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Abstract
Our investigation deals with the stability and permanence of diffusive predator–prey
model with modified Leslie–Gower and Holling-type II schemes and time-delay in
two dimensions. Firstly, we prove that the solutions of this model are globally
bounded and remain permanently in the positive quadrant. From this system, we
obtain three trivial equilibrium points of which, under certain conditions, one is
locally stable and the others unstable. We show that the unique point of positive
internal equilibrium is locally stable. Then, by constructing an appropriate Lyapunov’s
functional, we establish the main result which is the global and asymptotic stability of
this model. Finally, a numerical simulation is run to illustrate all these different
theoretical results.
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1 Model
In recent decades, diffusion reaction systems with prey–predator interactions have been
extensively studied by the authors such as Camara et al. [1]. They were interested in the
following model of Leslie–Gower and Holling II modified in two dimensions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂H(T ,X)
∂T = δ1�H(T , X) + (a1 – b1H(T , X) – c1P(T ,X)

H(T ,X)+k1
)H(T , X), T > 0, X ∈ �,

∂P(T ,X)
∂T = δ2�P(T , X) + (a2 – c2P(T ,X)

H(T ,X)+k2
)P(T , X), T > 0, X ∈ �,

H(0, X) = H0(X), P(0, X) = P0(X),
∂H
∂n = ∂P

∂n = 0, on ∂�.

(1)

H denotes the density of the prey and P is the density of the predator at time T , dH
dT and dP

dT
respectively represent the rate of prey increase and of predators at time T which depend
on the following ecological parameters: a1 the prey birth rate, b1 the mortality rate due to
internal prey competition, c1 the maximum predation rate, k1 the rate of prey protection
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by nature, a2 the predator birth rate, c2 the maximum predator mortality rate, k2 the pro-
tection rate of predators by nature, δ2 the predator diffusion coefficient, � is the Laplace
operator.

In their work, they proved the existence, roundedness, and permanence of solutions in
the positive quadrant. Then they showed that the dynamics studied are locally, globally,
and asymptotically stable. Few years ago, Nindjin et al. [2] were interested in this model
but with several constant arguments delayed and without the term of diffusion. Other au-
thors such as Yanling Tian and Peixuan Weng [3], Yanling Tian and Guangzhou [4] looked
at the model [1] with introduction of delays in Leslie–Gower terms. They used the method
of upper and lower solution to show the global and asymptotic stability around the equi-
librium points. In these works [2–4], the delays are in most cases put in the predator’s
functional response to prey or in the negative feedback of predator density. The delays
used in these papers are often due to the hunting of the predator and the gestation of the
prey.

In our paper, we study the impact of internal competition between prey on species dy-
namics in the presence. For this, we consider the model (studied in [1]) of Leslie–Gower
and Holling II modified in two dimensions with diffusion in which we introduce a delay.
Taking into account the fact that the internal competition between the individuals of the
prey species for the search for food involves the individuals having reached an appropriate
maturity, we introduce a delay r1 into the prey equation, precisely in the negative feedback
of the prey. This delay defines a time of recruitment, that means the necessary time for the
immature prey to move into the class of mature prey participating in hunting, procreation,
in a word, to the dynamics of the species present and in interaction.

Thus, taking into account the following variable changes:

t = a1T , x =
(

a1

δ1

) 1
2

X,

u(t, x) =
b1

a1
H(T , X), v(t, x) =

b1c2

a1a2
P(T , X),

a =
a2c1

a1c2
, b =

a2

a1
, δ =

δ2

δ1
, e1 =

k1b1

a1
, e2 =

k2b1

a1
,

we obtain the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t,x)
∂t = �u(t, x) + (1 – u(t – r1, x) – av(t,x)

u(t,x)+e1
)u(t, x), x ∈ �, t > 0,

∂v(t,x)
∂t = δ�v(t, x) + bv(t, x)(1 – v(t,x)

u(t,x)+e2
), x ∈ �, t > 0,

(u0, v0) = φ = (φ1,φ2) ∈ C([–r1; 0] × �̄;R2),

u0(θ , x) = φ1(θ , x) ≥ 0 and v0(θ , x) = φ2(θ , x) ≥ 0, x ∈ �, θ ∈ [–r1; 0],

u(0, x) > 0 and v(0, x) > 0,
∂u
∂n = ∂v

∂n = 0, on I × ∂�.

(2)

In the study of (2), we were inspired by the method used in [4], to show the existence and
global boundedness of solutions. Then we study the local stability and permanence of the
system. Our goal in this article is to find natural conditions on the control parameters,
realistic and easily verifiable, under which the overall stability of our system exists, when
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the length of the delay r1 is small enough. To reach this goal, we have developed a method
which is a combination of the one used in [2] and [1] to build an appropriate Lyapunov’s
functional. Definitely, a numerical simulation is run to illustrate all these different theo-
retical results.

2 Global boundedness
2.1 Existence of solution
The existence of solutions of the model is done by referring to Theorem 2.1 of [5].

2.2 Global boundedness
Theorem 2.1 If

1 –
a
e1

(
er1 + e2

)
> 0, (3)

then the system is globally bounded and, for every positive ε very small, any solution to
problem (2) remains in the following domain of R∗

+ ×R
∗
+:

[(

1 –
a
e1

(
er1 + e2

)
)

er1(1– a
e1

(er1 +e2))–r1er1 –r1ε ; er1 + ε

]

× [
e2 – ε; ε + er1 + e2

]
.

Proof Let us consider the first equation of (2). We obtain the following majoration:

∂u(t, x)
∂t

– �u(t, x) ≤ (
1 – u(t – r1, x)

)
u(t, x). (4)

Then we add the Neumann condition ∂u
∂n = 0 on [–r1; +∞[×∂�.

Let us consider the following differential equation:

⎧
⎨

⎩

du1(t)
dt = (1 – u1(t – r1))u1(t), t > 0,

u1(s) = maxx∈�̄ u(s, x), ∀s ∈ [–r1; 0].
(5)

By solving (5), we show that ln u1(t)
u1(t–r1) =

∫ r1
0 (1 – u1(t – s – r1)) ds ≤ r1.

So, e–r1 u1(t) ≤ u1(t – r1), which leads to du1(t)
dt ≤ (1 – e–r1 u1(t))u1(t). Thus, by apply-

ing one of the consequences of the Gronwall lemma, we have u1(t) ≤ er1

1+( er1
u1(0) –1)e–t

. Hence

lim supt→+∞(maxx∈�̄ u(t, x)) ≤ er1 .
Therefore, ∀ε1 > 0, there is T1 > 0 such that u(t, x) ≤ er1 + ε1 for t > T1 and x ∈ �. From

the second equation of (2), we have ∂v(t,x)
∂t – δ�v(t, x) ≤ bv(t, x)(1 – v(t,x)

er1 +ε+e2
). Let us consider

the following problem dv2(t)
dt = bv2(t)(1 – v2(t)

ε1+er1 +e2
) with v2(s) = maxx∈�̄ v(s, x) ∀s ∈ [–r1; 0].

So, v2(t) = 1
1

ε1+er1 +e2
+ke–bt , k ∈R

+. Hence lim supt→+∞ max�̄ v(t, x)) ≤ ε1 + er1 + e2.

When ε1 tends to zero, we get lim supt→+∞ max�̄ v(t, x)) ≤ er1 + e2.
Therefore, ∀ε2 > 0 there is T2 > T1 such that

v(t, x)) ≤ ε2 + er1 + e2, ∀t > T2. (6)

Determination of the lower limit of u and v.
We have bv(t, x)(1 – v(t,x)

e2
) ≤ ∂v(t,x)

∂t – δ�v(t, x).
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Let us consider the following problem:

dv3(t)
dt

= bv3(t)
(

1 –
v3(t)

e2

)

with v3(s) = min
�̄

v(s, x), s ∈ [–r1; 0].

Solving this problem, we have v3(t) = 1
1

e2
+ke–bt , so, limt→+∞ v3(t) = e2.

Hence ∀ε3 > 0,∃T3 > 0 so that ∀t > T3, v3(t) ≥ e2 – ε3.
Thus, lim inft→+∞ min�̄ v(t, x)) ≥ e2.
Let us show that u is greater than a strictly positive real.
We know that lim supt→+∞ max�̄ v(t, x)) ≤ er1 + e2 = η and lim supt→+∞ max�̄ u(t, x)) ≤

er1 .
Therefore, ∀ε3 > 0 there is T3 > T2 such that v(t, x)) ≤ η + ε3, ∀t > T3.
Using this relation, we show that

⎧
⎨

⎩

∂u(t,x)
∂t – �u(t, x) ≥ (K – u(t – r1, x))u(t, x),

with K = 1 – a(er1 +e2+ε3)
e1

,
(7)

and consider the following system:

⎧
⎨

⎩

du2(t)
dt = u2(t)(K – u2(t – r1)),

u2(s) = min u(s, x), (s, x) ∈ [–r; 0] × �̄.
(8)

We know that ∀t > T3, u(t, x) ≤ er1 + ε, so ∀t > T3 + r1, u(t – r1, x) ≤ er1 + ε, hence u2(t –
r1) ≤ er1 + ε.

By injecting into system (8), we have du2(t)
u2(t ≥ β dt, with β = K – er1 – ε.

Taking the integral in this inequality between t and t – r1, we have u2(t – r1) ≤ e–βr1 u2(t).
Taking into account system (8), we obtain

du2(t)
dt

≥ (
K – e–βr1 u2(t)

)
u2(t). (9)

When we pass to the integral in (9) between s ∈ [–r; 0] and t > 0, we have u2(t) ≥ K
γ e–Kt+e–βr1 .

Thus,

lim inf
t→+∞ u2(t) ≥ Keβr1 .

Finally, we have

lim inf
t→+∞ min

�̄

u(t, x)) ≥
[

1 –
a
e1

(
er1 + e2

)
]

er1[1– a
e1

(er1 +e2)]–r1er1 .

Therefore, this ensures the global boundedness. �

Remark 2.1 We note that hypothesis (3) of the theorem is equivalent to

e1 – ae2 > a and r1 ∈
[

0; ln
(

e1 – ae2

a

)]

. (10)
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Thus, condition (10) has the advantage of giving the delay interval. So, the values taken by
the parameters e1, e2, and a determine the existence and the length of the delay r1 able to
ensure the boundedness of the solutions.

3 The study of the local stability of the system
Let us recall that the delay system has the same equilibrium points as the system without
delay in [1]. It is clear that the trivial equilibrium points are: S0 = (0, 0), S1 = (0, e2), S2 =
(1, 0). As for the existence of the positive internal fixed point S3 = (u∗, v∗), we have the
following theorem.

Theorem 3.1 If e1 > ae2, then the system admits a unique interior fixed point S3 = (u∗, v∗),

u∗ = 1–a–e1+
√

(a–1+e1)2+4(e1–ae2)
2 and v∗ = u∗ + e2.

Proof System (2) admits a constant internal equilibrium point S3 = (u∗, v∗) only if (u∗, v∗)
is the solution of the following system:

⎧
⎨

⎩

1 – u∗ – av∗
u∗+e1

= 0,

1 – v∗
u∗+e2

= 0.
(11)

Considering the first equation of system (11), we obtain

1 – u∗ –
av∗

u∗ + e1
= 0 ⇐⇒ v∗ =

1
a
(
–u∗2 + (1 – e1)u∗ + e1

)
.

Replacing v∗ by 1
a (–u∗2 + (1 – e1)u∗ + e1) in the second equation, we obtain u∗2 + (a – 1 +

e1)u∗ + e2a – e1 = 0 whose resolution gives

u∗
1 =

1 – a – e1 +
√

(a – 1 + e1)2 + 4(e1 – ae2)
2

and

u∗
2 =

1 – a – e1 –
√

(a – 1 + e1)2 + 4(e1 – ae2)
2

.

We show that u∗
1 > 0 as well as v∗

1 = u∗
1 + e2 is. �

We study the local stability in the neighborhood of Si where i = 0, 1, 2, 3. Let us consider
the functional

F : R4 →R
2,

(
u(t, x), v(t, x), u(t – r1, x), v(t – r1, x)

) 
→
(

u(t, x)(1 – u(t – r1, x) – av(t,x)
u(t,x)+e1

)
bv(t, x)(1 – v(t,x)

u(t,x)+e2
)

)

.

Thus, the Jacobian matrix of F is

JF
(
u(t, x), v(t, x), u(t – r1, x), v(t – r1, x)

)
=

(
A11 A12 A13 0
A21 A22 0 0

)

(12)
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with A11 = 1 – u(t – r1, x) – av(t,x)
u(t,x)+e1

+ au(t, x) v(t,x)
(u(t,x)+e1)2 , A12 = – au(t,x)

u(t,x)+e1
, A13 = –u(t, x), A21 =

bv2(t,x)
(u(t,x)+e2)2 and A22 = b(1 – 2 v(t,x)

u(t,x)+e2
).

System (2) can be written in the form

∂

∂t

(
u(t, x)
v(t, x)

)

=

(
� 0
0 δ�

)(
u(t, x)
v(t, x)

)

+ F
(
u(t, x), v(t, x), u(t – r1, x), v(t – r1, x)

)
.

Let us pose: w =
( w1

w2

)
=

( u
v
)

– Si. Let us note S∗
i the fixed point taking into account the delay

corresponding to (u(t, x), v(t, x), u(t – r1, x), v(t – r1, x)).
So, the system linearized around Si becomes

∂

∂t

(
w1(t, x)
w2(t, x)

)

=

(
� 0
0 δ�

)(
w1(t, x)
w2(t, x)

)

+ JF
(
S∗

i
)

⎛

⎜
⎜
⎜
⎝

w1(t, x)
w2(t, x)

w1(t – r1, x)
w2(t – r1, x)

⎞

⎟
⎟
⎟
⎠

,

which is equivalent to the following system:
⎧
⎨

⎩

∂w1(t,x)
∂t = �w1(t, x) + A11w1(t, x) + A12w2(t, x) + A13w1(t – r1, x),

∂w2(t,x)
∂t = δ�w2(t, x) + A21w1(t, x) + A22w2(t, x).

(13)

3.1 Local stability of S0 and S1

For the points S0 = (0; 0) and S1 = (0; e2), we have A13 = 0. Then everything happens as if
we are in the case of a model without delay. Now, for the model without delay studied in
[2], we have the following conclusions:

(i) S0 = (0; 0) is unstable.
(ii) S1 = (0; e2) is stable if e1 < ae2, and unstable if e1 > ae2.
It can be concluded that the delay r1 had no influence on the stability of the equilibrium

points S0 and S1.

3.2 Local stability of S2 and S3

For the equilibria points S2 and S3, we have A13 �= 0.
In order to determine the characteristic equation of model (2), we consider (μi,ϕi)∞i=0

the set of value and eigenvector pairs of the –� operator on � = [0; Mx] × [0; My] with
homogeneous Neumann type boundary conditions such as

0 = μ0 < μ1 < μ2 < · · · with μi = π2
(

p2
i

M2
x

+
q2

i
M2

y

)

, pi, qi ∈N.

Let X = {(u, v) ∈ C2(�̄) × C2(�̄)/ ∂u
∂n = ∂v

∂n = 0} be a set that can be decomposed as a direct
sum

⊕∞
i=0 Xi, where Xi is the space of the eigenvectors corresponding to the eigenvalue μi

for all i = 0; 1; 2; . . . .
For each i = 0; 1; 2; . . . , the set Xi is invariant under operator of (13). So, the characteristic

equation of the linearized system of (2) is

P(λ) + Q(λ)e–r1λ = 0, (14)

where P(λ) = (λ + δμi – A22)(λ + μi – A11) – A12A21 and Q(λ) = –A13(λ + δμi – A22).
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For all i = 0; 1; 2; . . . , we have
1. P(λ) and Q(λ) have no common imaginary roots because Q(λ) has only one root

that is real.
2. If μi �= b

δ
, then around S2 we have P(0) + Q(0) �= 0. If e1 > 1, then around S3 one has

P(0) + Q(0) �= 0.
3. It is clear that P(–iω) = P(iω) and Q(–iω) = Q(iω).
4. One has lim sup{|Q(λ)

P(λ) |/|λ| → +∞ and Re(λ) ≥ 0} = 0. Then
lim sup{|Q(λ)

P(λ) |/|λ| → +∞ and Re(λ) ≥ 0} < 1.
5. Let us pose F(ω) = |P(iω)|2 – |Q(iω)|2. The function F can be put in the form

F(ω) = ω4 + m1ω
2 + m0, where m0 and m1 are the real numbers ω∗.

6. Let us consider ω∗ = ω(r∗) a possible positive root of F(ω) and its associated delay

r0 = [ 1
ω∗ arctan{– Im( P(iω∗)

Q(iω∗) )

Re( P(iω∗)
Q(iω∗) )

} + 2nπ
ω∗ ], n ∈N. So, there are

Sgn( d Re(λ)
dr )λ=iω∗ = Sgn(F ′(ω∗)).

3.2.1 Around S2 = (1; 0)
One has A11 = 0, A12 = – a

1+e1
, A13 = –1, A21 = 0, A22 = b, m0 = (μ2

i – 1)(δμi – b)2 and m1 =
μ2

i – 1 + (δμi – b)2. Therefore:
If m0 > 0, then m1 > 0. So, F does not admit a positive solution. So, we have no stability

change. In this case, as at r1 = 0, the system is unstable, it remains so.
If m0 < 0, then F has exactly one positive solution ω∗. Now

Sgn

(
d Re(λ)

dr

)

λ=iω∗
= Sgn

(
F ′(ω∗)) = Sgn

((
ω∗)4 – m0

)
> 0.

So, it does not have any change of stability. In a way similar to the previous case, the system
is unstable.

3.2.2 Around S3 = (u∗, v∗)
One has A11 = au∗v∗

(u∗+e1)2 , A12 = – au∗
u∗+e1

, A13 = –u∗, A21 = b, A22 = –b, m0 = [A21A12 – (μi –
A11)(δμi – A22)]2 – A2

13(δμi – A22)2, and m1 = –A2
13 + 2A21A12 – 2(μi – A11)(δμi – A22) +

(μi – A11 – A22 + δμi)2.
– If m1 > 0 and m0 > 0, then F does not admit any positive root. In this case, there is no

change in stability. Now at r1 = 0, in [1], if a ≥ 1
2 and

e1 > –(a + 1) +
√

(a + 1)2 + 2a(1 + 2e2) – 1, then the equilibrium point S3 = (u∗, v∗) is
stable. Therefore, it remains so.

– If m0 < 0, then F has a single positive root. There is a positive real r0 beyond which
there is a change of stability.

Remark 3.1 Considering certain conditions, we can come up with very practical cases. So,
to have m1 > 0 and m0 > 0, just take for example μi > max{1+e1;

√
2abu∗
u∗+e1

+ (1–u∗)u∗
u∗+e1

; 1
δ
(u∗ –b)}

for each i = 1, 2, 3, . . . .
Similarly, taking e1 > 1 and [–A22 + δ(A13 – A11)]2 + 4(A13 – A11)A22 + 4A21A12 > 0, we

can find μi which allow us to have m0 < 0.

4 Permanence
Theorem 4.1 If e1 > ae2, then the system is permanent.
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Proof The trivial points (0, 0) and (1, 0) are unstable. And if e1 > ae2, then (0, e2) is unstable.
Thus, the points of equilibrium situated on the axes are all unstable; they cannot attract the
other solutions of the system. In addition to this, the solutions of the system are bounded
globally, that is to say,

∀ε > 0,∃T > 0 so that ∀t > T and ∀x ∈ �, we have

0 <
[

1 –
a
e1

(
er1 + e2

)
]

er1[1– a
e1

(er1 +e2)]–r1er1 –r1ε ≤ u(t, x) ≤ er1 + ε

0 < e2 – ε ≤ v(t, x) ≤ ε + er1 + e2

for ε smallest. So, the system is permanent. �

5 Global stability
In this section, we are interested in the study of global stability. Using the results of Lya-
punov’s functional construction in [2], we construct an appropriate Lyapunov’s functional
to study the global stability of the unique interior equilibrium point S3. For this, we state
the following lemma.

Lemma 5.1 Let f be a continuous function on R. The function g : t 
→ ∫ t
t–r1

∫ t
y f (s) ds dy is

differentiable on R, and

∀t ∈ R, g ′(t) = r1f (t) –
∫ t

t–r1

f (s) ds.

Proof Let F be a primitive of f .
We know that ∀t ∈R, g(t) =

∫ t
t–r1

∫ t
y f (s) ds dy.

Thus, g(t) =
∫ t

t–r1
(F(t) – F(y)) dy. So, g(t) = r1F(t) –

∫ t
t–r1

F(y) dy. When we pass to the
derivative of g , we get

g ′(t) = r1F ′(t) –
(
F(t) – F(t – r1)

)
= r1f (t) –

∫ t

t–r1

f (s) ds. �

Theorem 5.1 (Main theorem) Suppose that the bounding condition (3) and the hypothesis

2ae2

e2 + 1
> e1 >

2e2

e2
2 – 1

and e2 > 1 (15)

are verified. Then, for all r1 sufficiently small, the interior equilibrium point S3 is globally
asymptotically stable in R

2.

Proof When the condition 1– a
e1

(er1 +e2) > 0 is satisfied, then e1 > ae2. Thus, the conditions
of global bounding imply those of the existence of the point of interior equilibrium.

1. The solutions of model (2) are bounded, and we have

mε
u ≤ u(t, x) ≤ Mε

u and mε
v ≤ v(t, x) ≤ Mε

v with

mε
u =

[

1 –
a
e1

(
er1 + e2

)
]

er1[1– a
e1

(er1 +e2)]–r1er1 –r1ε ;

Mε
u = er1 + ε; mε

v = e2 – ε; Mε
v = ε + er1 + e2.
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2. Model (2) has a unique interior fixed point (u∗, v∗) verifying (11).
Let us consider the function l so that ∀ ε ≥ 0,∃T > 0 such as ∀t ≥ T and x ∈ �,

l
(
u(t, x), v(t, x)

)
= l1

(
u(t, x), v(t, x)

)
+ �1(t, x) (16)

with

�1(t, x) =
∫ t

t–r1

∫ t

y

Mu

2
(
u(s – r1, x) – u∗)2) ds dy

+
∫ t

t–r1

∫ t

y

Mu

2e1

(
u(s, x) – u∗)2 ds dy +

∫ t

t–r1

∫ t

y

Mu

2Mε
v

(
v(s, x) – v∗)2 ds dy

+
∫ t

t–r1

r1Mu

2
(
u(s, x) – u∗)2 ds +

v∗

Mε
v

∫ t

t–r1

∫ t

y

|∇u(s, x)|2
2

ds dy (17)

and

l1
(
u(t, x), v(t, x)

)
=

v∗

Mε
v

[

u – u∗ – u∗ ln
u
u∗

]

+
v∗

bMε
v

[

v – v∗ – v∗ ln
v
v∗

]

. (18)

The function l1 admits zero for the global minimum reached in (u∗, v∗). So, l(u(t, x),
v(t, x)) ≥ 0 with l(u∗, v∗) = 0. Posing

L
(
u(t, x), v(t, x)

)
=

∫

�

l
(
u(t, x), v(t, x)

)
dx

=
∫

�

l1
(
u(t, x), v(t, x)

)
dx +

∫

�

�1(t, x) dx. (19)

Let us show that the function L as constructed is a Lyapunov’s functional for system (2).
(i) We have L(u∗, v∗) = 0.

(ii) For any solution (u, v) of (2) of which the initial condition (u0(x), v0(x)) in the
positive quadrant that solution is positive. Therefore, L(u, v) is positive.

(iii) We have to prove the following inequality: dL
dt < 0.

dL
dt

=
∫

�

∂l1(u(t, x), v(t, x))
∂t

dx +
∫

�

∂�1(t, x)
∂t

dx. (20)

Using relation (11), for all u and v sufficiently regular and bounded, system (2) becomes

⎧
⎨

⎩

∂tu(t,x)
u(t,x) = �u(t,x)

u(t,x) – [u(t – r1, x) – u∗] + av(t,x)
(u∗+e1)(u(t,x)+e1) (u(t, x) – u∗) – a

u∗+e1
(v(t, x) – v∗),

∂tv(t,x)
v(t,x) = δ�v(t,x)

v(t,x) + bv(t,x)
(u∗+e2)(u(t,x)+e2) (u(t, x) – u∗) – b

u∗+e2
(v(t, x) – v∗).

(21)

We have
∫

�

∂l1(u(t, x), v(t, x))
∂t

dx

=
∫

�

∂l1(u(t, x), v(t, x))
∂u(t, x)

∂u(t, x)
∂t

+
∂l1(u(t, x), v(t, x))

∂v(t, x)
∂v(t, x)

∂t
dx



Nindjin et al. Advances in Difference Equations  (2018) 2018:177 Page 10 of 17

=
∫

�

[
v∗

Mε
v

u(t, x) – u∗

u(t, x)
∂u(t, x)

∂t
+

v∗

bMε
v

(

1 –
v∗

v(t, x)

)
∂v(t, x)

∂t

]

dx

=
∫

�

[
v∗

Mε
v

(
u(t, x) – u∗)

[
�u(t, x)
u(t, x)

–
(
u(t – r1, x) – u∗)

+
av

(u∗ + e1)(u(t, x) + e1)
(
u(t, x) – u∗) –

a
u∗ + e1

(
v(t, x) – v∗)

]

+
v∗

bMε
v

(
v(t, x) – v∗)

[
δ�v(t, x)

v(t, x)
+

bv(t, x)
(u∗ + e2)(u(t, x) + e2)

(
u(t, x) – u∗)

–
b

u∗ + e2

(
v(t, x) – v∗)

]]

dx.

Let us pose
∫

�

∂l1(u(t,x),v(t,x))
∂t dx = T1 + T2 with

T1 =
∫

�

[
v∗

Mε
v

(
u(t, x) – u∗)

[

–
(
u(t – r1, x) – u∗) +

av
(u∗ + e1)(u(t, x) + e1)

(
u(t, x) – u∗)

–
a

u∗ + e1

(
v(t, x) – v∗)

]

+
v∗

bMε
v

(
v(t, x) – v∗)

[
bv(t, x)

(u∗ + e2)(u(t, x) + e2)
(
u(t, x) – u∗)

–
b

u∗ + e2

(
v(t, x) – v∗)

]]

dx

and

T2 =
∫

�

[
v∗

Mε
v

(
u(t, x) – u∗)�u(t, x)

u(t, x)
+

v∗

bMε
v

(
v(t, x) – v∗)δ�v(t, x)

v(t, x)

]

dx.

Transform T2. From Green’s formula and taking into account the condition from Neu-
mann ( ∂u

∂η
= ∂v

∂η
= 0), we have

T2 = –
u∗v∗

Mε
v

∫

�

|∇u(t, x)|2
u(t, x)2 dx – δ

(v∗)2

bMε
v

∫

�

|∇v(t, x)|2
v(t, x)2 ] dx.

By the relation: u(t – r1, x) = u(t, x) –
∫ t

t–r1
∂u(s,x)

∂s ds, T1 becomes

T1 =
∫

�

[

–
v∗

Mε
v

(
u(t, x) – u∗)2 +

v∗

Mε
v

(
u(t, x) – u∗)

∫ t

t–r1

∂u(s, x)
∂s

ds

+
v∗av

Mε
v (u∗ + e1)(u(t, x) + e1)

(
u(t, x) – u∗)2

–
v∗a

Mε
v (u∗ + e1)

(
u(t, x) – u∗)(v(t, x) – v∗)

+
v∗v(t, x)

Mε
v (u∗ + e2)(u(t, x) + e2)

(
u(t, x) – u∗)(v(t, x) – v∗)

–
v∗

Mε
v (u∗ + e2)

(
v(t, x) – v∗)2

]

dx.
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So, T1 must be decomposed into a sum of two large terms which we denote by T11 and
T12, where

T11 =
∫

�

[[

–
v∗

Mε
v

+
v∗av(t, x)

Mε
v (u∗ + e1)(u(t, x) + e1)

]
(
u(t, x) – u∗)2

+
[

–
v∗a

Mε
v (u∗ + e1)

+
v∗v(t, x)

Mε
v (u∗ + e2)(u(t, x) + e2)

]
(
u(t, x) – u∗)(v(t, x) – v∗)

–
v∗

Mε
v (u∗ + e2)

(
v(t, x) – v∗)2

]

dx

and T12 =
∫

�
v∗
Mε

v
(u(t, x) – u∗)

∫ t
t–r1

∂u(s,x)
∂s ds dx.

Using (11), let us compute the supremum value of T11 and T12. So,

T11 =
∫

�

[

–
v∗

Mε
v

+
(1 – u∗)v(t, x)

Mε
v (u(t, x) + e1)

]
(
u(t, x) – u∗)2 dx

+
∫

�

[(

–
(1 – u∗)

Mε
v

+
v

Mε
v (u(t, x) + e2)

)
(
u(t, x) – u∗)(v(t, x) – v∗)

–
1

Mε
v

(
v(t, x) – v∗)2

]

dx

�⇒

T11 ≤
∫

�

[

–
mε

v
Mε

v
+

1
e1

]
(
u(t, x) – u∗)2 dx

+
∫

�

[∣
∣
∣
∣

(

–
(1 – u∗)

Mε
v

+
v

Mε
v (u(t, x) + e2)

)∣
∣
∣
∣

∣
∣
(
u(t, x) – u∗)(v(t, x) – v∗)∣∣

–
1

Mε
v

(
v(t, x) – v∗)2

]

dx.

Hence

T11 ≤
∫

�

[

–
e2

Mε
v

+
1
e1

+
1
2

+
1

2e2

]
(
u(t, x) – u∗)2 dx

+
∫

�

[

–
1

Mε
v

+
1
2

+
1

2e2

]
(
v(t, x) – v∗)2] dx. (22)

From (11) and considering that u(s; x) is a solution (2), one obtains, by adapting the writ-
ings, an expression of ∂u(s,x)

∂s similar to the first equation of (21). Therefore, T12 becomes

T12 =
∫

�

v∗

Mε
v

(
u(t, x) – u∗)

×
∫ t

t–r1

[

�u(s, x) + u(s, x)
(

–
(
u(s – r1, x) – u∗),

+
av(s, x)

(u∗ + e1)(u(s, x) + e1)
(
u(s, x) – u∗) –

a
u∗ + e1

(
v(s, x) – v∗)

)]

ds dx.
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So,

T12 =
∫

�

v∗

Mε
v

(
u(t, x) – u∗)

∫ t

t–r1

�u(s, x) ds dx,

+
∫

�

v∗

Mε
v

(
u(t, x) – u∗)

∫ t

t–r1

u(s, x)
(

–
(
u(s – r1, x) – u∗)

+
av(s, x)

(u∗ + e1)(u(s, x) + e1)
(
u(s, x) – u∗) –

a
u∗ + e1

(
v(s, x) – v∗)

)

ds dx.

Let us pose T12 = ϒ + �, with ϒ =
∫

�
v∗

Mε
v

(u(t, x) – u∗)
∫ t

t–r1
�u(s, x) ds dx and

� =
v∗

Mε
v

∫

�

∫ t

t–r1

(
u(t, x) – u∗)u(s, x)

(

–
(
u(s – r1, x) – u∗)

+
av(s, x)

(u∗ + e1)(u(s, x) + e1)
(
u(s, x) – u∗) –

a
u∗ + e1

(
v(s, x) – v∗)

)

] ds dx.

From Green’s formula ϒ becomes

ϒ = –
v∗

Mε
v

∫

�

∫ t

t–r1

∇u(s, x) · ∇(
u(t, x) – u∗)ds dx

+
v∗

Mε
v

∫ t

t–r1

∫

∂�

∂u(s, x)
∂n

(
u(t, x) – u∗)dx ds.

So, ϒ = – v∗
Mε

v

∫

�

∫ t
t–r1

∇u(s, x) · ∇(u(t, x) – u∗) ds dx because ∂u(s,x)
∂n = 0. Therefore,

ϒ = – v∗
Mε

v

∫ t
t–r1

∫

�
∇u(s, x) · ∇u(t, x) dx ds because ∇u∗ = 0. Consequently, ϒ ≤ v∗

Mε
v

×
∫ t

t–r1

∫

�

|∇u(t,x)|2
2 + |∇u(s,x)|2

2 dx ds. So,

ϒ ≤ v∗

Mε
v

r1

∫

�

|∇u(t, x)|2
2

dx +
v∗

Mε
v

∫ t

t–r1

∫

�

|∇u(s, x)|2
2

dx ds. (23)

Let us compute the upper value of �. One has

� ≤ v∗

Mε
v

∫

�

∫ t

t–r1

u(s, x)
[
(
u(t, x) – u∗)2 +

(
u(s – r1, x) – u∗)2

+
av(s, x)

2(u∗ + e1)(u(s, x) + e1)
((

u(t, x) – u∗)2 +
(
u(s, x) – u∗)2)

+
a

2(u∗ + e1)
((

u(t, x) – u∗)2 +
(
v(s, x) – v∗)2)

]

ds dx.

So, by using the boundary of the solution (u(s, x); v(s, x)), one obtains

� ≤
∫

�

∫ t

t–r1

v∗

2Mε
v

Mε
u
[(

u(t, x) – u∗)2 +
(
u(s – r1, x) – u∗)2]ds dx

+
∫

�

∫ t

t–r1

Mε
u

2e1

(
u(t, x) – u∗)2 ds dx +

∫

�

∫ t

t–r1

Mε
u

2e1

(
u(s, x) – u∗)2 ds dx

+
∫

�

∫ t

t–r1

Mε
u

2Mε
v

(
u(t, x) – u∗)2 ds dx +

∫

�

∫ t

t–r1

Mε
u

2Mε
v

(
v(s, x) – v∗)2 ds dx.
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Finally,

� ≤
∫

�

r1

(
Mε

u
2

+
Mε

u
2e1

+
Mε

u
2Mε

v

)
(
u(t, x) – u∗)2 ds dx

+
∫

�

∫ t

t–r1

Mε
u

2
(
u(s – r1, x) – u∗)2) ds dx

+
∫

�

∫ t

t–r1

Mε
u

2e1

(
u(s, x) – u∗)2 ds dx +

∫

�

∫ t

t–r1

Mε
u

2Mε
v

(
v(s, x) – v∗)2 ds dx. (24)

We use inequalities (22), (23), and (24) to complete the highest value of
∫

�

∂l1(u(t,x),v(t,x))
∂t dx.

Because, as said earlier,
∫

�

∂l1(u(t,x),v(t,x))
∂t dx = T11 + ϒ + � + T2. Then posing � =

∫

�

∂l1(u(t,x),v(t,x))
∂t dx, we have

� ≤ –
u∗v∗

Mε
v

∫

�

|∇u(t, x)|2
u(t, x)2 dx – δ

(v∗)2

bMε
v

∫

�

|∇v(t, x)|2
v(t, x)2 ] dx

+
∫

�

[

–
e2

Mε
v

+
1
e1

+
1
2

+
1

2e2

]
(
u(t, x) – u∗)2 dx

+
∫

�

[(

–
1

Mε
v

+
1
2

+
1

2e2

)
(
v(t, x) – v∗)2

]

dx

+
v∗

Mε
v

r1

∫

�

|∇u(t, x)|2
2

dx +
v∗

Mε
v

∫ t

t–r1

∫

�

|∇u(s, x)|2
2

dx ds

+
∫

�

r1

(
Mε

u
2

+
Mε

u
2e1

+
Mε

u
2Mε

v

)
(
u(t, x) – u∗)2 dx

+
∫

�

∫ t

t–r1

Mε
u

2
(
u(s – r1, x) – u∗)2) ds dx

+
∫

�

∫ t

t–r1

Mε
u

2e1

(
u(s, x) – u∗)2 ds dx +

∫

�

∫ t

t–r1

Mε
u

2Mε
v

(
v(s, x) – v∗)2 ds dx.

Hence

� ≤
∫

�

[
∣
∣∇u(t, x)

∣
∣2

(

–
v∗u∗

Mε
v u(t, x)2 +

v∗r1

2Mε
v

)

– δ
∣
∣∇v(t, x)

∣
∣2

(
(v∗)2

bMε
v v(t, x)2

)]

dx

+
∫

�

[

–
e2

Mε
v

+
1
e1

+
1
2

+
1

2e2
+ r1

(
Mε

u
2

+
Mε

u
2e1

+
Mε

u
2Mε

v

)]
(
u(t, x) – u∗)2 dx

+
∫

�

[

–
1

Mε
v

+
1
2

+
1

2e2

]
(
v(t, x) – v∗)2 dx

+
∫

�

∫ t

t–r1

Mε
u

2
(
u(s – r1, x) – u∗)2) ds dx

+
∫

�

∫ t

t–r1

Mε
u

2e1

(
u(s, x) – u∗)2 ds dx +

∫

�

∫ t

t–r1

Mε
u

2Mε
v

(
v(s, x) – v∗)2 ds dx

+
v∗

Mε
v

∫ t

t–r1

∫

�

|∇u(s, x)|2
2

dx ds. (25)
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Now let us focus on ∂�(t)
∂t =

∫

�

∂�1(t,x)
∂t dx. From Lemma 5.1 we have

∂�(t)
∂t

=
∫

�

r1Mε
u

2
(
u(t – r1, x) – u∗)2 dx –

∫

�

∫ t

t–r1

Mε
u

2
(
u(s – r1, x) – u∗)2) ds dx

+
∫

�

r1Mε
u

2e1

(
u(t, x) – u∗)2 dx –

∫

�

∫ t

t–r1

Mε
u

2e1

(
u(s, x) – u∗)2 ds dx

+
∫

�

r1Mε
u

2Mε
v

(
v(t, x) – v∗)2 dx –

∫

�

∫ t

t–r1

Mε
u

2Mε
v

(
v(s, x) – v∗)2 ds dx

+
∫

�

r1Mε
u

2
(
u(t, x) – u∗)2 dx –

∫

�

r1Mε
u

2
(
u(t – r1, x) – u∗)2 dx

+
r1v∗

Mε
v

∫

�

|∇u(t, x)|2
2

dx –
v∗

Mε
v

∫

�

∫ t

t–r1

|∇u(s, x)|2
2

ds dx.

Consequently, taking into account the highest value of ∂�(t,x)
∂t and

∫

�

∂l1(u(t,x),v(t,x))
∂t dx, we

obtain

dL
dt

≤
∫

�

∣
∣∇u(t, x)

∣
∣2

(

–
v∗u∗

Mε
v u(t, x)2 +

v∗r1

2Mε
v

+
r1v∗

2Mε
v

)

dx

–
∫

�

δ
∣
∣∇v(t, x)

∣
∣2

(
(v∗)2

bMε
v v(t, x)2

)

dx

+
∫

�

[

–
e2

Mε
v

+
1
e1

+
1
2

+
1

2e2
+ r1

(
Mε

u
2

+
Mε

u
2e1

+
Mε

u
2Mε

v

)

+
r1Mε

u
2

+
r1Mε

u
2e1

]

× (
u(t, x) – u∗)2 dx

+
∫

�

[

–
1

Mε
v

+
1
2

+
1

2e2
+

r1Mε
u

2Mε
v

]
(
v(t, x) – v∗)2] dx.

So,

dL
dt

≤
∫

�

∣
∣∇u(t, x)

∣
∣2

(

–
v∗u∗

Mε
v u(t, x)2 +

v∗r1

Mε
v

)

dx –
∫

�

δ
∣
∣∇v(t, x)

∣
∣2

(
(v∗)2

bMε
v v(t, x)2

)

dx

+
∫

�

[

–
e2

Mε
v

+
1
e1

+
1
2

+
1

2e2
+ r1

(

Mε
u +

Mε
u

e1
+

Mε
u

2Mε
v

)]
(
u(t, x) – u∗)2 dx

+
∫

�

[

–
1

Mε
v

+
1
2

+
1

2e2
+

r1Mε
u

2Mε
v

]
(
v(t, x) – v∗)2] dx.

That is why

dL
dt

≤ K1

∫

�

∣
∣∇u(t, x)

∣
∣2 dx

–
δ(mε

v)2

b(Mε
v )3

∫

�

∣
∣∇v(t, x)

∣
∣2 dx + K2

∫

�

(
u(t, x) – u∗)2 dx

+ K3

∫

�

(
v(t, x) – v∗)2 dx (26)
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with

K1 =
v∗

Mε
v

(

r1 –
u∗

(Mε
u)2

)

, (27)

K2 = –
e2

Mε
v

+
1
e1

+
1
2

+
1

2e2
+ r1

(

Mε
u +

Mε
u

e1
+

Mε
u

2Mε
v

)

, (28)

K3 = –
1

Mε
v

+
1
2

+
1

2e2
+

r1Mε
u

2Mε
v

. (29)

Under the conditions and assumptions of Theorem 5.1 and for a sufficiently small r1

delay, K1, K2, and K3 are all inferior to zero. Indeed, by making ε tend towards 0, Mε
v tend

towards Mv = er1 + e2. Since r1 is smallest, there is r0 from which K1 < 0. However, by
hypothesis one has e1 < 2ae2

e2+1 , which implies

1
2

+
1

2e2
<

a
e1

<
1

Mv
. (30)

So, K3 is negative. By multiplying inequalities (30) by e2, one has e2
2 + 1

2 < e2
Mε

v
. Yet, by hy-

pothesis, one has 2e2
e2

2–1 < e1.

So, 1
e1

+ 1
2 + 1

2e2
< e2

2 + 1
2 < e2

Mε
v

. Consequently, K2 is negative. In this case,

dL
dt

< 0. (31)

Hence the interior equilibrium point (u∗, v∗) of system (1) is globally asymptotically sta-
ble. �

Remark 5.1 Let r0 be the only solution of the equation r1 – u∗
e2r1 = 0.

If e1 – ae2 > a and (15) is verified then, for all r1 < min{r0; ln( e1–ae2
a )}, the interior equilib-

rium point (u∗, v∗) is globally asymptotically stable.

6 Numerical simulations
Let us consider the space �̄ = [0; 8.4]×[0; 8.4], the period T = 60, and the following control
parameters: a = 0.69, b = 0.2, δ = 1, e1 = 3.5, e2 = 4, μi = 2π2

(8.4)2 .
For the graphic illustration, let us consider the initial conditions (u0, v0) = (0.5; 0.3), the

step dt = h = 0.1, dx = dy = 0.4, and the number iterations of time N = 600. From condition
(3) of Theorem 2.1, the system is permanent if 0 < r1 < rlim = 0.3254. For r1 = 0.3, one
obtains the maximum and minimum values of u and v: umin = 0.0043, umax = 1.3499, vmin =
4, vmax = 5.3499. The trivial equilibrium points of the model are S0 = (0; 0), S1 = (0; 4), S2 =
(1; 0). In addition, S3 = (0.2636; 4.2636) is the unique interior equilibrium point verifying
condition 15 of Theorem 5.1. Then S3 is globally stable. Hence, illustrating figure (Fig. 1)
for the space position x = 1.2 and y = 0.8.

• Interpretation: The trajectories of prey u and predators v stabilize respectively around
0.2636 and 4.2636 when t is greater than 40. As for the orbits, they are moving away from
trivial equilibrium points and converge towards S3 = (0.2636; 4.2636). Hence, S3 is glob-
ally stable, which is illustrated by the second and the third figure. It is noticed that for
values x and y in �, and for all initial conditions u0 and v0 strictly positive, the orbits and
trajectories are similar to those of Fig. 1. That is in line with the theoretical results.
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Figure 1 Trajectories and orbits with φ1(θ ) = u(0)e
{ θu(0)
2r1

}

1+u(0)(e
{ u(0)θ2r1

}
–1)

,θ ∈ [–r1; 0]

7 Conclusion
In this article, we have shown that the solutions of the model considered are globally
bounded. The local stability study revealed that the delay introduced in the feedback of the
equation prey, which is essentially due to internal competition between preys, has a real
impact on the stability of the indoor fixed point (u∗, v∗). In effect, from a certain threshold
of delay r1, noted r∗

1 , a change of stability of this unique positive internal fixed point is
observed. We have built an appropriate Lyapunov’s functional to study the global stability
of the fixed point (u∗, v∗). We retain that for a smallest length of the delay r1 and for an
internal competition raised between the preys, this fixed point is globally asymptotically
stable. This conclusion seems to be in line with reality. The faster preys reach maturity, the
better they participate in the internal competition between their species. This competition
makes the interactions of all the species involved more dynamic.

For future works, we will firstly extend the method used for studying the global stability
to a food chain better accomplished with several species in interaction. Secondly we will
not only introduce many delays in this model, but also study its impact on the analysis
of dynamic stability. Finally we will study other problems of the dynamic which includes
diffusive terms with the same methods.
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