approximate solution at (xj, tn). u(x, t) rep-

resents the exact solution of (1).
The Crank–Nicolson scheme and Saul’yev asymmetric difference schemes will be used

in our new algorithm. The Crank–Nicolson scheme can be written as

–
ar
2

un+1
j–1 + (1 + ar)un+1

j –
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2

un+1
j+1 =
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2
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j–1 + (1 – ar)un
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2
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j+1 + τ f n

j , (4)

where r = τ /h2.
Corresponding Saul’yev asymmetric difference schemes have four forms as follows:
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un+1
j+1 = arun

j–1 +
(

1 –
3ar
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)
un

j +
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un
j+1 + τ f n

j , (7)

–
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un+1
j–1 +

(
1 +

ar
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)
un+1

j =
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2

un
j–1 +

(
1 –

3ar
2

)
un

j + arun
j+1 + τ f n

j . (8)

Assume m – 1 = 6K , where K is a positive integer. We consider two domain decompo-
sition methods, DDM I and DDM II, at (n + 1)st time level.

DDM I:
For the values un+1

1 , un+1
2 , un+1

3 by using the formulas as follows:

⎧⎪⎪⎨
⎪⎪⎩

– ar
2 un+1

0 + (1 + ar)un+1
1 – ar

2 un+1
2 = ar

2 un
0 + (1 – ar)un

1 + ar
2 un

2 + τ f n
1 ,

– ar
2 un+1

1 + (1 + ar)un+1
2 – ar

2 un+1
3 = ar

2 un
1 + (1 – ar)un

2 + ar
2 un

3 + τ f n
2 ,

– ar
2 un+1

2 + (1 + ar
2 )un+1

3 = ar
2 un

2 + (1 – 3ar
2 )un

3 + arun
4 + τ f n

3 .

(9)

Finding the values [un+1
6k–2, un+1

6k–1, un+1
6k , un+1

6k+1, un+1
6k+2, un+1

6k+3] by using the following formulas
(k = 1, 2, . . . , K – 1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + ar
2 )un+1

6k–2 – ar
2 un+1

6k–1 = arun
6k–3 + (1 – 3ar

2 )un
6k–2 + ar

2 un
6k–1 + τ f n

6k–2,
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6k–2 + (1 + ar)un+1
6k–1 – ar

2 un+1
6k = ar

2 un
6k–2 + (1 – ar)un

6k–1 + ar
2 un

6k + τ f n
6k–1,

– ar
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2 )un+1

6k – arun+1
6k+1 = ar

2 un
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2 )un
6k + τ f n

6k ,
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– ar
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6k+1 + (1 – ar)un
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6k+2,
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(10)

Obviously, each subdomain contains six nodes which can be computed by (10) indepen-
dently.

For the values un+1
m–3, un+1

m–2, un+1
m–1 by using the formulas as follows:

⎧⎪⎪⎨
⎪⎪⎩
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2 )un+1

m–3 – ar
2 un+1

m–2 = arun
m–4 + (1 – 3ar

2 )un
m–3 + ar

2 un
m–2 + τ f n

m–3,

– ar
2 un+1

m–3 + (1 + ar)un+1
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(11)

Let γ = ar = aτ /h2, the DDM I can be written as the matrix form:

(I + γ G1)Un+1 = (I – γ G2)Un + Fn
1 , (12)

where Un = (un
1, un

2, . . . , un
m–1)T , Fn

1 = ( γ

2 (un
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0 ) + τ f n
1 , τ f n
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2 (un
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m ) +
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m–1)T .
The matrices G1 and G2 are block diagonal matrices as follows:
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where
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.

Each block matrix systems (i.e., each subdomain) can be solved independently. It is evident
that DDM I (12) has intrinsic parallelism.

DDM II:
For the values un+1

1 , un+1
2 , . . . , un+1

6 by using the following formulas:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

– ar
2 un+1

0 + (1 + ar)un+1
1 – ar

2 un+1
2 = ar

2 un
0 + (1 – ar)un

1 + ar
2 un

2 + τ f n
1 ,

– ar
2 un+1

1 + (1 + ar)un+1
2 – ar

2 un+1
3 = ar

2 un
1 + (1 – ar)un

2 + ar
2 un

3 + τ f n
2 ,

– ar
2 un+1

2 + (1 + 3ar
2 )un+1

3 – arun+1
4 = ar

2 un
2 + (1 – ar

2 )un
3 + τ f n

3 ,

–arun+1
3 + (1 + 3ar

2 )un+1
4 – ar

2 un+1
5 = (1 – ar

2 )un
4 + ar

2 un
5 + τ f n

4 ,

– ar
2 un+1

4 + (1 + ar)un+1
5 – ar

2 un+1
6 = ar

2 un
4 + (1 – ar)un

5 + ar
2 un

6 + τ f n
5 ,

– ar
2 un+1

5 + (1 + ar
2 )un+1

6 = ar
2 un

5 + (1 – 3ar
2 )un

6 + arun
7 + τ f n

6 .

(13)

Finding the values [un+1
6k+1, un+1

6k+2, un+1
6k+3, un+1

6k+4, un+1
6k+5, un+1

6k+6] by using the formulas as follows
(k = 1, 2, . . . , K – 2):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + ar
2 )un+1

6k+1 – ar
2 un+1

6k+2 = arun
6k + (1 – 3ar

2 )un
6k+1 + ar

2 un
6k+2 + τ f n

6k+1,

– ar
2 un+1

6k+1 + (1 + ar)un+1
6k+2 – ar

2 un+1
6k+3 = ar

2 un
6k+1 + (1 – ar)un

6k+2 + ar
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6k+3 + τ f n
6k+2,

– ar
2 un+1

6k+2 + (1 + 3ar
2 )un+1

6k+3 – arun+1
6k+4 = ar

2 un
6k+2 + (1 – ar

2 )un
6k+3 + τ f n

6k+3,

–arun+1
6k+3 + (1 + 3ar

2 )un+1
6k+4 – ar

2 un+1
6k+5 = (1 – ar

2 )un
6k+4 + ar

2 un
6k+5 + τ f n

6k+4,

– ar
2 un+1

6k+4 + (1 + ar)un+1
6k+5 – ar

2 un+1
6k+6 = ar

2 un
6k+4 + (1 – ar)un

6k+5 + ar
2 un

6k+6 + τ f n
6k+5,

– ar
2 un+1

6k+5 + (1 + ar
2 )un+1

6k+6 = ar
2 un

6k+5 + (1 – 3ar
2 )un

6k+6 + arun
6k+7 + τ f n

6k+6.

(14)

Obviously, each subdomain contains six nodes which can be computed by (14) indepen-
dently.
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Finding the values un+1
m–6, un+1

m–5, . . . , un+1
m–1 by using the formulas as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 + ar
2 )un+1

m–6 – ar
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m–5 = arun
m–7 + (1 – 3ar

2 )un
m–6 + ar

2 un
m–5 + τ f n

m–6,

– ar
2 un+1

m–6 + (1 + ar)un+1
m–5 – ar

2 un+1
m–4 = ar

2 un
m–6 + (1 – ar)un

m–5 + ar
2 un

m–4 + τ f n
m–5,

– ar
2 un+1

m–5 + (1 + 3ar
2 )un+1

m–4 – arun+1
m–3 = ar

2 un
m–5 + (1 – ar

2 )un
m–4 + τ f n

m–4,

–arun+1
m–4 + (1 + 3ar

2 )un+1
m–3 – ar

2 un+1
m–2 = (1 – ar

2 )un
m–3 + ar

2 un
m–2 + τ f n

m–3,

– ar
2 un+1

m–3 + (1 + ar)un+1
m–2 – ar

2 un+1
m–1 = ar

2 un
m–3 + (1 – ar)un

m–2 + ar
2 un

m–1 + τ f n
m–2,

– ar
2 un+1

m–2 + (1 + ar)un+1
m–1 – ar

2 un+1
m = ar

2 un
m–2 + (1 – ar)un

m–1 + ar
2 un

m + τ f n
m–1.

(15)

The DDM II can be written as the matrix form:

(I + γ G2)Un+1 = (I – γ G1)Un + Fn
1 , (16)

where Un = (un
1, un

2, . . . , un
m–1)T , Fn

1 = ( γ

2 (un
0 + un+1

0 ) + τ f n
1 , τ f n

2 , . . . , τ f n
m–2, γ

2 (un
m + un+1

m ) +
τ f n

m–1)T .
The matrices G1 and G2 are block diagonal matrices as follows:

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P1

Q
. . .

Q
P2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Q1

Q
. . .

Q
Q2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Each block matrix system (i.e., each subdomain) can be solved independently. It is evident
that DDM II (16) has intrinsic parallelism.

Schemes (9)–(11) and schemes (13)–(15) construct two domain decomposition meth-
ods (12) and (16), respectively. The corresponding algorithm can be described as follows
in Algorithm 1.

The matrix form of Algorithm 1 can be written as follows:
⎧⎪⎪⎨
⎪⎪⎩

(I + γ G1)V n+1 = (I – γ G2)Un + Fn
1 ,

(I + γ G2)W n+1 = (I – γ G1)Un + Fn
1 ,

Un+1 = 1
2 (V n+1 + W n+1),

n = 0, 1, 2, . . . , (17)

where Un = (un
1, un

2, . . . , un
m–1)T , V n = (vn

1, vn
2, . . . , vn

m–1)T , W n = (wn
1, wn

2, . . . , wn
m–1)T .

Algorithm 1 The new parallel algorithm for one-dimensional parabolic equations
Require: Initialization U0(xj) ← u0(xj).

for n = 0, 1, . . . , N do
for j = 0, 1, . . . , m do

Solve the values V n+1
j by using DDM I (12).

Solve the values W n+1
j by using DDM II (16).

The average of two values will be calculated, i.e., Un+1
j = 1

2 (V n+1
j + W n+1

j ).
end for

end for
Ensure: Output UN (xj).
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3 The accuracy of Algorithm 1
In this section, we illustrate the accuracy of Algorithm 1. From the Taylor expansion at
(xj, tn+1), we have the following truncation errors for the Crank–Nicolson scheme (4) and
Saul’yev asymmetric schemes (5)–(8), respectively.

T4 =
(

∂u
∂t

)n+1

j
– a

(
∂2u
∂t2

)n+1

j
–

τ

2

[(
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j
– a

(
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∂x2∂t
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j

]
+ O

(
τ 2 + h2)

= O
(
τ 2 + h2). (18)
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[

τ

h
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∂x∂t

)n+1

j
+
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2
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∂3u

∂x2∂t
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j
+

τh
6

(
∂4u

∂x3∂t
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j
+

τ 3

6h

(
∂4u

∂x∂t3

)n+1

j

]

+ O
(
τ 2 + h2). (19)

T6 = –a
[

–
τ

h

(
∂2u
∂x∂t

)n+1

j
+

τ

2

(
∂3u

∂x2∂t

)n+1

j
–

τh
6

(
∂4u

∂x3∂t

)n+1

j
–

τ 3

6h

(
∂4u

∂x∂t3

)n+1

j

]

+ O
(
τ 2 + h2). (20)

T7 = –a
[

τ

h

(
∂2u
∂x∂t

)n+1

j
–

τ

2

(
∂3u

∂x2∂t

)n+1

j
+

τh
6

(
∂4u

∂x3∂t

)n+1

j
+

τ 3

6h

(
∂4u

∂x∂t3

)n+1

j

]

+ O
(
τ 2 + h2). (21)

T8 = –a
[

–
τ

h

(
∂2u
∂x∂t

)n+1

j
–

τ

2

(
∂3u

∂x2∂t

)n+1

j
–

τh
6

(
∂4u

∂x3∂t

)n+1

j
–

τ 3

6h

(
∂4u

∂x∂t3

)n+1

j

]

+ O
(
τ 2 + h2). (22)

It is obvious that the truncation error of the Crank–Nicolson scheme (4) is O(τ 2 + h2).
Compared with the truncation error T5 of scheme (5) and the truncation error T8 of
scheme (8), the signs of leading terms of T5 and T8 are opposite. Similarly, compared with
the truncation error T6 of scheme (6) and the truncation error T7 of scheme (7), the signs
of leading terms of T6 and T7 are opposite.

It is easy to see that:
1. When DDM I use (5) to compute solution at (xj, tn+1), DDM II will use (8).
2. When DDM I use (6) to compute solution at (xj, tn+1), DDM II will use (7).
3. When DDM I use (7) to compute solution at (xj, tn+1), DDM II will use (6).
4. When DDM I use (8) to compute solution at (xj, tn+1), DDM II will use (5).
Therefore the leading terms of truncation error can be eliminated, we can get the fol-

lowing theorem.

Theorem 1 The truncation error of Algorithm 1 is approximately O(τ 2 + h2).

Proof Since ( 1
2 ) × [(5) + (8)] is obtained as follows:

–
ar
2

un+1
j–1 + (1 + ar)un+1

j –
ar
2

un+1
j+1 =

ar
2

un
j–1 + (1 – ar)un

j +
ar
2

un
j+1 + τ f n

j . (23)

Similarly, ( 1
2 ) × [(6) + (7)] is

–
ar
2

un+1
j–1 + (1 + ar)un+1

j –
ar
2

un+1
j+1 =

ar
2

un
j–1 + (1 – ar)un

j +
ar
2

un
j+1 + τ f n

j . (24)
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From algorithm (17) and the above-mentioned results, the truncation error of Algorithm
1 is approximately equal to the truncation error of the Crank–Nicolson scheme T4. �

4 Existence and uniqueness
In order to discuss the existence and uniqueness of the solution by Algorithm 1, the fol-
lowing lemmas of Kellogg [37] are required.

Lemma 1 If θ > 0 and C + CT is nonnegative definite, then (θ I + C)–1 exists and

∥∥(θ I + C)–1∥∥
2 ≤ θ–1. (25)

Lemma 2 Under the conditions of Lemma 1, there is

∥∥(I + θC)–1∥∥ ≤ 1. (26)

Theorem 2 The solution of Algorithm 1 exists and is unique.

Proof Assuming the solution Un at nth time level is known, the solution Un+1 at at (n+1)st
time level is solved by (17).

For DDM I

(I + γ G1)V n+1 = (I – γ G2)Un + Fn
1 ,

(I + γ G1)–1 exists by Lemma 2. It is proved that DDM I has a unique solution V n+1.
In the same way, for DDM II

(I + γ G2)W n+1 = (I – γ G1)Un + Fn
1 ,

it is also proved that DDM II has a unique solution W n+1. Then Un+1 = 1
2 (V n+1 + W n+1)

exists and is unique. �

5 Unconditional stability
In this section, we discuss unconditional stability of Algorithm 1.

Theorem 3 Algorithm 1 is unconditionally stable.

Proof Algorithm (17) can be rewritten as

Un+1 = TUn, (27)

where T is the growth matrix,

T =
1
2
[
(I + γ G1)–1(I – γ G2) + (I + rG2)–1(I – γ G1)

]
.

For G1 + GT
1 , G2 + GT

2 are nonnegative definite matrices, by Kellogg’s Lemma 1, we have

∥∥(I + γ Gi)–1∥∥
2 ≤ 1, i = 1, 2,
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then

‖T‖2 ≤ 1
2
(∥∥(I + γ G1)–1

∥∥
2

∥∥(I – γ G2)
∥∥

2 +
∥∥(I + γ G2)–1

∥∥
2

∥∥(I – γ G1)
∥∥

2

)
≤ 1

2
(∥∥(I – γ G1)

∥∥
2 +

∥∥(I – γ G2)
∥∥

2

)
.

It is obvious that (I – γ G1) and (I – γ G2) are not only normal matrices, but also strictly
diagonally dominant matrices. By properties on the strictly diagonally dominant matrix
and the normal matrix, we obtain

ρ(T) ≤ ‖T‖2 ≤ 1
2
[
ρ(I – γ G1) + ρ(I – γ G2)

]
< 1, (28)

where ρ(T), ρ(I – γ G1) and ρ(I – γ G2) are the spectral radii of the matrices T , (I – γ G1)
and (I – γ G2).

Therefore, Algorithm 1 given by (17) is unconditionally stable. �

6 Extension to two-dimensional parabolic equations
In this section, we extend Algorithm 1 to solve two-dimensional parabolic equations

∂u
∂t

–
∂

∂x

(
a
∂u
∂x

)
–

∂

∂y

(
b
∂u
∂y

)
= f (x, y, t), (x, y) ∈ �, t ∈ (0, T], (29)

u(x, y, 0) = u0(x, y), (x, y) ∈ �, (30)

u(x, y, t) = 0, (x, y) ∈ ∂�, t ∈ (0, T], (31)

where the domain � ∈ (0, Lx) × (0, Ly); a > 0 and b > 0 are diffusion coefficients.
Let un

i,j be the approximate solution at (xi, yj, tn), u(x, y, t) represents the exact solution of
(27). With the same time and space discretization of algorithm (17), we obtain its extended
algorithm by alternating direction implicit (ADI) technique [38] for Eqs. (27)–(29).

x-direction:
Let r1 = aτ /(2h2), r2 = bτ /(2h2), the matrix form of the new parallel algorithm in x-

direction can be written as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(I + r1G1)V n+ 1
2

1 = (I – r1G2)Un + bn
1,

(I + r1G2)W n+ 1
2

1 = (I – r1G1)Un + bn
1,

Un+ 1
2 = 1

2 (V n+ 1
2

1 + W n+ 1
2

1 ),

(32)

where

bn
1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

[(r2un
0,j + r1un+ 1

2
0,j )/2] + r2(un

1,j–1 – 2un
1,j + un

1,j+1) + τ f n
1,j/2

r2(un
2,j–1 – 2un

2,j + un
2,j+1) + τ f n

2,j/2
...

r2(un
m–2,j–1 – 2un

m–2,j + un
m–2,j+1) + τ f n

m–2,j/2

[(r2un
m,j + r1un+ 1

2
m,j )/2] + r2(un

m–1,j–1 – 2un
m–1,j + un

m–1,j+1) + τ f n
m–1,j/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Un+ 1
2 = (un+ 1

2
1,j , un+ 1

2
2,j , . . . , un+ 1

2
m–1,j)T ,

V n+ 1
2

1 = (vn+ 1
2

1,j , vn+ 1
2

2,j , . . . , vn+ 1
2

m–1,j)T ,

W n+ 1
2

1 = (wn+ 1
2

1,j , wn+ 1
2

2,j , . . . , wn+ 1
2

m–1,j)T ,

j = 1, 2, . . . , m – 1.

y-direction:
The matrix form of the new parallel algorithm in y-direction can be written as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(I + r2G1)V n+1
2 = (I – r2G2)Un+ 1

2 + bn+ 1
2

2 ,

(I + r2G2)W n+1
2 = (I – r2G1)Un+ 1

2 + bn+ 1
2

2 ,

Un+1 = 1
2 (V n+1

2 + W n+1
2 ),

(33)

where

bn+ 1
2

2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[(r2un+ 1
2

i,0 + r1un+1
i,0 )/2] + r1(un+1

i–1,1 – 2un+1
i,1 + un+1

i+1,1) + τ f n+ 1
2

i,1 /2

r1(un+1
i–1,2 – 2un+1

i,2 + un+1
i+1,2) + τ f n+ 1

2
i,2 /2

...

r1(un+1
i–1,m–2 – 2un+1

i,m–2 + un+1
i+1,m–2) + τ f n+ 1

2
i,m–2/2

[(r2un+ 1
2

i,m + r1un+1
i,m )/2] + r1(un+1

i–1,m–1 – 2un+1
i,m–1 + un+1

i+1,m–1) + τ f n+ 1
2

i,m–1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎧⎪⎪⎨
⎪⎪⎩

Un+1 = (un+1
i,1 , un+1

i,2 , . . . , un+1
i,m–1)T ,

V n+1
2 = (vn+1

i,1 , vn+1
i,2 , . . . , vn+1

i,m–1)T ,

W n+1
2 = (wn+1

i,1 , wn+1
i,2 , . . . , wn+1

i,m–1)T ,

i = 1, 2, . . . , m – 1.

The corresponding algorithm can be described as follows in Algorithm 2.
Similar to Algorithm 1, it is obvious that Algorithm 2 has unconditional stability and

parallelism.

Remark 1 In Algorithm 2, the domain is divided into many subdomains by using two
DDMs. In each time interval, we first solve the values along x-direction by (32) at half-time
step and then solve the values along y-direction by (33) at next half-time step. Schemes
(32) and (33) lead to block diagonal algebraic systems that can be solved independently.
So Algorithm 2 not only suits for parallel computation, but also improves the accuracy.

Algorithm 2 The new parallel algorithm for two-dimensional parabolic equations
Require: Initialization U0(xi, yj) ← u0(xi, yj).

for n = 0, 1, . . . , N do
for i = 0, 1, . . . , m do

for j = 0, 1, . . . , m do
Solve the values Un+ 1

2
i,j by using scheme (32).

Solve the values Un+1
i,j again by using scheme (33).

end for
end for

end for
Ensure: Output UN (xi, yj).
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Keeping the advantage of ADI technique, Algorithm 2 reduces computational complex-
ities. Though it is developed for two-dimensional problems, Algorithm 2 can be easily
extended to solve high-dimensional parabolic equations.

7 Numerical experiments
To illustrate the accuracy and stability of the new parallel Algorithm 1 and Algorithm 2
for parabolic equations, we present two numerical experiments to verify the accuracy,
convergence order in space, stability, and parallel efficiency. In addition, we will compare
the accuracy of the new algorithm with the existing method.

Example 1

⎧⎪⎪⎨
⎪⎪⎩

∂u
∂t – ∂2u

∂x2 = (1 + π2)et sin(πx), x ∈ (0, 1), t ∈ (0, 1],

u(x, 0) = sin(πx), x ∈ [0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, 1].

(34)

The exact solution of Example 1 is

u(x, t) = et sin(πx). (35)

Firstly, we examine the convergence rate of Algorithm 1. We divide the mesh point into
many segments such as K = 3, K = 4, K = 5, and K = 6. Let Un

j be the exact solution of
Example 1, we calculate errors L∞ = ‖U – u‖ in maximum-norm taking τ = 0.001. The
rate of convergence in space is as follows:

Rate ≈ log(L∞
h1/L∞

h2)
log(h1/h2)

.

Clearly the errors appear to be of order O(h2) in Table 1.
Next, we present the error results of Algorithm 1 in terms of the absolute errors and the

relative errors, where the absolute error (A. E.) is defined by

en
j =

∣∣un
j – u(xj, tn)

∣∣,
and the relative error (R. E.) is defined by

En
j =

en
j

|u(xj, tn)| × 100%.

Tables 2 and 3 display the absolute errors and the relative errors obtained by the pre-
sented Algorithm 1 for h = 1/19 (i.e., m–1 = 18 = 6K , K = 3), h = 1/25 (i.e., m–1 = 24 = 6K ,

Table 1 Convergence rate of Algorithm 1 for h at t = 0.4

h L∞ error Rate

1/19 (m – 1 = 18 = 6K , K = 3) 4.998746e–4 –
1/25 (m – 1 = 24 = 6K , K = 4) 3.085232e–4 2.0167
1/31 (m – 1 = 30 = 6K , K = 5) 2.002844e–4 1.9955
1/37 (m – 1 = 36 = 6K , K = 6) 1.412289e–4 1.9903
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Table 2 The absolute errors and relative errors of numerical solutions to Example 1 for h = 1/19 (i.e.,
m – 1 = 18 = 6K , K = 3)

xj Algorithm 1 (t = 0.2) Algorithm 1 (t = 0.4) Algorithm 1 (t = 0.8)

A. E. R. E. A. E. R. E. A. E. R. E.

0.11 0.3731e–3 1.7559e–2 0.5021e–3 1.9312e–2 0.7577e–3 1.9534e–2
0.21 0.6184e–3 1.5420e–2 0.8428e–3 1.7176e–2 1.2739e–3 1.7399e–2
0.31 0.8750e–3 1.5999e–2 1.1881e–3 1.7754e–2 1.7950e–3 1.7976e–2
0.42 0.9753e–3 1.5409e–2 1.3294e–3 1.7165e–2 2.0093e–3 1.7388e–2
0.52 1.0066e–3 1.5469e–2 1.3715e–3 1.7225e–2 2.0729e–3 1.7447e–2
0.63 0.9135e–3 1.5280e–2 1.2463e–3 1.7037e–2 1.8839e–3 1.7259e–2
0.73 0.7582e–3 1.5778e–2 1.0310e–3 1.7534e–2 1.5579e–3 1.7757e–2
0.84 0.5469e–3 1.7563e–2 0.7361e–3 1.9316e–2 1.1109e–3 1.9538e–2
0.95 0.1891e–3 1.7556e–2 0.2545e–3 1.9309e–2 0.3841e–3 1.9532e–2

Table 3 The absolute errors and relative errors of numerical solutions to Example 1 for h = 1/25 (i.e.,
m – 1 = 24 = 6K , K = 4)

xj Algorithm 1 (t = 0.2) Algorithm 1 (t = 0.4) Algorithm 1 (t = 0.8)

A. E. R. E. A. E. R. E. A. E. R. E.

0.04 0.5579e–4 9.0292e–3 0.7499e–4 9.9277e–3 1.1317e–4 1.0041e–2
0.12 1.6391e–4 9.0313e–3 2.2031e–4 9.9298e–3 3.3247e–4 1.0043e–2
0.24 2.7890e–4 8.2703e–3 3.7803e–4 9.1694e–3 5.7102e–4 0.9283e–2
0.36 3.5674e–4 8.0054e–3 4.8512e–4 8.9048e–3 7.3305e–4 0.9018e–2
0.48 3.8737e–4 7.8818e–3 5.2760e–4 8.7813e–3 7.9739e–4 0.8895e–2
0.60 3.6642e–4 7.8242e–3 4.9945e–4 8.7237e–3 7.5491e–4 0.8837e–2
0.72 2.9685e–4 7.8239e–3 4.0462e–4 8.7235e–3 6.1158e–4 0.8837e–2
0.84 1.8851e–4 7.9457e–3 2.5655e–4 8.8452e–3 3.8769e–4 0.8959e–2
0.96 0.5579e–4 9.0292e–3 0.7499e–4 9.9277e–3 1.1317e–4 1.0041e–2

Table 4 Comparisons by the maximum errors to Example 1 for h = 1/19 (i.e.,m – 1 = 18 = 6K , K = 3)

Methods r t = 0.2 t = 0.4 t = 0.6 t = 0.8

Algorithm 1 0.36 3.5539e–4 4.8387e–4 5.9795e–4 7.3131e–4
ASC-N scheme [6] 4.7468e–4 7.1743e–4 1.0705e–3 1.5969e–3

Algorithm 1 0.72 5.7866e–4 7.8813e–4 9.7397e–4 1.1912e–3
ASC-N scheme [6] 7.3439e–4 1.1100e–3 1.6563e–3 2.4709e–3

Algorithm 1 1.08 7.9673e–4 1.0815e–3 1.3381e–3 1.6382e–3
ASC-N scheme [6] 1.1764e–3 1.7767e–3 2.1187e–3 3.9468e–3

Algorithm 1 1.45 1.0066e–3 1.3715e–3 1.6949e–3 2.0729e–3
ASC-N scheme [6] 1.0999e–3 1.6591e–3 2.4754e–3 3.6929e–3

Algorithm 1 1.80 1.2153e–3 1.6560e–3 2.0465e–3 2.5029e–3
ASC-N scheme [6] 1.2843e–3 1.9356e–3 2.8880e–3 4.3084e–3

K = 4) at t = 0.2, t = 0.4, and t = 0.8, when taking r = 1.5 (r = τ /h2). From Tables 2 and 3, it
is obvious that our algorithm has high accuracy.

Now, we compare Algorithm 1 with the ASC-N scheme in [6] by the maximum errors for
h = 1/19 (i.e., m – 1 = 18 = 6K , K = 3), h = 1/25 (i.e., m – 1 = 24 = 6K , K = 4), and h = 1/31
(i.e., m – 1 = 30 = 6K , K = 5) at different time t = 0.2, t = 0.4, t = 0.6, t = 0.7, and t = 0.8.
With the increase in computation time, the errors of the ASC-N scheme in [6] increase
more than those of Algorithm 1 for different r (r = τ /h2) in Tables 4 and 5. We can see that
Algorithm 1 has higher accuracy. We consider an example for h = 1/121 (m–1 = 120 = 6K ,
K = 20) with large grid ratio r = 15 (r = τ /h2). Table 6 shows that Algorithm 1 has better
accuracy than two others. It is indicated that Algorithm 1 is stable, which is consistent
with the theoretical results obtained in Sect. 5.
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Table 5 Comparisons by the maximum errors to Example 1 for h = 1/25 (i.e.,m – 1 = 24 = 6K , K = 4)

Methods r t = 0.2 t = 0.4 t = 0.6 t = 0.8

Algorithm 1 0.38 1.5929e–4 2.1698e–4 2.6806e–4 3.2777e–4
ASC-N scheme [6] 2.4785e–4 3.7370e–4 4.7785e–4 8.3215e–4

Algorithm 1 0.63 2.2660e–4 3.0852e–4 3.8124e–4 4.6627e–4
ASC-N scheme [6] 2.8997e–4 4.3826e–4 6.5392e–4 9.7553e–4

Algorithm 1 0.94 3.0760e–4 4.1963e–4 5.1826e–4 6.3353e–4
ASC-N scheme [6] 4.5949e–4 6.9190e–4 8.3264e–4 1.5416e–3

Algorithm 1 1.35 3.8737e–4 5.2761e–4 6.5199e–4 7.9740e–4
ASC-N scheme [6] 4.2810e–4 6.4710e–4 9.6552e–4 1.4404e–3

Algorithm 1 1.76 4.6541e–4 6.3397e–4 7.8343e–4 9.5815e–4
ASC-N scheme [6] 4.6674e–4 7.0553e–4 1.0527e–3 1.5704e–3

Table 6 Maximum error comparison for r = 15, h = 1/121 (m – 1 = 120 = 6K , K = 20)

Algorithm 1 ASC-N method [6] AGE method [3]

t = 0.2 1.3994e–4 1.4759e–4 1.2717e–3
t = 0.4 3.2238e–4 2.8034e–4 3.2242e–3
t = 0.6 5.0639e–4 6.5004e–4 6.2125e–3
t = 0.8 6.9237e–4 8.3824e–4 9.2284e–3

Example 2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u
∂t – ∂2u

∂x2 – ∂2u
∂y2 = f (x, y, t), (x, y) ∈ �, t ∈ (0, 1],

u(x, y, 0) = sin(πx) sin(πy), (x, y) ∈ �,

u(0, y, t) = u(1, y, t) = 0, y ∈ [0, 1], t ∈ (0, 1],

u(x, 0, t) = u(x, 1, t) = 0, x ∈ [0, 1], t ∈ (0, 1],

(36)

where the domain is � = (0, 1) × (0, 1) and the right-hand side function is

f (x, y, t) =
(
1 + 2π2)et sin(πx) sin(πy). (37)

The corresponding exact solution is

u(x, y, t) = et sin(πx) sin(πy). (38)

We take h = 1/19 (i.e., m – 1 = 18 = 6K , K = 3), h = 1/25 (i.e., m – 1 = 24 = 6K , K = 4), h =
1/31 (i.e., m – 1 = 30 = 6K , K = 5), and h = 1/37 (i.e., m – 1 = 36 = 6K , K = 6), respectively.
Table 7 displays the maximum errors of Algorithm 2 for τ = 0.0004 at different time. It is
obvious that the accuracy of Algorithm 2 is good. The comparison among Algorithm 2,
classical C-N scheme, and ASC-N scheme is shown CPU calculation time for r = 1.2 at
t = 0.5 in Table 8. Obviously, Algorithm 2 not only has high accuracy, but also has good
parallel efficiency. Take all the programs of Algorithm 2 running on the uniform mesh,
three different grids are given in Fig. 2, Fig. 3, and Fig. 4 that are defined by h = 1/19,
h = 1/25, and h = 1/37. Figure 1 shows the exact solutions at t = 0.4. Comparison of the
exact solutions and the numerical solutions are shown in Figs. 1–4.
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Table 7 The maximum errors of Algorithm 2 to Example 2 for τ = 0.0004

h = 1/19 h = 1/25 h = 1/31 h = 1/37

t = 0.2 6.0275e–4 1.5451e–4 8.0677e–5 4.9096e–5
t = 0.4 4.4976e–4 1.9272e–4 1.0052e–4 6.1127e–5
t = 0.5 5.1593e–4 2.1305e–4 1.1113e–4 6.7574e–5
t = 0.6 5.7284e–4 2.3546e–4 1.2282e–4 7.4684e–5
t = 0.8 7.0014e–4 2.8760e–4 1.5001e–4 9.1219e–5

Table 8 Comparison of three schemes calculation time for r = 1.2 at t = 0.5

h Algorithm 2 C-N scheme ASC-N scheme

1/37 (m – 1 = 36 = 6K , K = 6) 16.4121 s 20.2625 s 16.7089 s
1/49 (m – 1 = 48 = 6K , K = 8) 41.4226 s 49.9863 s 41.0513 s
1/61 (m – 1 = 60 = 6K , K = 10) 148.2623 s 175.2632 s 146.0665 s
1/91 (m – 1 = 90 = 6K , K = 15) 981.5628 s 1167.2047 s 966.9273 s

Figure 1 The exact solutions at t = 0.4

Based on the experiments above, Algorithm 1 and Algorithm 2 presented in this paper
are suitable and efficient for solving parabolic equations.

8 Conclusion
We have proposed and analyzed a new parallel algorithm for parabolic equations. This
algorithm consists of two DDMs, each one is used to solve the values in the same time
level, respectively. Then the average of two values is calculated. Stability and error analysis
show that the new algorithm is unconditionally stable and has the truncation error of
order two in both space and time. The new algorithm allows possibly efficient and accurate
computation on massive parallel computers in general. Then we extend the new algorithm
to two-dimensional parabolic equations by the ADI technique, which means that high-
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Figure 2 The numerical solutions for r = 1.0, h = 1/19 at t = 0.4

Figure 3 The numerical solutions for r = 1.0, h = 1/25 at t = 0.4

dimensional parabolic equations can be solved by the proposed algorithm in this paper.
Numerical experiments illustrate the good performance of the new algorithm.



Xue and Feng Advances in Difference Equations  (2018) 2018:174 Page 15 of 16

Figure 4 The numerical solutions for r = 1.0, h = 1/37 at t = 0.4
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