
Kim et al. Advances in Difference Equations (2018) 2018:168
https://doi.org/10.1186/s13662-018-1619-6

R E S E A R C H Open Access

A new approach to estimating a numerical
solution in the error embedded correction
framework
Philsu Kim1, Xiangfan Piao2, WonKyu Jung3 and Sunyoung Bu4*

*Correspondence:
syboo@hongik.ac.kr
4Departments of Liberal arts,
Hongik University, Sejong, Korea
Full list of author information is
available at the end of the article

Abstract
On the basis of the error correction method developed recently, an algorithm,
so-called error embedded error correction method, is proposed for initial value
problems. Two deferred equations are used to approximate the solution and the error,
respectively, at each integration step. For the solution, the deferred equation, which is
based on a modified Euler’s polygon including the information of both the solution
and its estimated error at the previous integration step, is solved with the classical
fourth-order Runge–Kutta method. For the error, the deferred equation, which is
based on a local Hermite cubic polynomial with three pieces of information—the
solution, its estimated error at the previous step, and the constructed solution—is
solved by the seventh-order Runge–Kutta–Fehlberg method. The constructed
algorithm controls the error and possesses a good behavior of error bound in a long
time simulation. Numerical experiments are presented to validate the proposed
algorithm.

Keywords: Error correction method; Runge–Kutta method; Runge–Kutta–Fehlberg
method; Long time simulation; Initial value problem

1 Introduction
There are many research topics [1, 2] in developing numerical methods for solving initial
value problems (IVPs) described by

dφ

dt
= f

(
t,φ(t)

)
, t ∈ [t0, tf]; φ(t0) = φ0, (1)

where f has continuously bounded partial derivatives up to required order for the analy-
sis of the developed numerical method. A long time simulation of the solution, which is
needed in many physical problems (for example, a Hamiltonian system such as the Kepler
problem, harmonic oscillator, molecular dynamics, etc.), is one of the most important top-
ics in IVPs [3–5]. Also, such long time simulations sometimes demand very special step
size selection to control the local truncation error. Most existing mechanisms of the ex-
plicit single step algorithm for solving (1) may be described by

⎧
⎨

⎩
φm+1 = F(φm),

em+1 = G(φm,φm+1),
(2)

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1619-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1619-6&domain=pdf
mailto:syboo@hongik.ac.kr

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 2 of 21

where F and G are functions derived from the numerical methods. Here, φm+1 and em+1 de-
note the approximations of the solution and the local truncation error Em+1, respectively,
at time tm+1. For a pth order scheme, the estimated error em+1 is usually approximated to
fit only the coefficient of the (p + 1)th order term in the expansion of Em+1 about the time
step size h. The other important issue is to reduce the computational costs in a long time
simulation, for which an efficient control scheme of the time step size is important (for
example, Radau5). There have been several approaches related to those issues (for exam-
ple, embedded Runge–Kutta formulae, adaptive time stepping, long time error estimation,
etc. [6–11]).

In the existing schemes, the estimated error em obtained from the previous time step
[tm–1, tm] is mainly used only for choosing an appropriate next time step size in most al-
gorithms. Also, the solution φm+1 at time tm+1 is calculated with an initial value which is a
solution φm at the previous time tm. That is, φm is assumed to be the exact initial condition
for φm+1 despite the existence of the local truncation error em, which leads to accumulation
of the error as the time is increasing. In order to control the accumulation error, smaller
integration steps or special step size controllers are sometimes required, especially for a
long time simulation or stiff systems. Nevertheless, the most existing methods cannot fully
resolve the error control to get a given tolerance so that it is difficult to get reliable results
at stringent tolerances (for example, see [12, 13]).

The subject of this paper is to develop a new integration scheme to control the accu-
mulation error. As a remedy to control or minimize the accumulated error of em, we will
embed it in the algorithm of the calculation scheme for φm+1. Further, we want to propose
an estimating scheme for em+1 which is correlated with three pieces of information φm,
φm+1, and em. That is, the scheme we want to develop is an explicit single step algorithm,
the so-called error embedded error correction method (EEECM), of the form

⎧
⎨

⎩
φm+1 = F(φm, em),

em+1 = G(φm, em,φm+1).
(3)

To concretely describe the proposed algorithm, the classical 4th order Runge–Kutta (RK4)
method and the well-known 7th order Runge–Kutta–Fehlberg (RKF7) method for calcu-
lating φm+1 and em+1, respectively, will be used. Finally, we want to develop the EEECM
having the accuracy order of 7 for the solution φ̃m+1 = φm+1 + em+1. In particular, we will
develop the efficient estimating algorithm for em+1, which fits the coefficients up to 7th
order term in the expansion of the global error Em+1 = φ(tm+1) – φm+1 about the time step
size h.

An error correction method (ECM) is a widely used technique in many numerical sci-
entific computations in general. The deferred correction methods (DCM) originally de-
veloped by Pereyra and Zadunaisky [14, 15] are the representative ECMs for solving (1).
There are also extended results about the DCMs (for example, see [16–24]). These ECMs
are based on the deferred equation of the form

dψ(t)
dt

= f
(
t,ψ(t) + x(t)

)
– x′(t), (4)

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 3 of 21

where x is a local approximation of the solution defined on each integration step [tm, tm+1].
After solving (4), the solution φ(t) of (1) can be obtained by using the identity

φ(t) = x(t) + ψ(t). (5)

Two relations (4) and (5) enable us to develop the EEECM of the form (3) for solving (1).
Practically, for the approximate solution φm+1, we use a local linear approximation x which
uses the information of both the solution and its slope depending on the error em at time
tm and solve the deferred equation (4) with RK4. As mentioned above, we want to esti-
mate the exact quantity of the error Em+1 up to the desired convergence order. To derive
a formula for em+1, another local approximation x is constructed by a local Hermite cu-
bic interpolation polynomial having all the information of the calculated solutions and
those slopes at both time tm and tm+1. Based on the local approximation, we again solve
the deferred equation (4) with the RKF7. As an appropriate step size controller, we ex-
ploit a standard step size controller to focus only on the EEECM for non-stiff problems.
The constructed EEECM controls the error at each integration step, and it turns out that
the proposed method possesses a good behavior of error bound in a long time simulation
with a given tolerance. For an assessment of the effectiveness of the proposed algorithm,
particularly its error bounds in a long time simulation, a simple harmonic oscillator prob-
lem with analytical solution and a hard error controlling problem are numerically solved.
Finally, a two-body Kepler problem is also used to assess the efficiency of this algorithm.
Throughout these numerical tests, it is shown that the proposed method is quite efficient
compared to several existing methods.

This paper is organized as follows. In Sect. 2, we describe the methodology to formulate
and control the solution and error formulas based on ECM. In Sect. 3, we give a concrete
analysis of the convergence for the developed EEECM. Several numerical results are pre-
sented in Sect. 4 to give both the numerical evidences for the theoretical analysis and the
numerical effectiveness of EEECM. Finally, in Sect. 5, a summary for EEECM and some
discussion for further works are given.

2 Derivation of algorithm
In this section, we present the algorithm of EEECM based on the deferred equations. Let
us assume that the approximated solution φm and the estimated error em for the solution
φ(tm) and the error Em, respectively, at time tm are already calculated. Then, as a local
approximation of the solution φ(t) on the integration step [tm, tm+1], one may consider the
modified Euler’s polygon y(t) defined by

y(t) := φm + (t – tm)f (tm,φm + em), t ∈ [tm, tm+1]. (6)

Let ψ(t) be the difference between φ(t) and y(t) such that

ψ(t) := φ(t) – y(t), t ∈ [tm, tm+1]. (7)

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 4 of 21

Differentiating both sides of (7) and combining the result with (1) and (6), one can see that
the difference ψ(t) satisfies the following deferred differential equation:

⎧
⎨

⎩
ψ ′(t) = g1(t,ψ(t)), t ∈ (tm, tm+1],

ψ(tm) = Em,
(8)

where g1 is defined by

g1
(
t,ψ(t)

)
:= f

(
t,ψ(t) + y(t)

)
– y′(t) = f

(
t,ψ(t) + y(t)

)
– f (tm,φm + em). (9)

Observe that the initial condition ψ(tm) of (8) is given by the unknown actual error Em

at time tm, and hence problem (8) cannot be solved directly. Since em is assumed to be an
estimated error of Em = ψ(tm), instead of solving (8), it is natural to consider the following
IVP:

⎧
⎨

⎩
θ ′(t) = g1(t, θ (t)), t ∈ (tm, tm+1],

θ (tm) = em
(10)

for an approximation of ψ(tm+1). One may check that applying RK4 to (10) leads to

θ (tm+1) ≈ em +
h
6

[–5v1 + 2v2 + 2v3 + v4],

v1 = f (tm, φ̃m), v2 = f
(

tm +
h
2

, φ̃m +
h
2

v1

)
,

v3 = f
(

tm +
h
2

, φ̃m +
h
2

v2

)
, v4 = f (tm + h, φ̃m + hv3),

(11)

where φ̃m := φm + em. Combining approximation (11) with (6) and (7), one may get an
approximation formula for φ(tm+1) as follows.

φm+1 := φ̃m +
h
6

[v1 + 2v2 + 2v3 + v4], (12)

where the intermediate values vi are defined by (11). Note that the classical RK4 uses
only the approximate value φm at time tm to calculate φm+1, whereas algorithm (12) uses
the value φ̃m := φm + em instead of φm, which is a remarkable difference compared to the
RK4.

Since the estimated error em at time tm is embedded in algorithm (12), a recursive rela-
tion for a sequence {em} is needed to complete the algorithm. We try to derive this relation
using another deferred equation together with an appropriate local approximation. Recall
that after the calculation of (12), one can use the information of both the approximate
solutions and those slopes at time tm and tm+1. Hence, as the local approximation, it is
natural to use a local Hermite cubic interpolation such that

x(t) = a0 + a1(t – tm) + a2(t – tm)2 + a3(t – tm)2(t – tm+1) (13)

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 5 of 21

satisfying x(tm) = φ̃m, x′(tm) = f (tm, φ̃m), x(tm+1) = φm+1, and x′(tm+1) = f (tm+1,φm+1). Then
it solves [25]

x(t) = x(tm) + x′(tm)(t – tm) +
x(tm+1) – x(tm) – x′(tm)h

h2 (t – tm)2

+
(x′(tm+1) + x′(tm))h – 2(x(tm+1) – x(tm))

h3 (t – tm)2(t – tm+1). (14)

Let ψ(t) be the difference between φ(t) and x(t) such that

ψ(t) := φ(t) – x(t), t ∈ [tm, tm+1]. (15)

As the derivation of (8), one can see that the difference ψ(t) defined by (15) satisfies the
following deferred differential equation:

⎧
⎨

⎩
ψ ′(t) = g2(t,ψ(t)), t ∈ (tm, tm+1],

ψ(tm) = Em – em,
(16)

where g2 is defined by

g2
(
t,ψ(t)

)
:= f

(
t,ψ(t) + x(t)

)
– x′(t). (17)

Observe that the initial condition ψ(tm) of (16) contains the unknown value Em and hence
problem (16) cannot be solved directly. Since em is the estimated error of Em, if one as-
sumes that it is well approximated, then the initial value ψ(tm) becomes quite small. Hence,
instead of solving (16), it is natural to consider the following IVP:

⎧
⎨

⎩
θ ′(t) = g2(t, θ (t)), t ∈ (tm, tm+1],

θ (tm) = 0
(18)

for an approximation of ψ(tm+1). To solve (18), we consider the well-known RKF7 with
Butcher array [26]

c A
bT

, (19)

where

c = [c1, c2, . . . , c11]T :=
[

0,
2

27
,

1
9

,
1
6

,
5

12
,

1
2

,
5
6

,
1
6

,
2
3

,
1
3

, 1
]T

,

b = [b1, b2, . . . , b11]T :=
[

41
840

, 0, 0, 0, 0,
34

105
,

9
35

,
9

35
,

9
280

,
9

280
,

41
840

]T

, (20)

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 6 of 21

A = (αi,j) :=

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 0 0 0 0 0 0 0 0
2

27 0 0 0 0 0 0 0 0 0
1

36
1

12 0 0 0 0 0 0 0 0
1

24 0 1
8 0 0 0 0 0 0 0

5
12 0 – 25

16
25
16 0 0 0 0 0 0

1
20 0 0 1

4
1
5 0 0 0 0 0

– 25
108 0 0 125

108 – 65
27

125
54 0 0 0 0

31
300 0 0 0 61

225 – 2
9

13
900 0 0 0

2 0 0 – 53
6

704
45 – 107

9
67
90 3 0 0

– 91
108 0 0 23

108 – 976
135

311
54 – 19

60
17
6 – 1

12 0
2383
4100 0 0 – 341

164
4496
1025 – 301

82
2133
4100

45
82

45
164

18
41

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

.

Since θ (tm) = 0, by applying the RKF7 to problem (18) and using (17), θ (tm+1) can be ap-
proximated as

θ (tm+1) ≈ h
11∑

i=2

biKi,

Ki = g2

(

tm + cih, h
i–1∑

j=2

αi,jKj

)

= f

(

tm + cih, h
i–1∑

j=2

αi,jKj + x(tm + cih)

)

– x′(tm + cih), i = 2, . . . , 11.

(21)

From the definition of the Hermite interpolation x defined by (14), one may see that
ψ(tm+1) = φ(tm+1) – φm+1 := Em+1. Also, we recall that system (18) is a perturbed system
from IVP (16). Thus, one may take the approximation of θ (tm+1) given in (21) as an esti-
mated error em+1 for the actual error Em+1. That is, we define

em+1 = h
11∑

i=2

biKi, (22)

where Ki are defined by (21).
It is easy to check that the coefficients (20) in Butcher array (19) have the following

identities:

i–1∑

j=1

αi,j = ci, i = 1, . . . , 11,

i–1∑

j=1

αi,jcj =
c2

i
2

,
i–1∑

j=1

αi,jc2
j =

c3
i

3
, i = 3, . . . , 11,

11∑

j=1

bj = 1,
11∑

j=1

bjcj =
1
2

,
11∑

j=1

bjc2
j =

1
3

.

(23)

Using these identities, one may prove the following lemma.

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 7 of 21

Lemma 1 The algorithm for em+1 defined by (22) can be simplified by

em+1 = φm + em – φm+1 + h
11∑

i=1

biVi, (24)

where the intermediate values Vi are defined by

V1 := v1, V2 := f
(
tm + c2h, x(tm + c2h)

)
,

Vi := f

(

tm + cih,φm + em + h
i–1∑

j=1

αi,jVj

)

, i = 3, . . . , 11,
(25)

where v1 is defined by (11).

Proof For the quantity Ki defined by (21), we let

�i := Ki + x′(tm + cih), i = 2, 3, . . . , 11.

Then algorithm (22) can be written as

em+1 = γ + h
11∑

i=2

bi�i,

�2 = f
(
tm + c2h, x(tm + c2h)

)
,

�i = f

(

tm + cih, h
i–1∑

j=2

αi,j�j + βi

)

, i = 3, . . . , 11,

(26)

where γ and βi are defined by

γ := –h
11∑

i=2

bix′(tm + cih),

βi := –h
i–1∑

j=2

αi,jx′(tm + cjh) + x(tm + cih).

(27)

For a simplification of γ and βi defined in (27), we consider Taylor’s expansion of x about
t = tm given by

x(t) = x(tm) + (t – tm)x′(tm) +
(t – tm)2

2
x′′(tm) +

(t – tm)3

6
x(3)(tm). (28)

By substituting (28) into the formula of γ given in (27) and combining the result with (23)
and (28), one may check that

γ = hb1x′(tm) – hx′(tm) –
h2

2
x′′(tm) –

h3

6
x(3)(tm)

= hb1x′(tm) + x(tm) – x(tm+1) (29)

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 8 of 21

and

βi = x(tm) + hαi,1x′(tm), i = 3, . . . , 11. (30)

Hence, substituting (29) and (30) into (26) and considering the definition of Vi defined by
(25), one can complete the proof. �

Remark 1 Remark that 16 evaluations of the Hermite interpolation and its derivatives are
required for algorithm (22). However, by introducing Lemma 1, only one evaluation of the
Hermite interpolation is required. It is remarkable.

For summarizing the algorithm we discussed, we consider the Butcher array of RK4
given by

n S
k

, (31)

where

n = [n1, n2, n3, n4] :=
[

0,
1
2

,
1
2

, 1
]

, k = [k1, k2, k3, k4] :=
[

1
6

,
1
3

,
1
3

,
1
6

]
,

S = (si,j) :=

⎡

⎢⎢
⎢
⎣

0 0 0 0
1
2 0 0 0
0 1

2 0 0
0 0 1 0

⎤

⎥⎥
⎥
⎦

.
(32)

Also, if we define

V0 := f (tm+1,φm+1),

then, from the definition of x given in (14), we have

x(tm + c2h) = φm + em + (φm+1 – φm – em)c2
2(3 – 2c2)

+ c2(1 – c2)h
(
(1 – c2)V1 – c2V0

)
.

Thus, by combining it with (24) and (12), one can derive the algorithm EEECM given by

⎧
⎨

⎩
φm+1 = φm + em + h

∑4
i=1 kivi,

em+1 = φm + em – φm+1 + h
∑11

i=1 biVi,
m ≥ 0, (33)

where the intermediate values vi and Vi are defined by

v1 = f (tm,φm + em), vi = f (tm + nih,φm + em + hsi,i–1vi–1), i = 2, 3, 4,

V0 = f (tm+1,φm+1), V1 = v1,

V2 = f
(
tm + c2h,φm + em + c2

2(3 – 2c2)(φm+1 – φm – em) (34)

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 9 of 21

Figure 1 Geometric meaning of the error
embedded error correction methods

+ c2(1 – c2)h
(
(1 – c2)V1 – c2V0

))
,

Vi = f

(

tm + cih,φm + em + h
i–1∑

j=1

αi,jVj

)

, i = 3, . . . , 11.

Also, if we let φ̃m := φm + em, then one may get a better approximation {φ̃m} than the ap-
proximation {φm}, and it satisfies the following recurrence relation:

φ̃m+1 = φ̃m + h
11∑

i=1

biVi, m ≥ 0, (35)

where the intermediate values Vi are calculated by

v1 = f (tm, φ̃m), vi = f (tm + nih, φ̃m + hsi,i–1vi–1), i = 2, 3, 4,

V0 = f

(

tm+1, φ̃m + h
4∑

i=1

kivi

)

, V1 = v1,

V2 = f

(

tm + c2h, φ̃m + c2
2(3 – 2c2)h

4∑

i=1

kivi + c2(1 – c2)h
(
(1 – c2)V1 – c2V0

)
)

,

Vi = f

(

tm + cih, φ̃m + h
i–1∑

j=1

αi,jVj

)

, i = 3, . . . , 11.

(36)

Remark 2 The algorithm of EEECM (33) (or (35)) needs 15 function evaluations in each
time step, which is two more function evaluations than those of RKF78. Unlike RKF78, not
only is the estimated error sequence {em} embedded to calculate the solution φm, but also
it will be used to control the time step size. This is the reason why we call the proposed
algorithm an error embedded error correction method. We also remark that scheme (33)
(or (35)) is also applicable to a system of ODEs of the form

	′(t) = F
(
t,	(t)

)
, t ∈ (t0, tf]; 	(t0) = 	0,

where 	 := [φ1(t), . . . ,φd(t)]T and F := [f1(t,	(t)), . . . , fd(t,	(t))]T .

Remark 3 (Geometric interpretation) A geometric meaning of EEECM is interpreted in
Fig. 1, which consists of two steps: the first step calculates the approximated solution φm+1

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 10 of 21

at tm+1 based on the deferred equation constructed by the Euler polygon y(t), for which two
pieces of information φm and em calculated at time tm are used. To complete the algorithm,
a scheme embedding the sequence of the estimated error em into the algorithm itself is
required. Therefore, in the second step, the local truncation error Em+1 is estimated with
another deferred equation based on higher order local approximation x(t), for which all
pieces of information φm,φm+1, and em are used.

3 Convergence analysis
The aim of this section is to give a concrete convergence analysis for algorithm (35). For
the simplicity of the analysis, we assume that IVP (1) is an autonomous problem. That is,
we assume f (t,φ(t)) := f (φ(t)). For a simplification, we introduce the operator Dk defined
by

Dkf (y) := f
∂

∂y
(
Dk–1f (y)

)
, k ≥ 1, (37)

where D0f (y) := f (y). Let F(y, h; f) be a function of the form

F(y, h; f) :=
11∑

i=1

biVi = b1V1 +
11∑

i=6

biVi,

v1 = f (y), vi = f (y + hsi,i–1vi–1), i = 2, 3, 4,

V0 = f

(

y + h
4∑

i=1

kivi

)

, V1 = v1,

V2 = f

(

y + h

[

c2
2(3 – 2c2)

4∑

i=1

kivi + c2(1 – c2)
(
(1 – c2)V1 – c2V0

)
])

,

Vi = f

(

y + h
i–1∑

j=1

αi,jVj

)

, i = 3, . . . , 11,

(38)

where ki and (si,j) are defined in (32) and ci and (αi,j) are defined in (20). Note that, by
Taylor’s expansion of f (y + hν) about y, one may rewrite Vi of (38) by

Vi =
∞∑

k=0

f (k)(y)
k!

hkXk
i , i = 3, . . . , 11, (39)

where

Xi :=
i–1∑

j=1

αi,jVj, i = 3, . . . , 11. (40)

The above two relations (39) and (40) give a simple expansion of Xi as follows.

Lemma 2 For the quantities Xi (i ≥ 4) defined by (40), we have

Xi =
5∑

k=0

hk

k!
Dkf

(
Ack)

i + f ′
5∑

k=4

hk

(k – 1)!
Dk–1f

(
A2ck–1 –

1
k
Ack

)

i

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 11 of 21

+
h5

3!
D3f

(
f ′′f

(
A

(
c ·Ac3) –

1
4
Ac5

)
+

(
f ′)2

(
A3c3 –

1
4
A2c4

))

i
+ O

(
h6), (41)

where all the functions on the right-hand side are evaluated at the value y and (a)i denotes
the ith component of a vector a. Here, c0 := [1, 1, . . . , 1]T and also a multiplication between
two vectors a := [a1, . . . , a11]T and b := [b1, . . . , b11]T is defined by a · b := [a1b1, . . . , a11b11]T

and ak := a · ak–1.

Proof For the value Xi defined on (40), let us define a vector X by X := [X1, . . . , X11]T with
X1 = X2 = 0. Then, from the definition of the matrix A of (20), combining (40) with (39)
and the identity

∑i–1
j=1 αi,j = ci of (23) yields

Xi = f αi,1 + αi,2V2 + f
i–1∑

j=3

αi,j +
5∑

k=1

f (k)

k!
hk

i–1∑

j=3

αi,jXk
j + O

(
h6)

= f ci +
5∑

k=1

f (k)

k!
hk(AXk)

i + O
(
h6), i ≥ 4, (42)

where αi,2 = 0 (i ≥ 4) is used in the above second equality and the power Xk is obtained by
the above vector multiplication. To obtain a series expansion of Xi in terms of h, we let

X :=
5∑

k=0

hkak + O
(
h6) (43)

and substitute it into (42). Here, we may assume (ak)i = 0 (i = 1, 2) and (ak)3 are determined
by Taylor’s expansion of X3 in terms of h. Further, we expand the resulted equation in
ascending order of h. Then one may check that for i ≥ 4,

Xi = fci + hf ′(Aa0)i + h2
(

f ′Aa1 +
f ′′

2
Aa2

0

)

i
+ h3

(
f ′Aa2 + f ′′A(a0 · a1) +

f (3)

3!
Aa3

0

)

i

+ h4
(

f ′Aa3 +
f ′′

2
A

(
a2

1 + 2a0 · a2
)

+
f (3)

2
A

(
a2

0 · a1
)

+
f (4)

4!
Aa4

0

)

i

+ h5
(

f ′Aa4 + f ′′A(a1 · a2 + a0 · a3)

+
f (3)

2
A

(
a0 · a2

1 + a2
0 · a2

)
+

f (4)

3!
A

(
a3

0 · a1
)

+
f (5)

5!
Aa5

0

)

i
+ O

(
h6). (44)

Thus, by comparing the coefficients of two equations (43) and (44), one may have the
following recurrence relations for ai:

(a0)i = f (c)i, (a1)i = f ′(Aa0)i, (a2)i =
(

f ′Aa1 +
f ′′

2
Aa2

0

)

i
,

(a3)i =
(

f ′Aa2 + f ′′A(a0 · a1) +
f (3)

3!
Aa3

0

)

i
,

(a4)i =
(

f ′Aa3 +
f ′′

2
A

(
a2

1 + 2a0 · a2
)

+
f (3)

2
A

(
a2

0 · a1
)

+
f (4)

4!
Aa4

0

)

i
, (45)

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 12 of 21

(a5)i =
(

f ′Aa4 + f ′′A(a1 · a2 + a0 · a3) +
f (3)

2
A

(
a0 · a2

1 + a2
0 · a2

)

+
f (4)

3!
A

(
a3

0 · a1
)

+
f (5)

5!
Aa5

0

)

i
, i ≥ 4.

Finally, we solve the recurrence relations (45) with the aid of the relations in (23) and (37).
Then one may get the required identity in (41). �

From equation (39) together with (41) in the above lemma, we have the following corol-
lary.

Corollary 1 For the intermediate values Vi (i ≥ 6) defined in (38), we have

Vi =
6∑

k=0

hk

k!
Dkf (y)ck

i +
h5

4!
f ′D4f (y)

(
Ac4 –

c5

5

)

i

+ h6(
(
f ′(y)

)2D4f (y)
(
A2c4 –

Ac5

5

)

i
+

f ′(y)
5!

D5f (y)
(
Ac5 –

c6

6

)

i

+
f ′′(y)f (y)

4!
D4f (y)

(
c ·Ac4 –

c6

5

)

i
+ O

(
h7). (46)

Proof By directly substituting (41) into (39) and expanding the resulted equation in as-
cending order of h with the aid of the identity (Ac3)i = c4

i
4 , i ≥ 6, one may get the required

equation (46). �

Substituting expansion (46) into the sum of F defined by (38) leads to the following
theorem.

Theorem 1 Let us assume that the slope function f is sufficiently smooth. Then the function
F defined by (38) satisfies

F(y, h; f) =
6∑

k=0

hk

(k + 1)!
Dkf (y) + O

(
h7). (47)

Proof By substituting the expansion of Vi in (46) into the sum of F in (38) and simplifying
the result, one may get

F(y, h; f) = f (y)
11∑

i=1

bi +
6∑

k=1

Dkf (y)
k!

hk

(11∑

i=6

bick
i

)

+
h5

4!
f ′(y)D4f (y)

11∑

i=6

bi

(
Ac4 –

1
5

c5
i

)

i

+ h6

[
(
f ′(y)

)2D4f (y)
11∑

i=6

bi

(
A2c4 –

1
5
Ac5

)

i

+
f ′(y)

5!
D5f (y)

11∑

i=6

bi

(
Ac5 –

1
6

c6
)

i

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 13 of 21

+
f ′′f
4!

D4f (y)
11∑

i=6

bi

(
ci
(
Ac4)

i –
1
5

c6
i

)]

+ O
(
h7). (48)

From the Butcher array (19) with the coefficients in (20), one may check that

11∑

i=6

bi
(
Ac4)

i =
1
5

11∑

i=6

bic5
i ,

11∑

i=6

bi
(
A2c4)

i =
1
5

11∑

i=6

bi
(
Ac5)

i,

11∑

i=6

bi
(
Ac5)

i =
1
6

11∑

i=6

bic6
i ,

11∑

i=6

bici
(
Ac4)

i =
1
5

11∑

i=6

bic6
i ,

11∑

i=6

bick
i =

1
k + 1

,
11∑

i=1

bi = 1.

(49)

Combining the relations in (49) with equation (48) yields the required equation (47). �

For a concrete convergence analysis of scheme (35), similar to the methodology in [25],
we now define the truncation error by

Tm(φ) := φ(tm+1) – φ(tm) – hF
(
φ(tm), h; f

)
, m ≥ 0, (50)

and define τm(φ) implicitly by

Tm(φ) = hτm(φ). (51)

Then two equations (50) and (51) give

φ(tm+1) = φ(tm) + hF
(
φ(tm), h; f

)
+ hτm(φ), m ≥ 0. (52)

Thus, subtract (35) from (52) together with (38) to obtain

Ẽm+1 = Ẽm + h
[
F
(
φ(tm), h; f

)
– F(φ̃m, h; f)

]
+ hτm(φ), (53)

in which Ẽm := φ(tm) – φ̃m. For the simplicity of the convergence analysis, we now assume
that the function F satisfies a Lipschitz condition

∣∣F(y, h; f) – F(z, h; f)
∣∣ ≤ L|y – z| (54)

for all –∞ < y, z < ∞ and all small h > 0. This condition can be usually obtained by using
the Lipschitz condition on f and its derivatives. Applying the Lipschitz condition (54) into
(53) leads to

|Ẽm+1| ≤ (1 + Lh)|Ẽm| + hτ (h), m ≥ 0, (55)

where τ (h) is defined by

τ (h) = max
m≥0

∣
∣τm(φ)

∣
∣. (56)

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 14 of 21

On the other hand, from Taylor’s expansion of φ(tm+1) about tm and two equations (47)
and (50), one may get

τm(φ) = O
(
h7), m ≥ 0, (57)

for a sufficiently smooth function f . Hence, from the above three relations (55), (56), and
(57), one can get the following convergence theorem for algorithm (35).

Theorem 2 Assume that the present method (35) satisfies the Lipschitz condition (54) and
the slope function f is sufficiently smooth. Then, for the IVP (1), algorithm (35) has the rate
of convergence O(h7).

Remark 4 Theorem 2 shows that the estimated error em+1 in algorithm (33) exactly esti-
mates the coefficients of Taylor’s expansion about h of the error Em+1 := φ(tm+1) – φm+1 up
to the 7th order term, whereas the embedded RKF78 exactly estimates the 8th order term
only. Also, unlike the existing embedded schemes, the estimated error em is embedded in
the algorithm EEECM itself by considering as an initial value at each time interval. It turns
out that the proposed algorithm (33) is more efficient in a long time simulation, which is
shown throughout several numerical results (see Sect. 4).

4 Numerical results
In this section, we show several numerical results and compare the efficiency of the pro-
posed method to those of other existing methods such as BV78, RKF78, Radau5, and Mat-
lab built-in routines—ode113 and ode45 [2, 26, 27]. As a time step control for the proposed
method, we use a standard step size selection algorithm (for example, [1, 28]) which is
given by

hm+1 =
(

tol
‖em‖∞

) 1
5

hm, (58)

where tol is a given tolerance and em is the estimated local truncation error at time tm

calculated by (33). Also, the initial time step size is chosen by h0 = 1
4 (tol)

1
5 , since RK4 is

used to approximate the solution. In each test problem, we calculate both errors Em =
φ(tm) – φm and Ẽm = φ(tm) – φm – em denoted by EEECM and EEECM(e), respectively.

4.1 Simple problems
In this subsection, we will show the efficiency of EEECM with two simple IVPs. One is a
well-known simple harmonic oscillator. The other is knowing that the global error control
is quite difficult [12]. Details of each problem will be explained in each subsection.

Example 1 Consider a harmonic oscillator described by

⎧
⎨

⎩
y′

1(t) = –y2(t),

y′
2(t) = y1(t),

(59)

whose analytic solutions are given by [y1(t), y2(t)] = [cos(t), sin(t)].

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 15 of 21

Table 1 Convergence order of EEECM for solving a simple harmonic oscillator

Step-size Error Rate

0.5 2.7007e–006
0.25 1.8878e–008 7.160437
0.125 1.3484e–010 7.129298
0.0625 9.9618e–013 7.080680
0.03125 7.0429e–015 7.144086

Figure 2 Comparison of the error with different tolerances (a) tol = 1e–6 (b) tol = 1e–8

To validate the theoretical convergence analysis in Theorem 2, the problem is solved on
the interval [0, 500] with different step sizes and the results are reported in Table 1. The
first column shows time step sizes, the second does the errors measured by sup norm at the
final time, and the last gives the rates between the errors generated by using the previous
and the current step sizes. The results show that the numerical convergence order is 7,
which validates theoretical convergence order.

For a demonstration of a long time simulation of EEECM, we solve the problem on the
interval [0, 105] and show how solutions and errors are well calculated. In Fig. 2, we plot
the absolute errors in a log scale calculated by various numerical schemes with two dif-
ferent tolerances (a) 1e–6 and (b) 1e–8. It can be seen that all existing methods have the
exponential growth of the error in the sense that the errors over time are increasing lin-
early up in a log scale. On the other hand, the figures of EEECM have uniform-like error
bound during the whole time interval under the given tolerances. Furthermore, the results
of EEECM(e) are superior to those of the existing methods. These remarkable results may
contribute to many other fields which stood in needs of long-term simulations.

Finally, we calculate the time cost required to obtain a desired accuracy by varying tol-
erances from tol = 1e–5 to tol = 1e–10. In Fig. 3, we plot the numerical absolute errors at
the final time (y-axis) corresponding to the given tolerances versus the demanded CPU
time (x-axis). The numerical results show that the proposed scheme obtains the most
accurate solution for each fixed CPU time. In particular, one can see that the proposed
method achieves the required accuracies within the given tolerances, whereas all existing
methods except for RKF78 fail to achieve this requirement. Also, EEECM(e) is comparable
to RKF78 in the sense of the CPU time and accuracy for given tolerances. We therefore

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 16 of 21

Figure 3 Comparison of errors versus CPU-times for
given tolerances from 1e–5 to 1e–10

conclude that the proposed method is the most efficient scheme in view of the above dis-
cussion, restricted to this harmonic oscillator problem.

Example 2 In this example, we test a system that the global error control task becomes
more difficult [12] as the time goes on. The system consists of four equations given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y′
1 = 2ty2

1/5y4,

y′
2 = 10t exp(5(y3 – 1))y4,

y′
3 = 2ty4,

y′
4 = –2t log(y1)

(60)

defined on the interval [0, 20] with the initial condition y(0) = [1, 1, 1, 1]T . Its analytic so-
lutions are given by

y1(t) = exp
(
sin

(
t2)), y2(t) = exp

(
5 sin

(
t2)),

y3(t) = sin
(
t2) + 1, y4(t) = cos

(
t2).

(61)

The derivatives of the system show that their oscillation frequencies grow up rapidly
when the time goes on. This is the reason why the global error control task [12] is difficult.
We solve the problem with a fixed tolerance tol = 1e–8 and plot the absolute error in a log
scale in Fig. 4(a). One can see that the proposed method achieves the required accuracy
within the given tolerance on the interval [0, 20], whereas all other methods fail to meet
the given tolerances and some results at the final time are significantly contaminated by
the errors.

As shown in the first example, we also calculate the time cost required to obtain the de-
sired accuracy by varying tolerances from tol = 1e–5 to tol = 1e–10 and plot the numerical
results in Fig. 4(b). In this example, the numerical results show that the proposed scheme
obtains the most accurate solution for each fixed CPU time. In particular, one can see
that the proposed method achieves the required accuracies within the given tolerances,
whereas all existing methods fail to achieve this requirement. Even the absolute errors of
the other methods at the final time achieve about only half order for the desired accuracy
even though the required CPU time is small compared to our method. That is, one may
claim that our method well controls the global error within the given tolerances for this
complicated system.

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 17 of 21

Figure 4 Comparison of (a) the error with a given tolerances tol = 1e–8 and (b) errors versus CPU-times for
given tolerances from 1e–5 to 1e–10

4.2 Hamiltonian system
Formally, a Hamiltonian system is a dynamical system completely described by the scalar
function H , the Hamiltonian. Firstly, we solve a simple pendulum problem to show how
well EEECM can conserve the total energy H . Secondly, we test a two-body Kepler prob-
lem to confirm that the proposed method is well fit for the Hamiltonian system.

4.2.1 Pendulum problem
In this example, we solve the equation for the period of swing of a simple gravity pendulum
depending only on its length and the local strength of gravity. The total energy of the
pendulum is given by

H(p, q) =
1
2

p2 – cos(q), (62)

whose components p and q satisfy

⎧
⎨

⎩
p′(t) = sin(q),

q′(t) = p.
(63)

We solve the system on the interval [0, 500] with the initial conditions p(0) = 1 and q(0) = π
2

together with the given tolerance 1e–8. We examine the conservation property of the total
energy H described by |H(p(0), q(0)) – H(pm, qm)| = | 1

2 – H(pm, qm)|, where pm and qm are
the approximate solutions at time tm. The numerical results are reported in Fig. 5 and show
that only three methods, ode113, RKF78, and EEECM, achieve the invariance of H within
the given tolerances. In particular, the numerical result of EEECM(e) has an outstanding
conservation property compared to other numerical results. Hence, one may claim that
the proposed method is superior to other existing methods.

4.2.2 Kepler problem
In astronomy problems, such as the Kepler problem, a long-term simulation is an indis-
pensable factor. Hence, we solve a two-body Kepler problem subject to Newton’s law of
gravitation revolving around their center of mass, placed at the origin, in elliptic orbits in

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 18 of 21

Figure 5 Comparison of invariance of the total
energy H for solving the pendulum problem with
tolerance 1e–8

the (q1, q2)-plane [29]. Assuming unitary masses and gravitational constant, the dynamics
is described by the Hamiltonian function H given by

H(p1, p2, q1, q2) =
1
2
(
p2

1 + p2
2
)

–
1

√
q2

1 + q2
2

(64)

together with the angular momentum L, which is another invariant of the system, de-
scribed by

L(p1, p2, q1, q2) = q1p2 – q2p1, (65)

whose components pi, qi (i = 1, 2) satisfy the following IVP:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p′
1(t) = –q1(q1

2 + q2
2)(–3/2),

p′
2(t) = –q2(q1

2 + q2
2)(–3/2),

q′
1(t) = p1,

q′
2(t) = p2.

(66)

We solve system (66) with the initial conditions p1(0) = 0, p2(0) = 2, q1(0) = 0.4, q2(0) = 0
on the interval [0, 1000π] together with a fixed tolerance 1e–8. It is well known that the
true solution is periodic with periodicity 2π [30]. As the previous example, we examine the
conservation properties of the total energy H (Fig. 6(a)) as well as the angular momentum
L (Fig. 6(b)). From the two figures, one can see that the numerical results EEECM(e) are
the most accurate.

In Fig. 7, we examine the numerical periodicity with several methods and calculate the
error between the starting point (q1(0), q2(0)) = (0.4, 0) and the numerical solution at time
2kπ (k = 1, . . . , 500) by using the Matlab built-in function for the cubic spline interpolation.
After that, the only 16 points among the 500 calculated errors by selecting one after every
30 points are plotted in Fig. 7. The figures show that the proposed method generates the
most accurate results in the sense of periodicity. One can summarize that the proposed
method gives the most efficient numerical results in respect of both conservation and
periodicity.

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 19 of 21

Figure 6 The invariances of (a) total energy H and (b) angular momentum L for a two-body Kepler problem
with tolerance 1e–8

Figure 7 Comparison of periodicity for a two-body
Kepler problem with tolerance 1e–8

5 Conclusion and further discussion
A new error control strategy for non-stiff problems is developed within the ECM frame-
work. Unlike the traditional way to approximate solutions in an explicit single step
method, we suggest a methodology that contains the estimated error at each integration
step and enables us to control the bound of the local truncation error for a long time
simulation. Throughout several numerical results, it is shown that the proposed method
obtains a uniform-like error bound, which is outstanding compared with existing numeri-
cal methods. Also, it is seen that like symplectic methods, the proposed scheme preserves
the invariants such as the energy and angular momentum in Hamiltonian systems.

In order to fully explore the efficiency of EEECM, several extended issues are currently
being pursued. One of them is to optimize the number of function evaluations to reduce
the computational cost such as the existing embedded algorithms. Another issue is to in-
vestigate strategies for selecting time integration step size, since an adaptive time stepping
is necessary to find efficient solutions for a long time simulation. The proposed method is
developed only for non-stiff problems, and we solved simple Hamiltonian systems. Hence,
the other challenge is to extend the idea of the proposed method into stiff systems. Addi-
tionally, the generalization of the proposed idea will be applied to many physical problems
expressed by partial differential equations (PDEs). Results along these directions will be
reported in the future.

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 20 of 21

Acknowledgements
The authors would like to express their gratitude to the reviewers and the editor for valuable suggestions and comments.

Funding
The first author Kim was supported by the Basic Science Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science and Technology (grant number 2016R1A2B2011326). Also, the
corresponding author Bu was supported by the Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant number
2016R1D1A1B03930734). The second author Piao was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (grant number
2017R1C1B1002370).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PK and XP provided the basic idea of this work and developed all theory needed in this manuscript. WJ simulated the
numerical examples, and the corresponding author SB completed the proofs for all the theorems in this manuscript and
wrote the manuscripts. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Kyungpook National University, Daegu, Korea. 2Department of Mathematics, Hannam
University, Daejeon, Korea. 3Dongwoo Fine Chem, Pyeongtaek, Korea. 4Departments of Liberal arts, Hongik University,
Sejong, Korea.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 18 September 2017 Accepted: 26 April 2018

References
1. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I Nonstiff. Springer Series in Computational

Mathematics. Springer, Berlin (1993)
2. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II Stiff and Differential-Algebraic Problems. Springer

Series in Computational Mathematics. Springer, Berlin (1996)
3. Calvo, M.P., Hairer, E.: Accurate long-term integration of dynamical systems. Appl. Numer. Math. 18, 95–105 (1995)
4. Hairer, E.: Long-time integration of non-stiff and oscillatory Hamiltonian systems. AIP Conf. Proc. 1168(1), 3–6 (2009)
5. Tiwari, S., Kumar, M.: An initial value technique to solve two-point non-linear singularly perturbed boundary value

problems. Appl. Comput. Math. 14(2), 150–157 (2015)
6. Dormand, J.R., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980)
7. Estep, D.: A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM

J. Numer. Anal. 32(1), 1–48 (1995)
8. Gustafsson, K.: Control-theoretic techniques for stepsize selection in implicit Runge–Kutta methods. ACM Trans.

Math. Softw. 20(4), 496–517 (1994)
9. Johnson, C.: Error estimates and adaptive time-step control for a class of one-step methods for stiff ordinary

differential equations. SIAM J. Numer. Anal. 25(4), 908–926 (1988)
10. Kavetski, D., Binning, P., Sloan, S.W.: Adaptive time stepping and error control in a mass conservative numerical

solution of the mixed form of Richards equation. Adv. Water Resour. 24, 595–605 (2001)
11. Kulikov, G.Y.: Global error control in adaptive nordsieck methods. SIAM J. Sci. Comput. 34(2), 839–860 (2012)
12. Kulikov, G.Y., Weiner, R.: Global error estimation and control in linearly-implicit parallel two-step peer W-methods.

Comput. Appl. Math. 236, 1226–1239 (2011)
13. Shampine, L.F.: Error estimation and control for ODEs. J. Sci. Comput. 25(1), 3–16 (2005)
14. Pereyra, V.: Iterated deferred correction for nonlinear boundary value problems. Numer. Math. 11, 111–125 (1968)
15. Zadunaisky, P.E.: On the estimation of errors propagated in the numerical integration of ordinary differential

equations. Numer. Math. 27, 21–40 (1976)
16. Bu, S., Huang, J., Minion, M.L.: Semi-implicit Krylov deferred correction methods for differential algebraic equations.

Math. Comput. 81(280), 2127–2157 (2012)
17. Bu, S., Lee, J.: An enhanced parareal algorithm based on the deferred correction methods for a stiff system. J. Comput.

Appl. Math. 255(1), 297–305 (2014)
18. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT

Numer. Math. 40(2), 241–266 (2000)
19. Huang, J., Jia, J., Minion, M.L.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys.

214(2), 633–656 (2006)
20. Huang, J., Jia, J., Minion, M.L.: Arbitrary order Krylov deferred correction methods for differential algebraic equations.

J. Comput. Phys. 221(2), 739–760 (2007)
21. Kim, P., Piao, X., Kim, S.D.: An error corrected Euler method for solving stiff problems based on Chebyshev collocation.

SIAM J. Numer. Anal. 49, 2211–2230 (2011)
22. Kim, S.D., Piao, X., Kim, D.H., Kim, P.: Convergence on error correction methods for solving initial value problems.

J. Comput. Appl. Math. 236(17), 4448–4461 (2012)
23. Kim, S.D., Kim, P.: Exponentially fitted error correction methods for solving initial value problems. Kyungpook Math. J.

52, 167–177 (2012)

Kim et al. Advances in Difference Equations (2018) 2018:168 Page 21 of 21

24. Kim, P., Lee, E., Kim, S.D.: Simple ECEM algorithms using function values only. Kyungpook Math. J. 53, 573–591 (2013)
25. Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, New York (1989)
26. Fehlberg, E.: Classical fifth-, sixth-, seventh-, and eighth-order Runge–Kutta formulas with stepsize control. In: NASA;

for Sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield (1968)
27. Shampine, L.F.: Vectorized solution of ODEs in MATLAB. Scalable Comput.: Pract. Experience 10, 337–345 (2010)
28. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall, New York (1971)
29. Brugnano, L., Iavernaro, F., Trigiante, D.: Energy- and quadratic invariants-preserving integrators based upon Gauss

collocation formulae. SIAM J. Numer. Anal. 50, 2897–2916 (2012)
30. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithm for Ordinary

Differenital Equations, 2nd edn. Springer Series in Computational Mathematics. Springer, Berlin (2006)

	A new approach to estimating a numerical solution in the error embedded correction framework
	Abstract
	Keywords

	Introduction
	Derivation of algorithm
	Convergence analysis
	Numerical results
	Simple problems
	Hamiltonian system
	Pendulum problem
	Kepler problem

	Conclusion and further discussion
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References

