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Abstract
A new kind of multiple stochastic optimal stopping problem is formulated and its
associated recursive variational inequalities are derived. We show that these
variational inequalities can be solved exactly in a cascading manner. The relevance of
the present problem in analyzing animal migration, which is an ecologically
important problem, is also briefly discussed.
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1 Introduction
Stochastic optimal stopping models are useful mathematical tools for analyzing decision-
making processes in the fields of financial [1, 2], environment [3, 4], and ecology [5–7].
Multiple optimal stopping problems based on stochastic differential equations (SDEs) are
among the ones that have been analyzed most in detail because of their rich mathematical
structures [8, 9]. Exactly solvable multiple optimal stopping models are useful from both
theoretical and practical point of views [10, 11].

We are interested in solvability of a multiple optimal stopping problem that has not been
focused on so far, which is related to animal migration: an important ecological problem.
Our problem is explained below. In this paper, the summation

∑k
i=j ai of a sequence ai

is replaced by 0 when k < j. Let Bt for t ≥ 0 be a standard 1-D Brownian motion on the
probability space as in the usual setting [12]. Its associated completed filtration is denoted
by F = {Ft}t>0. Let τ0 = 0. We consider a multiple optimal stopping problem of finding the
collection of the stopping times τ = (τ1, τ2, . . . , τM) (0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τM , M ≥ 1
is a given natural number) with no refraction. The stochastic process Zt (t ≥ 0) is the
geometric Brownian motion governed by the Itô SDE

dZt = Zt
(
r(t) dt + σ (t) dBt

)
, t > 0 (1)

with (r(t),σ (t)) = (ri,σi) for τi–1 < t ≤ τi where ri,σi > 0, 2ri > σ 2
i are given constants. We

put �M+1(z) = z1–α/(1 – α) for the sake of brevity. The stopping times are chosen to maxi-
mize the performance index

Jτ (z) = E

[ M∑

i=1

ηi

∫ τi

τi–1

qi

1 – βi
Z1–βi

s e–δi(s–τi–1) ds + ηM+1�M+1(ZτM )
∣
∣
∣Z0 = z

]

(2)
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with

ηi = e–
∑i–1

j=1 δj(τj–τj–1), (3)

where E is the expectation operator, δi > 0, qi > 0, and 0 < α < βM < βM–1 < · · · < β1 < 1
are given constants and z ≥ 0 is the initial condition of Zt . We show that an application
of the dynamic programming principle reduces the present optimal stopping problem to
a series of variational inequalities (VIs). The VIs, and consequently the present multiple
optimal stopping problem, turn out to be exactly solvable. Its implications in an ecological
problem are briefly discussed as well.

The main difference between the present model and the existing models [8–11] is that
the former has an ecological background, while the latter have the financial backgrounds.
In addition, the performance indices to be maximized or minimized have different func-
tional forms with each other. The resulting VIs have different forms as well. The main
contribution of this paper is the derivation of an exact solution to the cascading system of
VIs and its ecological implications.

2 Variational inequalities
The value function � = �(z) is defined with the performance index Jτ (z) as

�(z) = sup
τ

Jτ (z). (4)

By the strong Markov property of the process Zt , (4) is rewritten as

�(z) = sup
τ1,τ2,...,τM–1

E

[M–1∑

i=1

ηi

∫ τi

τi–1

qi

1 – βi
Z1–βi

s e–δi(s–τi–1) ds + ηM�M(ZτM–1 )
∣
∣
∣Z0 = z

]

, (5)

where

�M(y) = sup
τM–1≤τM

E
[∫ τM

τM–1

qM

1 – βM
Z1–βM

s e–δM(s–τM–1) ds + �M+1(ZτM )e–δM(τM–τM–1)
∣
∣
∣

ZτM–1 = y
]

. (6)

Similarly, introduce the functions �i(y) for y ≥ 0 recursively as

�i(y) = sup
τi–1≤τi

E
[∫ τi

τi–1

qi

1 – βi
Z1–βi

s e–δi(s–τi–1) ds + �i+1(Zτi )e
–δi(τi–τi–1)

∣
∣
∣Zτi–1 = y

]

,

1 ≤ i ≤ M. (7)

The recursive equations (6) and (7) are later utilized to show that the present multiple
optimal stopping problem results in a cascading system of VIs that can be solved in a
cascading manner from i = M to i = 1. The value function � is then obtained: �(z) = �1(z).

Assume �i ∈ C1(0, +∞) ∩ C0([0, +∞)) for 1 ≤ i ≤ M and is twice continuously differen-
tiable almost everywhere in R

+, which is true under certain assumptions. The degenerate
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elliptic operator Li is defined as

Li	 = δi	 – riz
d	

dz
–

1
2
σ 2

i z2 d2	

dz2 (8)

for generic sufficiently smooth 	 = 	(z). Then Theorem 10.4.1 [12] shows that �i (1 ≤
i ≤ M) solves the VI

min

{

Li�i –
qi

1 – βi
z1–βi ,�i – �i+1

}

= 0, z > 0. (9)

The VI (9) is subject to the boundary condition �i(0) = 0.

3 Main result
Define ki and λi (1 ≤ i ≤ M) as

ki =
1
σ 2

i

[

–
(

ri –
σ 2

i
2

)

+

√(

ri –
σ 2

i
2

)2

+ 2δiσ
2
i

]

(10)

and

λi = δi – (1 – βi)ri +
1
2
σ 2

i βi(1 – βi), (11)

respectively. Theorem 1 is the main result of this paper, which shows that the VIs of the
present multiple optimal stopping problem are exactly solvable.

Theorem 1 Assume δi > ri and λi > 0 for 1 ≤ i ≤ M, and ki > ki+1 for 1 ≤ i ≤ M – 1 when
M ≥ 2. Then there is a sequence 0 < q1 < q2 < · · · < qM < +∞ such that �i ∈ C1(0, +∞) ∩
C0([0, +∞)) (1 ≤ i ≤ M) is uniquely expressed as

�i(z) =

⎧
⎨

⎩

Aizki + Biz1–βi (0 ≤ z ≤ z̄i),

Ai+1zki+1 + Bi+1z1–βi+1 (z̄i < z < z̄i+1),
(12)

with some sequence 0 < z̄1 < z̄2 < · · · < z̄M < z̄M+1 = +∞ and Ai, Bi > 0 for 1 ≤ i ≤ M. Here,
AM+1 = 0, BM+1 = 1/(1–α), and βM+1 = α. In addition, �i = �i(z), z > 0 is twice continuously
differentiable except at the M – i + 1 points z̄i, z̄i+1, . . . , z̄M .

Proof of Theorem 1 By (10), it is straightforward to check that the assumption δi > ri leads
to ki > 1. General solutions 	 ∈ C2(0, +∞) ∩ C0([0, +∞)) to the problem

Li	 = 0, z > 0, 	(0) = 0 (13)

are expressed with a real constant c as 	(z) = czki . For i = M, we have a candidate of the
solution of the form (12) with BM = qM/[λM(1 – βM)] where BMz1–βM is the particular
solution to LM�M – qMz1–βM /(1 – βM) = 0, z > 0. There are two unknowns, z̄M and AM ,
which are determined from the smooth-pasting condition [13] at z = z̄M ≥ 0:

AMzkM + BMz1–βM =
1

1 – βM+1
z1–βM+1 ,

AMkMzkM–1 + BM(1 – βM)z–βM = z–βM+1 , z = z̄M.
(14)
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The second equation of (14) excludes the case with z̄M = 0. Equation (14) is uniquely
solved as

AM =
βM – βM+1

1 – βM

(z̄M)–(kM–1+βM+1)

kM – 1 + βM
> 0,

z̄M =
[

1 – βM+1

1 – βM

kM – 1 + βM

kM – 1 + βM+1

qM

λM

] 1
βM–βM+1

> 0.

(15)

Uniqueness of the solution �M to VI (9) in a viscosity sense follows from an infinite hori-
zon counterpart of Theorem 3.1 [14]. Regularity conditions �M ∈ C1(0, +∞)∩C0([0, +∞))
and �M ∈ C2(0, z̄M) ∩ C2(z̄M, +∞) directly follow from the form of �M . Hence, �M =
�M(z) is twice continuously differentiable almost everywhere for z > 0.

The discussion above can be continued for 1 ≤ i ≤ M – 1 with M ≥ 2. The proof in what
follows is based on a recursive argument. We firstly assume 0 < z̄1 < z̄2 < · · · < z̄M < +∞
and later show that this assumption is satisfied by appropriately choosing the sequence
0 < q1 < q2 < · · · < qM < +∞. Assume that the statement of the theorem is true for all j such
that i + 1 ≤ j ≤ M. Then, from VI (9), we find that the candidate of its solution is expressed
as (12) with Bi = qi/[λi(1 –βi)] where Biz1–βi is the particular solution to Li�i – qiz1–βi /(1 –
βi) = 0, z > 0. As in the case for i = M, there are two unknowns z̄i and Ai in (12). They are
determined from the smooth-pasting condition at z = z̄i ≥ 0:

Aizki + Biz1–βi = Ai+1zki+1 + Bi+1z1–βi+1 ,

Aikizki–1 + Bi(1 – βi)z–βi = Ai+1ki+1zki+1–1 + Bi+1(1 – βi+1)z–βi+1 , z = z̄i < z̄i+1.
(16)

The second equation of (14) excludes the case with z̄i = 0. A remarkable difference be-
tween the cases with i < M and i = M is that z̄i and Ai cannot be expressed explicitly in
general in the former case. Fortunately, they are uniquely found from (16) as shown below.
Combining the two equations of (16) leads to the equation to be solved by z̄i:

Bi(ki – 1 + βi) = fi(z), (17)

where fi(z) for z ≥ 0 is the polynomial

fi(z) = Ai+1(ki – ki+1)zki+1–1+βi + Bi+1(ki – 1 + βi)zβi–βi+1 . (18)

The left-hand side of (17) and all the coefficients and powers appearing in fi are posi-
tive by the assumption of the theorem. In addition, fi(z) is monotonically increasing with
respect to z > 0, limz→+∞ fi(z) → +∞, and fi(0) = 0. Therefore, Eq. (17) admits a unique
positive solution by the classical intermediate theorem: namely, z̄i > 0. Substituting this z̄i

into (16) uniquely yields Ai. A useful result on fi is that

z < z̄i (z > z̄i) when Bi(ki – 1 + βi) > fi(z)
(
Bi(ki – 1 + βi) < fi(z)

)
(19)

due to its monotonicity. The sign of Ai is positive as shown in what follows. Combining
the two equations of (16) yields

Ai(ki – ki+1)zki = gi(z), z = z̄i, (20)
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where gi(z) for z ≥ 0 is defined as

gi(z) = Bi(ki+1 – 1 + βi)z1–βi – Bi+1(ki+1 – 1 + βi+1)z1–βi+1 . (21)

By (20) and the assumptions of the theorem, Ai > 0 if gi(z̄i) > 0. Define z̃i > 0 as

z̃i =
[

Bi(ki+1 – 1 + βi)
Bi+1(ki+1 – 1 + βi+1)

] 1
βi–βi+1

, (22)

which is the unique solution to gi(z) = 0 for z > 0. By the functional form of gi, gi(z) < 0 for
z > z̃i. Thus, Ai > 0 if z̄i < z̃i.

By (19), z̄i < z̃i when Bi(ki – 1 + βi) < fi(z̃i). The quantity fi(z̃i) is calculated as

fi(z̃i) = Ai+1(ki – ki+1)z̃ki+1–1+βi
i + Bi+1(ki – 1 + βi)z̃βi–βi+1

i

= Ai+1(ki – ki+1)z̃ki+1–1+βi
i + Bi

(ki – 1 + βi+1)(ki+1 – 1 + βi)
ki+1 – 1 + βi+1

. (23)

Define li as

li = ki – 1 + βi –
(ki – 1 + βi+1)(ki+1 – 1 + βi)

ki+1 – 1 + βi+1
. (24)

By (24), the right-hand side of (23) is positive. A straightforward calculation shows

(ki+1 – 1 + βi+1)li = (ki – 1 + βi)(ki+1 – 1 + βi+1) – (ki – 1 + βi+1)(ki+1 – 1 + βi)

= (ki+1 – ki)(βi – βi+1)

< 0, (25)

namely, the desired inequality

li < 0 (26)

since ki > ki+1 and βi > βi+1. The inequality Bi(ki – 1 + βi) < fi(z̃i) follows from (26). There-
fore, we have z̄i < z̃i and thus Ai > 0.

Uniqueness of the solution �i ∈ C1(0, +∞) ∩ C0([0, +∞)) is then proven as follows. In
addition, �i = �i(z) is identified with �i+1 = �i+1(z) for z > z̄i by the construction, meaning
that �i is twice continuously differentiable except at the M – i + 1 points z̄i, z̄i+1, . . . , z̄M .
Furthermore, uniqueness of the solution �i to VI (9) in a viscosity sense follows from an
infinite horizon counterpart of Theorem 3.1 [14]. Therefore, by the induction, it is shown
that the statement of the theorem is true if we can construct a sequence 0 < z̄1 < z̄2 < · · · <
z̄M < +∞. This issue is not encountered for M = 1 where the problem involves a single
optimal stopping time, since we have 0 < z̄1 < +∞.

Assume M ≥ 2. By the second equation of (15), z̄M can be seen as an increasing power
function of qM . In addition, BM is increasing with respect to qM . Therefore, for a fixed
qM–1, it is possible to choose a sufficiently large qM such that

Bi(ki – 1 + βi) < fi(z̄M) = Ai+1(ki – ki+1)z̄ki+1–1+βi
M + Bi+1(ki – 1 + βi)z̄βi–βi+1

M . (27)
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This inequality means that there exist z̄M–1 and z̄M with 0 < z̄M–1 < z̄M < +∞ by appro-
priately choosing qM–1 and qM . As a next step, assume M = 3 for the sake of simplicity. The
argument below can straightforwardly be extended to M ≥ 3. Assume that the condition
0 < z̄2 < z̄3 < +∞ is satisfied. The explicit expression of z̄1 is not available, but it satisfies

lim
q1→+0

z̄1 = 0. (28)

Actually, (17) and (18) with i = 1 show that the left-hand side of (17) is increasing with
respect to q1, while the right-hand side of (17) is independent of q1. Therefore, we can
choose a sufficiently small q1 > 0 such that B1(k1 – 1 + β1) < f1(z̄2); namely, 0 < z̄1 < z̄2. We
then have 0 < z̄1 < z̄2 < z̄3 < +∞. The proof for M ≥ 3 is essentially the same. �

The following proposition is proven in an essentially similar way with Theorem 1.

Proposition 2 Replace “ki > ki+1 for 1 ≤ i ≤ M – 1 when M ≥ 2” by “ki = ki+1 for 1 ≤ i ≤
M – 1 when M ≥ 2” in Theorem 1. Then we have �i (1 ≤ i ≤ M) of the form (12) where

Ai =
βi – βi+1

1 – βi

(z̄i)–(ki–1+βi+1)

ki – 1 + βi
> 0 and z̄i =

[
1 – βi+1

1 – βi

ki – 1 + βi+1

ki – 1 + βi

λi+1qi

λiqi+1

] 1
βi–βi+1

. (29)

The second equation of (29) shows that z̄i is expressed as a monotonically increasing
and unbounded function of qi/qi+1, implying that z̄M–1 < z̄M if qM is sufficiently larger than
qM–1. Similarly, we have z̄M–2 < z̄M–1 if qM–1 is sufficiently larger than qM–2. We can choose
larger qM if necessary. Since M is bounded, we can construct a sequence 0 < q1 < q2 < · · · <
qM < +∞ such that 0 < z̄1 < z̄2 < · · · < z̄M < +∞.

An immediate consequence of Theorem 1 and Proposition 2 is the next proposition.

Proposition 3 �1 is the value function � under the assumption of Theorem 1 or that of
Proposition 2.

Remark 4 A numerical example of Theorem 1 is provided. Set the following parameter
values: δ1 = 6.5, δ2 = 4, r1 = 3, r2 = 2, σ1 = 0.5, σ2 = 0.2, β1 = 0.8, β2 = 0.5, β3 = 0.1, q1 = 0.4,
and q2 = 0.9. In this case, the growth rate ri of the animal population increases while its
fluctuation σi decreases as i increases, which is an ecologically reasonable situation. Based
on these parameter values, we have k1 = 2.074 > k2 = 1.981, λ1 = 5.920, and λ2 = 3.005.
These given and calculated constants comply with the assumption of Theorem 1. Fur-
thermore, we have A1 = 1.393, A2 = 1.224, B1 = 0.338, B2 = 0.599, B3 = 1.111, z̄1 = 0.145,
and z̄2 = 0.469. The obtained results satisfy 0 < z̄1 < z̄2 and A1, A2 > 0, which comply with
the results of Theorem 1.

Remark 5 Each optimal τi is denoted τ ∗
i . Under the assumption of Theorem 1 or that of

Proposition 2, the optimal stopping time τ ∗
i is expressed as

τ ∗
i = inf

{
τ |τ > τ ∗

i–1, Zτ = z̄i
}

for 1 ≤ i ≤ M, τ ∗
0 = 0. (30)

Remark 6 The strong Markov property of geometric Brownian motions [15] gives the fol-
lowing formulas for the statistical moments of the largest stopping time τM . For example,
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Table 1 Meaning of the variables and parameters of the present multiple optimal stopping problem
in analyzing fish migration

Parameter Meaning

ri Deterministic growth rate of the population biomass in the habitat Hi

σi Stochasticity involved in the growth of the population biomass in the habitat Hi

δi Discount factor of the cumulative profit in the habitat Hi

qi Quality of the habitat Hi

βi Sensitivity of the profit gained in the habitat Hi on the population biomass

a straightforward calculation gives

E
[
τ ∗

M
]

= E

[ M∑

i=1

(
τ ∗

i – τ ∗
i–1

)
]

=
M∑

i=1

E
[
τ ∗

i – τ ∗
i–1|Zτ∗

i–1

]
. (31)

Since Zτ∗
i

= z̄i (1 ≤ i ≤ M) and Z0 = z > 0,

E
[
τ ∗

M
]

=
M∑

i=1

2
2ri – σ 2

i
ln

(
z̄i

z̄i–1

)

, (32)

where the notation z̄0 = z is employed for the sake of simplicity. Similarly, the variance of
τM is found as

Var
[
τ ∗

M
]

=
M∑

i=1

Var
[
τ ∗

i – τ ∗
i–1|Zτ∗

i–1

]
=

M∑

i=1

σ 2
i

(
2

2ri – σ 2
i

)3

ln

(
z̄i

z̄i–1

)

. (33)

The present multiple optimal stopping problem is a simple theoretical model for mi-
gration of animals, migratory fishes in particular [16]. A single optimal stopping problem
for analyzing animal migration between two habitats has been discussed in Yoshioka and
Yaegashi [7] from a numerical viewpoint. Assume that there are M + 1 habitats, which are
denoted H0, H1, . . . , HM where H0 is the initial habitat and HM is the final habitat: the goal
of the migration. The stochastic process Zt represents the biomass of an animal population
at the time t. The stopping time τi represents the time to move from Hi–1 to Hi. The objec-
tive of the animal population is to choose the sequence of stopping times τi (1 ≤ i ≤ M),
so that the sum of the cumulative profit gain in each habitat Hi (0 ≤ i ≤ M – 1) and the
terminal wealth gained at the goal of migration HM , namely the performance index Jτ in
(2), is maximized.

An example is the migratory fish Plecoglossus altivelis (P. altivelis, Ayu) having an annual
life cycle that migrates between a river and the seas [17]. The present mathematical model
can be applied to modelling one-generation life history of the fish with M = 2. In each
autumn, the adults spawn eggs in downstream reaches of a river in which they live and
die soon afterward. Hatched larvae descend to coastal areas of a downstream water body
of the river: the sea or an estuary (H0). In the coming spring, grown fishes ascend into
the midstream of the river to mature (H1) until the coming autumn. In the autumn, the
fishes descend to the downstream reach of the river where they can spawn (H2). Table 1
summarizes the meaning of the model parameters in the above-mentioned problem.

The assumptions δi > ri and λi > 0 for 1 ≤ i ≤ M and ki > ki+1 for 1 ≤ i ≤ M – 1 when
M ≥ 2 actually have ecological meanings for the animal migration problems. The condi-
tions δi > ri and λi > 0 can be restated as that δi > 0 is sufficiently large, implying that the
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habitat quality degrades as the time elapses. This is in accordance with the fact that animal
migration is often driven by seasonal changes of habitat quality. The remaining condition
ki > ki+1 is satisfied if δi is sufficiently larger than δi+1. For the animal migration, this con-
dition to the situation where degradation of the habitat quality is critical for the earlier
period of the animal life history.

4 Conclusions
This paper focused on a solvable multiple optimal stopping problem related to animal mi-
gration. An extension of the present problem is to consider a refraction τi+1 – τi ≥ μi > 0,
which leads to a different system of VIs, and consequently different value functions and
optimal stopping criteria. Solvability of the problem with a refraction is currently under
investigation for more realistic mathematical modelling of animal migration. There exist
recent studies on optimization models of ecological and biological systems involving de-
lays [18–20]. These systems are clearly more complicated than the system focused on in
this paper. To examine the applicability of the present methodology, to extend these mod-
els will be a quite interesting topic. Applicability of the present formalism to real animal
migration, which is based on a mixed control problem like those in Koo et al. [21] and Lee
and Shin [22], is also currently in progress.
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