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Abstract
In this paper, we investigate the difference Painlevé III equations
w(z + 1)w(z – 1)(w(z) – 1)2 = w2(z) – λw(z) +μ (λμ �= 0) and
w(z + 1)w(z – 1)(w(z) – 1)2 = w2(z), and obtain some results about the properties of the
finite order transcendental meromorphic solutions. In particular, we get the precise
estimations of exponents of convergence of poles of difference
�w(z) = w(z + 1) –w(z) and divided difference �w(z)

w(z) , and of fixed points of w(z + η)
(η ∈ C \ {0}).
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1 Introduction and results
We use Nevanlinna’s value distribution theory of meromorphic functions (see [1, 2]) as
the main tool in the whole paper. In what follows, the growth order of w(z) is represented
by σ (w) and the exponent of convergence of the zeros and poles of w(z) are represented
by λ(w) and λ( 1

w ), respectively. Also the exponent of convergence of fixed points of w(z) is
defined as

τ (w) = lim sup
r→∞

log N(r, 1
w(z)–z )

log r
.

In addition, S(r, w) represents any quantify which satisfies S(r, w) = o(T(r, w)) (r → ∞),
possibly outside a set of finite logarithmic measure.

In the past decade, many scholars have focused on complex difference and difference
equations and presented many results (including [3–9]) on the value distribution theory of
meromorphic functions. One of these subjects is about the research of Painlevé difference
equations.

Halburd and Korhonen [7] considered the Painlevé difference equation

w(z + 1) + w(z – 1) = R(z, w), (1.1)
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where R is rational in w and meromorphic in z with slow growth coefficients. They proved
that if (1.1) has admissible meromorphic solutions of finite order, then either w satisfies a
difference Riccati equation, or (1.1) can be transformed to a list of difference equations,
which contains many integrable equations, especially the difference Painlevé I, II equa-
tions.

As for difference Painlevé III equations, we recall the following theorem.

Theorem A (see [10]) Assume that the equation

w(z + 1)w(z – 1) = R(z, w) (1.2)

has an admissible meromorphic solution w of hyper-order less than one, where R(z, w) is
rational and irreducible in w and meromorphic in z, then either w satisfies the difference
Riccati equation

w(z + 1) =
α(z)w(z) + β(z)

w(z) + γ (z)
,

where α(z), β(z), and γ (z) ∈ S(r, w) are algebroid functions, or equation (1.2) can be trans-
formed to one of the following equations:

w(z + 1)w(z – 1) =
η(z)w2(z) – λ(z)w(z) + μ(z)

(w(z) – 1)(w(z) – υ(z))
, (1.3a)

w(z + 1)w(z – 1) =
η(z)w2(z) – λ(z)w(z)

w(z) – 1
, (1.3b)

w(z + 1)w(z – 1) =
η(z)(w(z) – λ(z))

w(z) – 1
, (1.3c)

w(z + 1)w(z – 1) = h(z)wm(z). (1.3d)

In (1.3a), the coefficients satisfy κ2(z)μ(z + 1)μ(z – 1) = μ2(z), λ(z + 1)μ(z) = κ(z)λ(z – 1) ×
μ(z + 1), κ(z)λ(z + 2)λ(z – 1) = κ(z – 1)λ(z)λ(z + 1), and one of the following:

(1) η ≡ 1, υ(z + 1)υ(z – 1) = 1, κ(z) = υ(z);
(2) η(z + 1) = η(z – 1) = υ(z), κ ≡ 1.

In (1.3b), η(z)η(z + 1) = 1 and λ(z + 2)λ(z – 1) = λ(z)λ(z + 1).
In (1.3c), the coefficients satisfy one of the following:
(1) η ≡ 1 and either λ(z) = λ(z + 1)λ(z – 1) or λ(z + 3)λ(z – 3) = λ(z + 2)λ(z – 2);
(2) λ(z + 1)λ(z – 1) = λ(z + 2)λ(z – 2), η(z + 1)λ(z + 1) = λ(z + 2)η(z – 1) and

η(z)η(z – 1) = η(z + 2)η(z – 3);
(3) η(z + 2)η(z – 2) = η(z)η(z – 1), λ(z) = η(z – 1);
(4) λ(z + 3)λ(z – 3) = λ(z + 2)λ(z – 2)λ(z), η(z)λ(z) = η(z + 2)η(z – 2).

In (1.3d), h(z) ∈ S(r, w), and m ∈ Z, |m| ≤ 2.

In 2014, Lan and Chen [11, 12] considered the difference Painlevé III equations (1.3b)–
(1.3d) and proved the following results.

Theorem B (see [11]) Suppose that h(z) is a nonconstant rational function. Suppose that
w(z) is a transcendental meromorphic solution with finite order of equation (1.3d), where
m = –2, –1, 0, 1. Set �w(z) = w(z + 1) – w(z). Then
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(i) w(z) has no Nevanlinna exceptional value;
(ii) λ(�w) = λ( 1

�w ) = σ (w), λ( �w
w ) = λ( 1

�w
w

) = σ (w).

Theorem C (see [12]) Suppose that η(z) and λ(z) are nonconstant polynomials. Suppose
that w(z) is a transcendental meromorphic solution with finite order of equation (1.3b).
Then:

(i) for any η ∈ C, w(z + η) has infinitely many fixed points and satisfies
τ (w(z + η)) = σ (w);

(ii) λ(�w) = λ( 1
�w ) = λ( 1

�w
w

) = σ (w).

Theorem D (see [12]) Suppose that η(z) is a nonconstant polynomial. Suppose that w(z) is
a transcendental meromorphic solution with finite order of difference Painlevé III equation

w(z + 1)w(z – 1)
(
w(z) – 1

)
= η(z)w(z). (1.4)

Then:
(i) for any η ∈ C, w(z + η) has infinitely many fixed points and satisfies

τ (w(z + η)) = σ (w);
(ii) λ(�w) = λ( 1

�w ) = λ( 1
�w
w

) = σ (w).

In 2013, Zhang and Yi [13] discussed the difference Painlevé III equation (1.3a) with
constant coefficients and proved the following result.

Theorem E (see [13]) If w(z) is a transcendental meromorphic solution with finite order
of difference Painlevé III equation

w(z + 1)w(z – 1)
(
w(z) – 1

)2 = w2(z) – λw(z) + μ, (1.5)

where λ and μ are constants, then:
(i) τ (w) = σ (w);

(ii) If λμ �= 0, then λ(w) = σ (w).

In this paper, combining Theorems B, C, D, and E, we continue to study the properties of
difference and divided difference of transcendental meromorphic solutions of difference
Painlevé III equations (1.3a) and obtain the following results.

Theorem 1.1 If w(z) is a finite-order transcendental meromorphic solution of the differ-
ence Painlevé III equation (1.5), where λ and μ are constants satisfying λμ �= 0, then:

(i) for any η ∈ C \ {0}, τ (w(z + η)) = σ (w);
(ii) λ( 1

�w ) = λ( 1
�w
w

) = σ (w).

Theorem 1.2 If w(z) is a finite-order transcendental meromorphic solution of the differ-
ence Painlevé III equation

w(z + 1)w(z – 1)
(
w(z) – 1

)2 = w2(z), (1.6)

then:
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(i) for any η ∈ C \ {0}, τ (w(z + η)) = σ (w);
(ii) λ( 1

�w ) = λ( 1
�w
w

) = σ (w).

Remark 1.1 From the proofs of Theorems 1.1–1.2, we can also get λ( 1
w ) = σ (w) and

σ ( �w
w ) = σ (�w) = σ (w).

Remark 1.2 Generally, τ (w(z + η)) �= τ (w(z)), where η ∈ C \ {0}. For example, w(z) = ez + z,
w(z + 1) = eez + z + 1, w(z) has no fixed points and τ (w(z)) = 0, but w(z + 1) has infinitely
many fixed points and satisfies τ (w(z + 1)) = σ (w(z)) = 1.

Example 1.1 The meromorphic function w(z) = ei π
2 z–1

ei π
2 z+1

satisfies the difference Painlevé III
equation

w(z + 1)w(z – 1)
(
w(z) – 1

)2 = w2(z) – 2w(z) + 1,

where λ = 2, μ = 1 satisfying λμ �= 0.
And

�w(z) =
iei π

2 z – 1
iei π

2 z + 1
–

ei π
2 z – 1

ei π
2 z + 1

=
2(i – 1)ei π

2 z

(iei π
2 z + 1)(ei π

2 z + 1)
,

�w(z)
w(z)

=
2(i – 1)ei π

2 z

(iei π
2 z + 1)(ei π

2 z + 1)
· ei π

2 z + 1
ei π

2 z – 1
=

2(i – 1)ei π
2 z

(iei π
2 z + 1)(ei π

2 z – 1)
,

w(z + η) – z =
ei π

2 (z+η) – 1
ei π

2 (z+η) + 1
– z =

(1 – z)ei π
2 (z+η) – (1 + z)

ei π
2 (z+η) + 1

.

Then λ( 1
�w ) = λ( 1

�w
w

) = σ (w) = 1, λ(�w) = λ( �w
w ) = 0. For any η ∈ C \ {0}, we have

τ (w(z + η)) = σ (w) = 1.

Example 1.2 (see [14]) The meromorphic function w(z) = 2eiπz

eiπz–1 satisfies the difference
Painlevé III equation

w(z + 1)w(z – 1)
(
w(z) – 1

)2 = w2(z).

And

�w(z) =
2eiπz

eiπz + 1
–

2eiπz

eiπz – 1
=

–4eiπz

(eiπz + 1)(eiπz – 1)
,

�w(z)
w(z)

=
–4eiπz

(eiπz + 1)(eiπz – 1)
· eiπz – 1

2eiπz =
–2

eiπz + 1
,

w(z + η) – z =
2eiπ (z+η)

eiπ (z+η) – 1
– z =

(2 – z)eiπ (z+η) + z
eiπ (z+η) – 1

.

Then λ( 1
�w ) = λ( 1

�w
w

) = σ (w) = 1 and λ(�w) = λ( �w
w ) = 0. For any η ∈ C \ {0}, we also have

τ (w(z + η)) = σ (w) = 1.
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2 Lemmas for the proof of theorems
In this section, we summarize some lemmas, which will be used to prove our main results.

Lemma 2.1 (see [15]) Let f (z) be a meromorphic function. Then, for all irreducible rational
functions in f (z),

R
(
z, f (z)

)
=

∑m
i=0 ai(z)f (z)i

∑n
j=0 bj(z)f (z)j ,

with meromorphic coefficients ai(z), bj(z) (am(z)bn(z) �≡ 0) being small with respect to f (z),
the characteristic function of R(z, f (z)) satisfies

T
(
r, R

(
z, f (z)

))
= max{m, n}T(r, f ) + S(r, f ).

Lemma 2.2 (see [3, 6]) Let f be a transcendental meromorphic solution of finite order σ

of the difference equation

P(z, f ) = 0,

where P(z, f ) is a difference polynomial in f (z) and its shifts. If P(z, a) �≡ 0 for a slowly moving
target meromorphic function a, that is, T(r, a) = S(r, f ), then

m
(

r,
1

f – a

)
= O

(
rσ–1+ε

)
+ S(r, f ),

outside of a possible exceptional set of finite logarithmic measure.

Lemma 2.3 (see [3, 6]) Let f be a transcendental meromorphic solution of finite order σ

of a difference equation of the form

U(z, f )P(z, f ) = Q(z, f ),

where U(z, f ), P(z, f ), and Q(z, f ) are difference polynomials such that the total degree
degf U(z, f ) = n in f (z) and its shifts, and degf Q(z, f ) ≤ n. Moreover, we assume that U(z, f )
contains just one term of maximal total degree in f (z) and its shifts. Then, for each ε > 0,

m
(
r, P(z, f )

)
= O

(
rσ–1+ε

)
+ S(r, f ),

possibly outside of an exceptional set of finite logarithmic measure.

Lemma 2.4 (see [8]) Let f (z) be a meromorphic function of finite order σ , and let η be a
non-zero complex number. Then, for each ε > 0, we have

m
(

r,
f (z + η)

f (z)

)
+ m

(
r,

f (z)
f (z + η)

)
= O

(
rσ–1+ε

)
.

Lemma 2.5 (see [8]) Let f (z) be a meromorphic function with order σ = σ (f ), σ < +∞, and
let η be a fixed non-zero complex number, then for each ε > 0, we have

T
(
r, f (z + η)

)
= T

(
r, f (z)

)
+ O

(
rσ–1+ε

)
+ O(log r).
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3 Proof of theorems
In this section, we give the proofs of Theorem 1.1 and Theorem 1.2.

3.1 Proof of Theorem 1.1

Proof (i) For any η ∈ C \ {0}, substituting z + η into equation (1.5), we obtain

w(z + η + 1)w(z + η – 1)
(
w(z + η) – 1

)2 = w2(z + η) – λw(z + η) + μ. (3.1)

Set g(z) = w(z + η), then (3.1) can be rewritten as

g(z + 1)g(z – 1)
(
g(z) – 1

)2 = g2(z) – λg(z) + μ.

Denote

P1(z, g) := g(z + 1)g(z – 1)
(
g(z) – 1

)2 – g2(z) + λg(z) – μ = 0.

Then we have

P1(z, z) = (z + 1)(z – 1)(z – 1)2 – z2 + λz – μ �≡ 0.

From P1(z, z) �≡ 0 and Lemma 2.2, it follows that

m
(

r,
1

g(z) – z

)
= S(r, g).

Combining Lemma 2.5, we have

N
(

r,
1

w(z + η) – z

)
= N

(
r,

1
g(z) – z

)
= T(r, g) + S(r, g)

= T
(
r, w(z + η)

)
+ S

(
r, w(z + η)

)

= T(r, w) + S(r, w).

Hence, for any η ∈ C \ {0}, τ (w(z + η)) = σ (w) holds.
(ii) In what follows, we consider three cases: Case 1, λ – μ �= 1; Case 2, λ – μ = 1, μ = 1;

Case 3, λ – μ = 1, μ �= 1.
Case 1. λ – μ �= 1.
Firstly we prove λ( 1

�w
w

) = σ (w). By equation (1.5), Lemma 2.1, Lemma 2.5, and λμ �= 0,
λ – μ �= 1, we have

4T
(
r, w(z)

)
= T

(
r,

w2(z) – λw(z) + μ

w2(z)(w(z) – 1)2

)
+ O(1)

= T
(

r,
w(z + 1)w(z – 1)

w2(z)

)
+ O(1)

≤ T
(

r,
w(z + 1)

w(z)

)
+ T

(
r,

w(z)
w(z – 1)

)
+ O(1)
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= 2T
(

r,
w(z + 1)

w(z)

)
+ S

(
r,

w(z + 1)
w(z)

)
+ O(1)

≤ 2T
(

r,
w(z + 1)

w(z)

)
+ S(r, w)

= 2T
(

r,
�w(z)
w(z)

)
+ S(r, w),

which leads to

2T
(
r, w(z)

) ≤ T
(

r,
�w(z)
w(z)

)
+ S(r, w). (3.2)

It follows from (3.2) and Lemma 2.4 that

N
(

r,
�w(z)
w(z)

)
= T

(
r,

�w(z)
w(z)

)
– m

(
r,

�w(z)
w(z)

)

≥ 2T
(
r, w(z)

)
+ S(r, w).

Thus λ( 1
�w
w

) ≥ σ (w), i.e., λ( 1
�w
w

) = σ (w).

Next we prove λ( 1
�w ) = σ (w). We rewrite equation (1.5) as

w(z + 1)w(z – 1) =
(
�w(z) + w(z)

)(
w(z) – �w(z – 1)

)

=
w2(z) – λw(z) + μ

(w(z) – 1)2 ,

which is equivalent to

(
�w(z) – �w(z – 1)

)
w(z) – �w(z)�w(z – 1) =

–w4(z) + 2w3(z) – λw(z) + μ

(w(z) – 1)2 . (3.3)

From (3.3), Lemma 2.1, Lemma 2.5, and λμ �= 0, λ – μ �= 1, we have

4T
(
r, w(z)

)
= T

(
r,

–w4(z) + 2w3(z) – λw(z) + μ

(w(z) – 1)2

)
+ O(1)

= T
(
r,

(
�w(z) – �w(z – 1)

)
w(z) – �w(z)�w(z – 1)

)
+ O(1)

≤ T
(
r, w(z)

)
+ 2T

(
r,�w(z)

)
+ 2T

(
r,�w(z – 1)

)
+ O(1)

= T
(
r, w(z)

)
+ 4T

(
r,�w(z)

)
+ S

(
r,�w(z)

)
+ O(1)

≤ T
(
r, w(z)

)
+ 4T

(
r,�w(z)

)
+ S(r, w).

Therefore,

3
4

T
(
r, w(z)

) ≤ T
(
r,�w(z)

)
+ S(r, w). (3.4)

On the other hand, equation (1.5) can be also rewritten as

w(z+1)w(z–1)w2(z) = 2w(z+1)w(z–1)w(z)–w(z+1)w(z–1)+w2(z)–λw(z)+μ. (3.5)
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Then, from (3.5) and Lemma 2.3, we have

m
(
r, w(z)

)
= S(r, w). (3.6)

Combining (3.4), (3.6), and Lemma 2.4, it follows that

N
(
r,�w(z)

)
= T

(
r,�w(z)

)
– m

(
r,�w(z)

)

≥ T
(
r,�w(z)

)
–

(
m

(
r,

�w(z)
w(z)

)
+ m

(
r, w(z)

)
)

≥ 3
4

T
(
r, w(z)

)
+ S(r, w).

Thus λ( 1
�w ) ≥ σ (w), that is, λ( 1

�w ) = σ (w).
Case 2. λ – μ = 1, μ = 1.
Firstly we prove λ( 1

�w
w

) = σ (w). By equation (1.5) and Lemma 2.5, we have

2T
(
r, w(z)

)
= T

(
r,

1
w2(z)

)
+ O(1)

= T
(

r,
w(z + 1)w(z – 1)

w2(z)

)
+ O(1)

≤ 2T
(

r,
�w(z)
w(z)

)
+ S(r, w),

that is,

T
(
r, w(z)

) ≤ T
(

r,
�w(z)
w(z)

)
+ S(r, w). (3.7)

From (3.7) and Lemma 2.4, it follows that

N
(

r,
�w(z)
w(z)

)
= T

(
r,

�w(z)
w(z)

)
– m

(
r,

�w(z)
w(z)

)

≥ T
(
r, w(z)

)
+ S(r, w).

Therefore λ( 1
�w
w

) ≥ σ (w), that is, λ( 1
�w
w

) = σ (w).

Next we prove λ( 1
�w ) = σ (w). In this case, equation (1.5) becomes

w(z + 1)w(z – 1) =
(
�w(z) + w(z)

)(
w(z) – �w(z – 1)

)
= 1,

that is,

(
�w(z) – �w(z – 1)

)
w(z) – �w(z)�w(z – 1) = 1 – w2(z). (3.8)

From (3.8) and Lemma 2.5, we have

2T
(
r, w(z)

)
= T

(
r, 1 – w2(z)

)
+ O(1)

= T
(
r,

(
�w(z) – �w(z – 1)

)
w(z) – �w(z)�w(z – 1)

)
+ O(1)

≤ T
(
r, w(z)

)
+ 4T

(
r,�w(z)

)
+ S(r, w);
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consequently,

1
4

T
(
r, w(z)

) ≤ T
(
r,�w(z)

)
+ S(r, w). (3.9)

By equation (1.5) and Lemma 2.4, we obtain

2m
(
r, w(z)

)
= m

(
r, w2(z)

)
= m

(
r,

w2(z)
w(z + 1)w(z – 1)

)

≤ m
(

r,
w(z)

w(z + 1)

)
+ m

(
r,

w(z)
w(z – 1)

)
= S(r, w),

that is,

m
(
r, w(z)

)
= S(r, w). (3.10)

From (3.9), (3.10), and Lemma 2.4 we get

N
(
r,�w(z)

)
= T

(
r,�w(z)

)
– m

(
r,�w(z)

)

≥ T
(
r,�w(z)

)
–

(
m

(
r,

�w(z)
w(z)

)
+ m

(
r, w(z)

))

≥ 1
4

T
(
r, w(z)

)
+ S(r, w),

which leads to N(r,�w(z)) ≥ 1
4 T(r, w(z))+S(r, w). Therefore λ( 1

�w ) ≥ σ (w), that is, λ( 1
�w ) =

σ (w).
Case 3. λ – μ = 1, μ �= 1.
Firstly we prove λ( 1

�w
w

) = σ (w). By equation (1.5), Lemma 2.1, Lemma 2.5, μ �= 0, and
μ �= 1, we have

3T
(
r, w(z)

)
= T

(
r,

w(z) – μ

w2(z)(w(z) – 1)

)
+ O(1)

= T
(

r,
w(z + 1)w(z – 1)

w2(z)

)
+ O(1)

≤ 2T
(

r,
�w(z)
w(z)

)
+ S(r, w),

that is,

3
2

T
(
r, w(z)

) ≤ T
(

r,
�w(z)
w(z)

)
+ S(r, w). (3.11)

From (3.11) and Lemma 2.4 it follows that

N
(

r,
�w(z)
w(z)

)
= T

(
r,

�w(z)
w(z)

)
– m

(
r,

�w(z)
w(z)

)

≥ 3
2

T
(
r, w(z)

)
+ S(r, w),

which means λ( 1
�w
w

) ≥ σ (w). Thus λ( 1
�w
w

) = σ (w).



Du et al. Advances in Difference Equations  (2018) 2018:171 Page 10 of 13

Next we prove λ( 1
�w ) = σ (w). By equation (1.5), we have

w(z + 1)w(z – 1) =
(
�w(z) + w(z)

)(
w(z) – �w(z – 1)

)
=

w(z) – μ

w(z) – 1
;

consequently,

(
�w(z) – �w(z – 1)

)
w(z) – �w(z)�w(z – 1) =

–w3(z) + w2(z) + w(z) – μ

w(z) – 1
. (3.12)

Then it follows from (3.12), Lemma 2.1, Lemma 2.5, and μ �= 1 that

3T
(
r, w(z)

)
= T

(
r,

–w3(z) + w2(z) + w(z) – μ

w(z) – 1

)
+ O(1)

= T
(
r,

(
�w(z) – �w(z – 1)

)
w(z) – �w(z)�w(z – 1)

)
+ O(1)

≤ T
(
r, w(z)

)
+ 4T

(
r,�w(z)

)
+ S(r, w),

that is,

1
2

T
(
r, w(z)

) ≤ T
(
r,�w(z)

)
+ S(r, w). (3.13)

By equation (1.5) it follows

w(z + 1)w(z – 1)w(z) = w(z + 1)w(z – 1) + w(z) – μ. (3.14)

From (3.14) and Lemma 2.3, we have

m(r, w) = S(r, w). (3.15)

Combining (3.13), (3.15), and Lemma 2.4, we obtain

N
(
r,�w(z)

)
= T

(
r,�w(z)

)
– m

(
r,�w(z)

)

≥ T
(
r,�w(z)

)
–

(
m

(
r,

�w(z)
w(z)

)
+ m

(
r, w(z)

)
)

≥ 1
2

T
(
r, w(z)

)
+ S(r, w),

which leads to λ( 1
�w ) ≥ σ (w), thus λ( 1

�w ) = σ (w). This completes the proof of Theo-
rem 1.1. �

3.2 Proof of Theorem 1.2

Proof (i) For any η ∈ C \ {0}, substituting z + η into equation (1.6), we obtain

w(z + η + 1)w(z + η – 1)
(
w(z + η) – 1

)2 = w2(z + η). (3.16)
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Set g(z) = w(z + η). Then (3.16) can be rewritten as

g(z + 1)g(z – 1)
(
g(z) – 1

)2 = g2(z).

Denote

P2(z, g) := g(z + 1)g(z – 1)
(
g(z) – 1

)2 – g2(z) = 0.

Then we have

P2(z, z) = (z + 1)(z – 1)(z – 1)2 – z2 �≡ 0.

P2(z, z) �≡ 0 and Lemma 2.2 yield

m
(

r,
1

g(z) – z

)
= S(r, g).

By Lemma 2.5, it follows that

N
(

r,
1

w(z + η) – z

)
= N

(
r,

1
g(z) – z

)
= T

(
r, g(z)

)
+ S(r, g)

= T
(
r, w(z + η)

)
+ S

(
r, w(z + η)

)

= T
(
r, w(z)

)
+ S(r, w).

Hence, for any η ∈ C \ {0}, τ (w(z + η)) = σ (w) holds.
(ii) We first prove λ( 1

�w
w

) = σ (w). By equation (1.6) and Lemma 2.1, we have

2T
(
r, w(z)

)
= T

(
r,

1
(w(z) – 1)2

)
+ O(1)

= T
(

r,
w(z + 1)w(z – 1)

w2(z)

)
+ O(1)

≤ 2T
(

r,
�w(z)
w(z)

)
+ S(r, w),

that is,

T
(
r, w(z)

) ≤ T
(

r,
�w(z)
w(z)

)
+ S(r, w). (3.17)

From (3.17) and Lemma 2.4, it follows that

N
(

r,
�w(z)
w(z)

)
= T

(
r,

�w(z)
w(z)

)
– m

(
r,

�w(z)
w(z)

)

≥ T
(
r, w(z)

)
+ S(r, w).

Thus λ( 1
�w
w

) ≥ σ (w), that is, λ( 1
�w
w

) = σ (w).
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Next we prove λ( 1
�w ) = σ (w). From equation (1.6) we obtain

w(z + 1)w(z – 1) =
(
�w(z) + w(z)

)(
w(z) – �w(z – 1)

)

=
w2(z)

(w(z) – 1)2 ,

that is,

(
�w(z) – �w(z – 1)

)
w(z) – �w(z)�w(z – 1) =

–w3(z)(w(z) – 2)
(w(z) – 1)2 . (3.18)

It follows from (3.18) and Lemma 2.1 that

3T
(
r, w(z)

)
= T

(
r,

–w3(z)(w(z) – 2)
(w(z) – 1)2

)
+ O(1)

= T
(
r,

(
�w(z) – �w(z – 1)

)
w(z) – �w(z)�w(z – 1)

)
+ O(1)

≤ T
(
r, w(z)

)
+ 4T

(
r,�w(z)

)
+ S(r, w),

which means

1
2

T
(
r, w(z)

) ≤ T
(
r,�w(z)

)
+ S(r, w). (3.19)

By equation (1.6), we have

w(z + 1)w(z – 1)w2(z) = 2w(z + 1)w(z – 1)w(z) – w(z + 1)w(z – 1) + w2(z). (3.20)

Combining (3.20) and Lemma 2.3 yields

m
(
r, w(z)

)
= S(r, w). (3.21)

Moreover, from (3.19), (3.21), and Lemma 2.4, it follows that

N
(
r,�w(z)

)
= T

(
r,�w(z)

)
– m

(
r,�w(z)

)

≥ T
(
r,�w(z)

)
–

(
m

(
r,

�w(z)
w(z)

)
+ m

(
r, w(z)

))

≥ 1
2

T
(
r, w(z)

)
+ S(r, w),

which leads to λ( 1
�w ) ≥ σ (w). Therefore λ( 1

�w ) = σ (w). This completes the proof of Theo-
rem 1.2. �
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