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Abstract
A nonlinear amensalism model of the form

dN1

dt
= r1N1

(
1 –

(N1

P1

)α1
– u

(N2

P1

)α2)
,

dN2

dt
= r2N2

(
1 –

(N2

P2

)α3)
,

where ri ,Pi ,u, i = 1, 2,α1,α2,α3 are all positive constants, is proposed and studied in
this paper. The dynamic behaviors of the system are determined by the sign of the
term 1 – u( P2P1 )

α2 . If 1 – u( P2P1 )
α2 > 0, then the unique positive equilibrium D(N∗

1 ,N
∗
2) is

globally attractive, if 1 – u( P2P1 )
α2 < 0, then the boundary equilibrium C(0,P2) is globally

attractive. Our results supplement and complement the main results of Xiong, Wang,
and Zhang (Advances in Applied Mathematics 5(2):255–261, 2016).
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1 Introduction
During the last decade, many scholars [1–12] investigated the dynamic behaviors of the
amensalism model; here, amensalism means that a species inflicts harm to other species
without any costs or benefits received by the other. Such topics as the stability of the equi-
librium [1, 3–8], the existence of the positive periodic solution [2, 9, 11], the extinction
of the species [8, 10], the influence of the cover [8, 12], the influence of the functional
response [10], etc. have been extensively studied. Recently, Xiong et al. [1] proposed the
following amensalism model:

dN1

dt
= r1N1

(
1 –

N1

P1
– u

N2

P1

)
,

dN2

dt
= r2N2

(
1 –

N2

P2

)
,

(1.1)

where ri, Pi, u, i = 1, 2, are all positive constants. They investigated the local stability prop-
erty of the equilibria of system (1.1).
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On the other hand, in 1973, in their study on the validity of the competition modeling,
Ayala et al. [13] found that the following nonlinear competition model accounts best for
the experimental results:

ẋ1(t) = r1x1(t)
(

1 –
(

x1(t)
K1

)θ1

– α12
x2(t)
K2

)
,

ẋ2(t) = r2x2(t)
(

1 –
(

x2(t)
K2

)θ2

– α21
x1(t)
K1

)
.

(1.2)

Since then, the dynamic behaviors of the nonlinear competition system and nonlinear
competition-predator-prey system have been extensively studied by many scholars [13–
30]. Such topics as the persistence [14, 17, 20, 23], extinction [15, 17–19, 26, 28, 30], the
stability of the equilibrium [19–22], the existence and stability of the periodic solution [18,
22, 24, 25, 29], etc. have been extensively investigated, and many excellent results have
been obtained.

It brings to our attention that to this day, there is still no scholar to propose and investi-
gate the nonlinear amensalism model. Stimulated by the works of Xiong et al. [1], Chen et
al. [14, 15], Lu et al. [23], Lu [24], and Wang [26], in this paper, we propose the following
nonlinear amensalism model:

dN1

dt
= r1N1

(
1 –

(
N1

P1

)α1

– u
(

N2

P1

)α2)
,

dN2

dt
= r2N2

(
1 –

(
N2

P2

)α3)
,

(1.3)

where ri, Pi, u, i = 1, 2,αj, j = 1, 2, 3, are all positive constants.
As far as system (1.3) is concerned, one interesting issue is:
Find out the influence of the parameter αi, i = 1, 2, 3, which reflects the influence of the

nonlinearity.
The paper is arranged as follows. We investigate the existence and local stability property

of the equilibrium solutions of system (1.3) in the next section. In Sect. 3, by applying the
differential inequality theory, we investigate the global stability property of the equilibria.
The influence of the parameter αi, i = 1, 2, 3, is then discussed in Sect. 4. Some examples
together with their numeric simulations are presented in Sect. 5 to show the feasibility of
the main results. We end this paper with a brief discussion.

2 Local stability
The system always admits three boundary equilibria A(0, 0), B(P1, 0), C(0, P2). Also, if 1 >
u( P2

P1
)α2 , the system admits a unique positive equilibrium

D
(
N∗

1 , N∗
2
)

=
(

P1

(
1 – u

(
P2

P1

)α2) 1
α1

, P2

)
.

We shall now investigate the local stability property of the above equilibria.
The variational matrix of the system of Eq. (1.3) is

J(N1, N2) =

⎛
⎝�1 – r1uN1α2Nα2–1

2
Pα2

1

0 �2

⎞
⎠ , (2.1)
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where

�1 = r1

(
1 –

(
N1

P1

)α1

– u
(

N2

P1

)α2)
– r1

(
N1

P1

)α1

α1,

�2 = r2

(
1 –

(
N2

P2

)α3)
– r2

(
N2

P2

)α3

α3.

Theorem 2.1 Assume that α2 ≥ 1, then
(1) A(0, 0) is unstable;
(2) B(P1, 0) is a saddle point, thus, is unstable;
(3) if 1 – u( P2

P1
)α2 > 0, C(0, P2) is a saddle point and consequently unstable; if

1 – u( P2
P1

)α2 < 0, C(0, P2) is a stable node;
(4) if 1 – u( P2

P1
)α2 > 0, D(N∗

1 , N∗
2 ) is a stable node.

Remark 2.1 If αi = 1, i = 1, 2, 3, then Theorem 2.1 degenerates to the main result of Xiong
et al. [1], hence, we generalize the main result of [1]. Note that the boundary equilibria
are independent of αi, i = 1, 2, 3, hence, αi, i = 1, 3, has no influence on the existence and
stability of the boundary equilibria.

Remark 2.2 From (2.1), the second term in J(N1, N2) is – r1uN1α2Nα2–1
2

Pα2
1

, which means that if
α2 < 1, then at N2 = 0, the value of this term could not be computed. Hence, for 0 < α2 < 1
case, the local stability of the equilibrium A(0, 0) and B(P1, 0) could not be determined by
analyzing the Jacobian matrix.

Proof of Theorem 2.1 (1) From (2.1) we could see that the Jacobian of the system about the
equilibrium point A(0, 0) is given by

(
r1 0
0 r2

)
. (2.2)

The eigenvalues of the matrix are λ1 = r1 > 0,λ2 = r2 > 0. Hence, A(0, 0) is unstable;
(2) The Jacobian of the system about the equilibrium point B(P1, 0) is given by

(
–r1α1 0

0 r2

)
. (2.3)

The eigenvalues of the matrix are λ1 = –r1α1 < 0,λ2 = r2 > 0. So B(P1, 0) is a saddle point,
it is unstable;

(3) The Jacobian of the system about the equilibrium point C(0, P2) is given by

(
r1(1 – u( P2

P1
)α2 ) 0

0 –r2α3

)
. (2.4)

The two eigenvalues of the matrix satisfy λ1 = r1(1 – u( P2
P1

)α2 ),λ2 = –r2α3 < 0. Obviously, if
1 – u( P2

P1
)α2 > 0, then λ1 > 0; and consequently, C(0, P2) is a saddle point, it is unstable; if

1 – u( P2
P1

)α2 < 0, then λ1 < 0, C(0, P2) is locally stable, it is a stable node.
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(4) Note that the positive equilibrium D(N∗
1 , N∗

2 ) satisfies

r1

(
1 –

(
N∗

1
P1

)α1

– u
(

N∗
2

P1

)α2)
= 0,

r2

(
1 –

(
N∗

2
P2

)α3)
= 0.

(2.5)

Combining with (2.1) and (2.5), we could see that the Jacobian of the system about the
equilibrium point D(N∗

1 , N∗
2 ) is given by

⎛
⎝–r1( N∗

1
P1

)α1α1 – r1uN∗
1 α2(N∗

2 )α2–1

Pα2
1

0 –r2( N∗
2

P2
)α3α3

⎞
⎠ (2.6)

The eigenvalues of the variational matrix (2.6) is the roots λ1 = –r1( N∗
1

P1
)α1α1 < 0, λ2 =

–r2( N∗
2

P2
)α3α3 < 0. Thus, D(N∗

1 , N∗
2 ) is locally stable.

The proof of Theorem 2.1 is finished. �

3 Global stability
As was pointed out in the previous section, for the case α2 < 1, the local stability property
of the boundary equilibrium A(0, 0) and B(P1, 0) could not be determined by using the
Jacobian matrix (2.1). The aim of this section is to try to solve this problem and to further
investigate the global stability property of the equilibria of system (1.3).

Lemma 3.1 Consider the system

dN2

dt
= r2N2

(
1 –

(
N2

P2

)α3)
, (3.1)

where r2, P2,α3 are all positive constants. The unique positive equilibrium N∗
2 = P2 of system

(3.1) is globally stable.

Proof Set

F(N2) = r2

(
1 –

(
N2

P2

)α3)
, (3.2)

then

F(0) = r2 > 0,

F(+∞) = –∞,

hence F(N2) = 0 has at least one positive solution on the interval (0, +∞). Also, for N2 ≥ 0,
from (3.2)

dF(N2)
dN2

= –
r2a3Nα3–1

2
Pα3

2
< 0.
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Hence, F(N2) is strictly decreasing on the interval (0, +∞), therefore, F(N2) = 0 has at
most one positive solution on the interval (0, +∞). One could easily see that N2 = P2 is the
solution of (3.2). The above analysis shows that N∗

2 = P2 is the unique positive equilibrium
of system (3.1).

On the other hand, from the above analysis, we also have
(i) For all N∗

2 > N2 > 0, F(N2) > 0.
(ii) For all N2 > N∗

2 > 0, F(N2) < 0.
Hence, it immediately follows from Theorem 2.1 of [27] that the unique positive equilib-
rium N∗

2 of system (3.1) is globally stable. �

The next lemma is a direct corollary of Lemma 2.2 of Chen [16].

Lemma 3.2 If a > 0, b > 0, and ẋ ≥ x(b – axα), where α is some positive constant, when
t ≥ 0 and x(0) > 0, we have

lim inf
t→+∞ x(t) ≥

(
b
a

)1/α

.

If a > 0, b > 0, and ẋ ≤ x(b–axα), where α is some positive constant, when t ≥ 0 and x(0) > 0,
we have

lim sup
t→+∞

x(t) ≤
(

b
a

)1/α

.

Theorem 3.1
(a) Assume that 1 – u( P2

P1
)α2 < 0, then C(0, P2) is globally attractive;

(b) Assume that 1 – u( P2
P1

)α2 > 0, then D(N∗
1 , N∗

2 ) is globally attractive.

Proof (a) Condition 1 – u( P2
P1

)α2 < 0 implies that for enough small positive constant ε > 0
(ε < 1

2 P2), the following inequality holds:

1 – u
(

P2 – ε

P1

)α2

< 0. (3.3)

Let (N1(t), N2(t)) be any positive solution of system (1.3). It follows from Lemma 3.1 that

lim
t→+∞ N2(t) = N∗

2 = P2. (3.4)

For ε > 0 which satisfies (3.3), from (3.4) there exists an enough large T1 such that

N2(t) ≥ P2 – ε for all t ≥ T1. (3.5)

Since function y = xα2 is strictly increasing for all x > 0, it follows from (3.5) that

(
N2(t)

P1

)α2

≥
(

P2 – ε

P1

)α2

for all t ≥ T1. (3.6)
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For t ≥ T1, from the right-hand side of (3.5) and the first equation of system (1.3), one
has

dN1

dt
≤ r1N1

(
1 –

(
N1

P1

)α1

– u
(

P2 – ε

P1

)α2)

≤ r1

(
1 – u

(
P2 – ε

P1

)α2)
N1. (3.7)

Equation (3.7) together with (3.1) leads to

N1(t) ≤ N1(T1) exp

{
r1

(
1 – u

(
P2 – ε

P1

)α2)
(t – T1)

}
→ 0 as t ≥ T1.

(b) Condition 1 – u( P2
P1

)α2 > 0 implies that for enough small positive constant ε > 0
(ε < 1

2 P2), the following inequality holds:

1 – u
(

P2 + ε

P1

)α2

> 0. (3.8)

Let (N1(t), N2(t)) be any positive solution of system (1.3), it follows from Lemma 3.1
that

lim
t→+∞ N2(t) = N∗

2 = P2. (3.9)

For ε > 0 which satisfies (3.8), from (3.9) there exists an enough large T2 such that

P2 – ε < N2(t) < P2 + ε for all t ≥ T2. (3.10)

For t ≥ T2, from the left-hand side of (3.10) and the first equation of system (1.3), one
has

dN1

dt
= r1N1

(
1 –

(
N1

P1

)α1

– u
(

N2

P1

)α2)

≤ r1

(
1 – u

(
P2 – ε

P1

)α2

–
(

N1

P1

)α1)
N1

=
(

r1

(
1 – u

(
P2 – ε

P1

)α2)
–

r1

Pα1
1

Nα1
1

)
N1. (3.11)

Applying Lemma 3.2 to (3.11), we could obtain

lim sup
t→+∞

N1(t) ≤ P1

(
1 – u

(
P2 – ε

P1

)α2) 1
α1

. (3.12)

Since ε is an arbitrary small positive constant, setting ε → 0 leads to

lim sup
t→+∞

N1(t) ≤ P1

(
1 – u

(
P2

P1

)α2) 1
α1

. (3.13)
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For t ≥ T2, from the right-hand side of (3.10) and the first equation of system (1.3), one
has

dN1

dt
= r1N1

(
1 –

(
N1

P1

)α1

– u
(

N2

P1

)α2)

≥ r1

(
1 – u

(
P2 + ε

P1

)α2

–
(

N1

P1

)α1)
N1

=
(

r1

(
1 – u

(
P2 + ε

P1

)α2)
–

r1

Pα1
1

Nα1
1

)
N1. (3.14)

Applying Lemma 3.2 to (3.14), we could obtain

lim inf
t→+∞ N1(t) ≥ P1

(
1 – u

(
P2 + ε

P1

)α2) 1
α1

. (3.15)

Since ε is an arbitrary small positive constant, setting ε → 0 leads to

lim inf
t→+∞ N1(t) ≥ P1

(
1 – u

(
P2

P1

)α2) 1
α1

. (3.16)

Equation (3.13) together with (3.16) leads to

lim
t→+∞ N1(t) = P1

(
1 – u

(
P2

P1

)α2) 1
α1

= N∗
1 . (3.17)

This ends the proof of Theorem 3.1. �

Remark 3.1 Theorems 2.1 and 3.1 show that if system (1.3) admits the unique positive
equilibrium, then the positive equilibrium is globally attractive.

Remark 3.2 Noting that if C(0, P2) or D(N∗
1 , N∗

2 ) is globally attractive, then all the solutions
with positive initial conditions will finally asymptotically to the equilibrium, which means
that the solutions with positive solution could not be asymptotically to A(0, 0) and B(P1, 0),
thus, A(0, 0) and B(P1, 0) is unstable. Theorem 3.1 shows that for almost all the cases (only
1 – u( P2

P1
)α2 = 0 could not be determined), A(0, 0) and B(P1, 0) are unstable.

Remark 3.3 Xiong et al. [1] proposed system (1.1) and investigated the local stability prop-
erty of the equilibria. However, they did not give any information about the global stability
property of the equilibrium. Thus, Theorem 3.1 can be seen as the supplement of the main
result of [1].

4 The influence of the parameter αi

Now let us consider the influence of the parameter αi, i = 1, 2, 3, on the finial density of the
two species. We will focus our attention on the positive equilibrium. Noting that

D
(
N∗

1 , N∗
2
)

=
(

P1

(
1 – u

(
P2

P1

)α2) 1
α1

, P2

)
,
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N∗
2 = P2 is independent of the parameter αi, hence, αi has no influence on the final density

of the second species. However, N∗
1 is the function of the parameters α1 and α2, hence, it

is necessary to investigate the relationship of N∗
1 and αi, i = 1, 2. Noting that

∂N∗
1

∂α1
= –

P1 ln(1 – u( P2
P1

)α2 )(1 – u( P2
P1

)α2 )
1
α1

α2
1

> 0, (4.1)

hence, N∗
1 is the increasing function of α1.

∂N∗
1

∂α2
= –

P1u ln( P2
P1

)( P2
P1

)α2 (1 – u( P2
P1

)α2 )
1
α1

α1(1 – u( P2
P1

)α2 )
, (4.2)

thus
(1) If P2 > P1, then ∂N∗

1
∂α2

< 0, and N∗
1 is the strictly decreasing function of α2;

(2) If P2 < P1, then ∂N∗
1

∂α2
> 0, and N∗

1 is the strictly increasing function of α2.

(3) If P2 = P1, then ∂N∗
1

∂α2
= 0, and N∗

1 is independent of α2.

5 Numeric simulations
Example 5.1 Consider the following amensalism system:

dN1

dt
= N1

(
1 –

N1

2
–

(
N2

2

)2)
,

dN2

dt
= N2(1 – N2).

(5.1)

Here, corresponding to system (1.3), we take r1 = r2 = P2 = 1, α2 = 2, P1 = 2, α3 = α1 = 1,
u = 1. One could easily check that

1 – u
(

P2

P1

)α2

= 1 –
1
4

=
3
4

> 0.

So, from Theorem 3.1, the unique positive equilibrium D(1.5, 1) is globally attractive. Fig-
ure 1 also supports this assertion.

Example 5.2 Consider the following amensalism system:

dN1

dt
= N1

(
1 – N1 – (N2)2),

dN2

dt
= N2

(
1 –

N2

2

)
.

(5.2)

Here, corresponding to system (1.3), we take r1 = r2 = P1 = 1, α2 = 2, P2 = 2, α3 = α1 = 1,
u = 1. One could easily check that

1 – u
(

P2

P1

)α2

= 1 – 4 = –3 < 0.
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Figure 1 Numeric simulations of system (5.1), the
initial conditions (x(0), y(0)) = (0.4, 5), (1, 5), (1, 0.02),
(1.5, 5), (5, 5), (5, 0.2), and (5, 3), respectively

Figure 2 Numeric simulations of system (5.2), the
initial conditions (x(0), y(0)) = (0.4, 5), (5, 1), (5, 3), (5, 5),
and (5, 0.2), respectively

So, from Theorem 3.1, the boundary equilibrium C(0, 2) is globally attractive. Figure 2 also
supports this assertion.

Example 5.3 Consider the following amensalism system:

dN1

dt
= N1

(
1 – N1(t) –

(
N2(t)

)2),

dN2

dt
= N2

(
1 – N2(t)

)
.

(5.3)

Here, corresponding to system (1.3), we take r1 = r2 = P1 = 1, α2 = 2, P2 = 1, α3 = α1 = 1,
u = 1. One could easily check that

1 – u
(

P2

P1

)α2

= 1 – 1 = 0.

Numeric simulation (Fig. 3) shows that in this case the boundary equilibrium C(0, 1) is
globally asymptotically stable.
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Figure 3 Numeric simulations of system (5.3), the
initial conditions (x(0), y(0)) = (1, 5), (0.1, 0.002), (1.5, 5),
(5, 5), (5, 3), and (5, 0.2), respectively

Figure 4 The relationship of N∗
1 and α1, here we

choose P1 = 1, P2 = 2, α2 = 1

Example 5.4 Consider the function

N∗
1 = P1

(
1 – u

(
P2

P1

)α2) 1
α1

.

(1) Let us take P1 = 1, P2 = 2,α2 = 1, u = 1
4 . From Sect. 4 we know that N∗

1 is the strictly
increasing function of α1. Figure 4 also supports this assertion;

(2) Let us take P1 = 1, P2 = 2,α1 = 1, u = 1
4 . From Sect. 4 we know that N∗

1 is the strictly
decreasing function of α2. Figure 5 also supports this assertion;

(3) Let us take P1 = 1, P2 = 1
2 ,α1 = 1, u = 1

4 . From Sect. 4 we know that N∗
1 is the strictly

increasing function of α2. Figure 6 also supports this assertion;
(4) Let us take P1 = 1, P2 = 1,α1 = 1, u = 1

4 . From Sect. 4 we know that N∗
1 is independent

of α2. Figure 7 also supports this assertion.

6 Discussion
Stimulated by the works of Xiong et al. [1] and Chen et al. [14–19], in this paper, we pro-
pose the nonlinear amensalism model (1.3).
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Figure 5 The relationship of N∗
1 and α2, here we

choose P1 = 1, P2 = 2, α1 = 1

Figure 6 The relationship of N∗
1 and α2, here we

choose P1 = 1, P2 = 1
2

Figure 7 The relationship of N∗
1 and α2, here we

choose P1 = P2 = 1

We first investigated the local stability property of the equilibria, and we found that, by
introducing the nonlinear term, the situation became complicated, and only under the as-
sumption α2 ≥ 1 could we give the local stability result of A(0, 0) and B(P1, 0). To overcome
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this difficulty, we used the differential inequality theory, and finally proved the following
results: if the positive equilibrium exists, then it is globally attractive.

We also investigated the relationship among N∗
1 and αi, and found that α2 and the ratio

of P2
P1

play most important roles on the final density of the first species.
We mention here that we did not discuss the degenerate case

1 – u
(

P2

P1

)α2

= 0.

However, numeric simulation (Fig. 3) shows that in this case, the boundary equilibrium
C(0, P2) is globally asymptotically stable. For fixed αi, i = 1, 2, 3, we could put forward some
progress, such as numeric simulation, on this direction. However, we still have difficulty
obtaining the analysis result, we leave this for the future investigation.
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