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1 Introduction
The boundary value problems (BVPs) for fractional differential equations arise from the
studies of models of aerodynamics, fluid flows, electrodynamics of complex medium, elec-
trical networks, rheology, polymer rheology, economics, biology chemical physics, control
theory, signal and image processing. Recently, the study of such kind of problems has re-
ceived considerable attention both in theory and applications, see [1–30] and the refer-
ences therein, such as resonant BVP [3, 18, 25], singular BVP [7, 15, 20, 30], nonlocal BVP
[8, 14, 17, 29] and semipositone BVP [11, 16, 24, 28].

Specially, there are a few papers considering the Dirichlet-type problem for ordinary
differential equations of fractional order; see [1, 4, 6, 10, 13, 27]. Bai and Lü [4] have inves-
tigated the following BVP:

⎧
⎨

⎩

Dα
0+x(t) + f (t, x(t)) = 0, 0 < t < 1,

x(0) = 0, x(1) = 0,
(1.1)

where 1 < α ≤ 2 and f : [0, 1]× [0,∞) → [0,∞) continuous, by means of the Krasnosel’skii
fixed point theorem and the Leggett–Williams fixed point theorem, the existence and
multiplicity of positive solutions for BVP (1.1) are obtained. By using the Krasnosel’skii
fixed point theorem, Jiang and Yuan [13] studied the existence and multiplicity of posi-
tive solutions of BVP (1.1). By using the Leray–Schauder nonlinear alternative and a fixed
point theorem on cones, BVP (1.1) are also studied in [27], the authors establish the exis-
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tence of multiple positive solutions to positone and semipositone Dirichlet-type BVP (1.1).
In [10], the authors investigated problems (1.1) with f (t, x(t)) replaced by λa(t)f (t, x(t)),
the existence of positive solutions are obtained by means of the fixed point theory in
cones.

Recently, in [26], the authors investigated the existence and uniqueness of the positive
solutions for the two-term fractional differential equations of the type:

⎧
⎨

⎩

–Dα
0+x(t) + bx(t) = f (t, x(t)), 0 < t < 1,

x(0) = 0, x(1) = 0,

where 1 < α < 2, b > 0, Dα
0+ is the Riemann–Liouville fractional derivative. They derived

the corresponding Green function called the fractional Green function and obtained some
properties. By means of the mixed monotone operator theorem, the existence and unique-
ness of positive solution are obtained under the singular conditions.

Inspired by the above work, we study the existence and uniqueness of the positive solu-
tions for the following two-term fractional differential equations BVP:

⎧
⎨

⎩

–Dα
0+x(t) + bx(t) = a(t)f (t, x(t)), 0 < t < 1,

x(0) = 0, x(1) = 0,
(1.2)

where 1 < α < 2, b > 0, Dα
0+ is the Riemann–Liouville fractional derivative, f : [0, 1] ×

[0,∞) → [0,∞) is continuous, a(t) is continuous and may be singular at t = 0, 1. Under
some certain conditions, by use of u0-positive operator and the fixed poind index theorem,
we obtain some existence and unique results of positive solutions.

Our work presented in this paper has the following features. First of all, we discuss the
equation contain two term, i.e., –Dα

0+x(t) + bx(t) = f (t, x(t)), this is different from [4, 10], in
other words, Ref. [4, 10] and this article discuss different problems. The second new fea-
ture is that BVP (1.2) possesses a singularity, that is, the nonlinear term may be singular at
t = 0, 1; this is different from [4, 10]. Thirdly, we discuss BVP (1.2), by using the properties
of the Green function, u0-positive operator and Gelfand’s formula, some sufficient con-
ditions for the existence and uniqueness results of positive solution are established. The
method used differs significantly from [4, 10, 26]. So our results are new and meaningful.

The rest of this paper is organized as follows. In Sect. 2, we present some lemmas that are
used to prove our main results. In Sect. 3, under the assumption that f (t, y) is a Lipschitz
continuous function, by use of u0-positive operator, the uniqueness of positive solutions
is established. The interesting point is that the Lipschitz constant is related to the first
eigenvalues corresponding to the relevant operators. In Sect. 4, the existence results of
positive solutions are obtained by use of the fixed poind index and spectral radius of some
related linear operator.

2 Basic definitions and preliminaries
For the convenience of the reader, we present here some notation and lemmas which will
be used in the proofs of our results.
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Definition 2.1 The Riemann–Liouville fractional integral of order α > 0 of a function
u : (0,∞) →R is given by

Iα
0+u(t) =

1
�(α)

∫ t

0
(t – s)α–1u(s) ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2 The Riemann–Liouville fractional derivative of order α > 0 of a function
u : (0,∞) →R is given by

Dα
0+u(t) =

1
�(n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1u(s) ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided that the right-hand
side is pointwise defined on (0,∞).

Set

G(t, s) =
1

H(1)

⎧
⎨

⎩

H(t)H(1 – s), 0 ≤ t ≤ s ≤ 1,

H(t)H(1 – s) – H(t – s)H(1), 0 ≤ s ≤ t ≤ 1,
(2.1)

where H(t) = tα–1Eα,α(btα), and

Eα,α(y) =
+∞∑

k=0

yk

�((k + 1)α)
,

is the Mittag-Leffler function [19, 21]. Denote

h(y) =
α – 2

�(α – 1)
+

+∞∑

k=1

yk

�((k + 1)α – 2)
, y ∈ [0,∞).

It is easy to verify that there exists a unique b̃ > 0 such that h(b̃) = 0. We list the following
assumptions adopted in this paper.

(H0) b ∈ (0, b̃].
(H1) f : [0, 1] × [0,∞) → [0,∞) is continuous.
(H2) a : (0, 1) → [0,∞) is continuous and not identical zero on any closed subinterval of

(0, 1) with

0 <
∫ 1

0
sα–j(1 – s)α–ja(s) ds < +∞, j = 1, 2.

The following three lemmas can be found in [26].

Lemma 2.3 Suppose that (H0) holds and ω ∈ L[0, 1]. Then the problem

⎧
⎨

⎩

–Dα
0+x(t) + bx(t) = ω(t), 0 < t < 1,

x(0) = 0, x(1) = 0,
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has a unique solution

x(t) =
∫ 1

0
G(t, s)ω(s) ds.

Lemma 2.4 Suppose that (H0) holds, then the function G(t, s) has the following properties:
(1) G(t, s) > 0, ∀t, s ∈ (0, 1);
(2) G(t, s) = G(1 – s, 1 – t), ∀t, s ∈ [0, 1];
(3) G(t, s) ≤ H(1)s(1 – s)α–1tα–2, ∀t, s ∈ [0, 1];
(4) G(t, s) ≥ �s(1 – s)α–1(1 – t)tα–1, ∀t, s ∈ [0, 1], where

� = min

{

(α – 1)2H(1),
1

H(1)(�(α))2

}

.

Lemma 2.5 The function K (t, s) =: t2–αG(t, s) has the following properties:
(1) K(t, s) > 0, ∀t, s ∈ (0, 1);
(2) K(t, s) ≤ H(1)(1 – s)α–2t(1 – t), ∀t, s ∈ [0, 1];
(3) K(t, s) ≤ H(1)s(1 – s)α–1, ∀t, s ∈ [0, 1];
(4) K(t, s) ≥ �s(1 – s)α–1t(1 – t), ∀t, s ∈ [0, 1].

Let E = C[0, 1], then E is a Banach space with the norm ‖x‖ = max0≤t≤1 |x(t)|, for any
x ∈ E. Set P = {x ∈ E : x(t) ≥ 0 for t ∈ [0, 1]}. P is a positive cone in E.

Define a nonlinear operator T and a linear operator L as follows:

(Tx)(t) =
∫ 1

0
K(t, s)a(s)f

(
s, sα–2x(s)

)
ds, x ∈ C[0, 1], (2.2)

(Lx)(t) =
∫ 1

0
K(t, s)a(s)sα–2x(s) ds, x ∈ C[0, 1]. (2.3)

It is not difficult to verify that L : E → E is linear completely continuous and L(P) ⊂ P.
The following concept is due to Krasnosel’skii [31].

Definition 2.6 We say that a bounded linear operator L : E → E is u0-positive on the cone
P if there exists u0 ∈ P \ {θ} such that for every x ∈ P \ {θ} there exist a natural number n
and positive constants β(x), γ (x) such that

β(x)u0 ≤ Lnx ≤ γ (x)u0.

Lemma 2.7 L is u0-positive operator with u0(t) = t(1 – t).

Proof For any x ∈ P \ {θ}, it follows from Lemma 2.5 that

(Lx)(t) =
∫ 1

0
K(t, s)a(s)sα–2x(s) ds ≤ H(1)t(1 – t)

∫ 1

0
(1 – s)α–2a(s)sα–2x(s) ds.

On the other hand, by Lemma 2.5, we also have

(Lx)(t) =
∫ 1

0
K(t, s)a(s)sα–2x(s) ds ≥ �t(1 – t)

∫ 1

0
sα–1(1 – s)α–1a(s)x(s) ds.

The above inequalities show that L is u0-positive operator with u0(t) = t(1 – t). �
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Lemma 2.8 (Krein–Rutmann [32]) Let L : E → E be a continuous linear operator, P be
a total cone and L(P) ⊂ P. If there exist ψ ∈ E \ (–P) and a positive constant c such that
cL(ψ) ≥ ψ , then the spectral radius r(L) 
= 0 and L has a positive eigenfunction correspond-
ing to its first eigenvalue λ = (r(L))–1.

It follows from Lemma 2.7 and Lemma 2.8 that the spectral radius r(L) 
= 0, moreover L
has a positive eigenfunction ϕ∗(t) corresponding to its first eigenvalue λ1 = (r(L))–1.

Remark 2.9 Let ϕ∗ be the positive eigenfunction of L corresponding to λ1, i.e., λ1Lϕ∗ = ϕ∗.
Then, by Definition 2.6 and Lemma 2.7, there exist δ1(ϕ∗), δ2(ϕ∗) > 0 such that

δ1
(
ϕ∗)u0 ≤ Lϕ∗ =

1
λ1

ϕ∗ ≤ δ2
(
ϕ∗)u0.

Thus we found that L is ϕ∗-positive operator.

Lemma 2.10 ([31]) Let L be a completely continuous u0-bounded operator, λ1 > 0 is the
first eigenvalue of L, y0 is a positive eigenfunction which belongs to P \ {θ}. Then, for any
y ∈ P \ {θ} with y 
= μy0 (μ ≥ 0), λ1Ly � y and λ1Ly � y.

3 Uniqueness of positive solution
We now wish to show that under certain conditions, BVP (1.2) has a unique positive so-
lution.

Theorem 3.1 Suppose that (H0), (H1) and (H2) hold and there exists κ ∈ [0, 1) such that

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ κλ1|u – v|, ∀t ∈ [0, 1], u, v ∈ [0,∞),

where λ1 is the first eigenvalue of L defined by (2.3). Then BVP (1.2) has a unique positive
solution x̄ = tα–2x∗ in P, and for any x0 ∈ P \ {θ}, the iterative sequence xn = Txn–1 (n =
1, 2, . . .) converges to x∗.

Proof It is not difficult to prove that T : P → P is completely continuous and the existence
of positive solution tα–2x for BVP (1.2) is equivalent to that of fixed point x of T in P.

For any given x0 ∈ P \ {θ}, let xn = Txn–1 (n = 1, 2, . . .). By Remark 2.9, there exists δ =
δ(|x1 – x0|) > 0 such that

(
L|x1 – x0|

)
(t) ≤ δϕ∗(t), t ∈ [0, 1].

For m ∈N,

∣
∣xm+1(t) – xm(t)

∣
∣

=
∣
∣(Txm)(t) – (Txm–1)(t)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
K(t, s)a(s)f

(
s, sα–2xm(s)

)
ds –

∫ 1

0
K(t, s)a(s)f

(
s, sα–2xm–1(s)

)
ds

∣
∣
∣
∣

≤
∫ 1

0
K(t, s)a(s)

∣
∣f

(
s, sα–2xm(s)

)
– f

(
s, sα–2xm–1(s)

)∣
∣ds
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≤ κλ1L
(|xm – xm–1|

)
(t) ≤ · · · ≤ λm

1 κmLm(|x1 – x0|
)
(t)

≤ λm
1 κmLm–1(δϕ∗(t)

)
= λm

1 κmδLm–1(ϕ∗(t)
)

= λ1δκ
mϕ∗(t), t ∈ [0, 1].

So, for any n, m ∈N, we have

∣
∣xn+m+1(t) – xn(t)

∣
∣ =

∣
∣xn+m+1(t) – xn+m(t) + · · · + xn+1(t) – xn(t)

∣
∣

≤ ∣
∣xn+m+1(t) – xn+m(t)

∣
∣ + · · · +

∣
∣xn+1(t) – xn(t)

∣
∣

≤ λ1δ
(
κm+n + · · · + κn)ϕ∗(t)

= λ1δ
κn(1 – κm+1)

1 – κ
ϕ∗(t), t ∈ [0, 1]. (3.1)

Consequently,

‖xn+m+1 – xn‖ ≤ λ1δ
κn(1 – κm+1)

1 – κ

∥
∥ϕ∗∥∥ → 0, as n, m → ∞.

By the completeness of P, there exists a x∗ ∈ P such that limn→∞ xn = x∗. Passing to the
limit into xn+1 = Txn and using the fact that T is continuous, it follows that x∗ is a fixed
point of T in P.

Now we show that T has at most one fixed point in P. Suppose there exist two elements
x, y ∈ P with x = Tx and y = Ty. By Lemma 2.7, there exists δ = δ(|x – y|) > 0 such that

(
L|x – y|)(t) ≤ δϕ∗(t), t ∈ [0, 1].

Then, for any n ∈N, we have

∣
∣x(t) – y(t)

∣
∣ =

∣
∣
(
Tnx

)
(t) –

(
Tny

)
(t)

∣
∣ ≤ κnδλ1ϕ

∗(t)

which can happen only if x = y. This implies that T has at most one fixed point.
Then x∗ is the unique fixed point of T in P and x̄ = tα–2x∗ is the unique positive solution

of BVP (1.2). The proof is completed. �

Remark 3.2 Let m → +∞ in (3.1), we have error estimation

∥
∥xn – x∗∥∥ ≤ λ1δ

κn

1 – κ

∥
∥ϕ∗∥∥,

and with the rate of convergence

∥
∥xn – x∗∥∥ = O

(
κn).

Remark 3.3 In Theorem 3.1 and Remark 3.2, we not only give the condition of the exis-
tence of a unique positive solution, but also establish an iterative sequence of solution and
error estimation. In particular, since u0(t) = t(1– t) ∈ P, and the initial value of the iterative
sequence can begin from x0 = u0 = t(1 – t), this is simpler and helpful for computation.
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4 Existence of a positive solution
In this section we wish to deduce the existence of at least one positive solution to BVP
(1.2). To accomplish this, we shall construct a subcone of P as follows:

Q =
{

x ∈ P : x(t) ≥ �

H(1)
t(1 – t)‖x‖ for t ∈ [0, 1]

}

.

For any r > 0, let Qr = {x ∈ Q : ‖x‖ < r}, ∂Qr = {x ∈ Q : ‖x‖ = r}, Qr = {x ∈ Q : ‖x‖ ≤ r}.

Lemma 4.1 ([33]) Let Q be a cone in Banach space E. Suppose that T : Qr → Q is a com-
pletely continuous operator.

(i) If there exists y0 ∈ Q \ {θ} such that y – Ty 
= μy0 for any y ∈ ∂Qr and μ ≥ 0, then
i(T , Qr , Q) = 0.

(ii) If Ty 
= μy for any y ∈ ∂Qr and μ ≥ 1, then i(T , Qr , Q) = 1.

Lemma 4.2 ([33]) Let �1 and �2 be two bounded open sets in Banach space E such that
θ ∈ �1 and �1 ⊂ �2. Let operator T : (�2 \ �1) ∩ Q → Q is a completely continuous.
Suppose that one of the two conditions

(i) if Ty � y, ∀y ∈ ∂Q ∩ �1; Ty � y, ∀y ∈ ∂Q ∩ �2 and
(ii) if Ty � y, ∀y ∈ ∂Q ∩ �1; Ty � y, ∀y ∈ ∂Q ∩ �2 is satisfied.

Then T has at least one fixed point in (�2 \ �1) ∩ Q.

Lemma 4.3 Assume that (H0), (H1) and (H2) hold, then T : Q → Q is completely contin-
uous.

Proof For any x ∈ Q, t ∈ [0, 1], by Lemma 2.5, we have

(Tx)(t) =
∫ 1

0
K(t, s)a(s)f

(
s, sα–2x(s)

)
ds

≤ H(1)
∫ 1

0
s(1 – s)α–1a(s)f

(
s, sα–2x(s)

)
ds.

That is,

‖Tx‖ ≤ H(1)
∫ 1

0
s(1 – s)α–1a(s)f

(
s, sα–2x(s)

)
ds.

On the other hand, by Lemma 2.5, we also have

(Tx)(t) =
∫ 1

0
K(t, s)a(s)f

(
s, sα–2x(s)

)
ds

≥ �t(1 – t)
∫ 1

0
s(1 – s)α–1a(s)f

(
s, sα–2x(s)

)
ds

≥ �

H(1)
t(1 – t)‖Tx‖.

Therefore, T(Q) ⊂ Q. And, by a standard argument, we know that T : Q → Q is completely
continuous. The proof is completed. �
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Theorem 4.4 Suppose that the conditions (H0), (H1) and (H2) are satisfied, and

lim inf
y→0+

f (t, y)
y

> λ1, uniformly on t ∈ [0, 1], (4.1)

lim sup
y→+∞

f (t, y)
y

< λ1, uniformly on t ∈ [0, 1], (4.2)

where λ1 is the first eigenvalue of L defined by (2.3). Then BVP (1.2) has at least one positive
solution.

Proof It follows from (4.1) that there exist r > 0 and ε1 > 0, such that

f (t, y) ≥ (λ1 + ε1)y, 0 ≤ y ≤ r, t ∈ [0, 1]. (4.3)

Let ϕ∗ be the positive eigenfunction of L corresponding to λ1, thus ϕ∗ = λ1Lϕ∗. For any
x ∈ ∂Qr , by virtue of (2.2) and (4.3), we have

(Tx)(t) ≥ (λ1 + ε1)
∫ 1

0
K(t, s)a(s)sα–2x(s) ds = (λ1 + ε1)(Lx)(t), t ∈ [0, 1]. (4.4)

We may suppose that T has no fixed point on ∂Qr (otherwise, the proof is finished).
Now we show that

x – Tx 
= μϕ∗, x ∈ ∂Qr ,μ ≥ 0. (4.5)

If otherwise, there exist x0 ∈ ∂Qr and μ0 ≥ 0 such that x0 –Tx0 = μ0ϕ
∗. Obviously, μ0 > 0

and x0 = Tx0 + μ0ϕ
∗ ≥ μ0ϕ

∗. Let μ = sup{μ|x0 ≥ μϕ∗}, then μ ≥ μ0 > 0 and x0 ≥ μϕ∗.
Since L(Q) ⊂ Q, we have (λ1 + ε1)Lx0 ≥ λ1Lx0 ≥ λ1μLϕ∗ = μϕ∗. Therefore, using (4.4), we
have

x0 = Tx0 + μ0ϕ
∗ ≥ λ1Lx0 + μ0ϕ

∗ ≥ μϕ∗ + μ0ϕ
∗ = (μ + μ0)ϕ∗,

which contradicts the definition of μ. Hence (4.5) is true and it follows from Lemma 4.1
that

i(T , Qr , Q) = 0. (4.6)

Considering (4.2), there exist R0 > r and ε2 (0 < ε2 < λ1) such that

f (t, y) ≤ (λ1 – ε2)y, ∀y ≥ R0, t ∈ [0, 1]. (4.7)

By the hypothesis (H1), we have

M0 = max
{

f (t, y)|t ∈ [0, 1], 0 ≤ y ≤ R0
}

< +∞.

Hence

f (t, y) ≤ (λ1 – ε2)y + M0, for any y ≥ 0, t ∈ [0, 1]. (4.8)
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Now we set

B = {x ∈ Q, x = μTx, 0 ≤ μ ≤ 1}.

In the following, we shall show that B is bounded. In fact, for any x ∈ B, μ ∈ [0, 1], by
(4.8), we have

x(t) = μ(Tx)(t) ≤
∫ 1

0
K(t, s)a(s)f

(
s, sα–2x(s)

)
ds

≤
∫ 1

0
K(t, s)a(s)

[
(λ1 – ε2)sα–2x(s) + M0

]
ds

= (λ1 – ε2)(Lx)(t) + M, (4.9)

where M = M0 supt∈[0,1]
∫ 1

0 K(t, s)a(s) ds. Since r((λ1 –ε2)L) < 1, so I –(λ1 –ε2)L is reversible
and

(
I – (λ1 – ε2)L

)–1 = I + (λ1 – ε2)L +
(
(λ1 – ε2)L

)2 + · · · +
(
(λ1 – ε2)L

)n + · · · .

From L : P → P we have (I – (λ1 – ε2)L)–1(P) ⊂ P. This together with (4.9) implies that

x(t) ≤ (
I – (λ1 – ε2)L

)–1M, t ∈ [0, 1],

which shows that B is bounded.
Take R > max{R0, sup B}, we can easily obtain

x 
= μTx, x ∈ ∂QR,μ ∈ [0, 1].

This together with Lemma 4.1 yields

i(T , QR, Q) = 1. (4.10)

It follows from (4.6) and (4.10) that

i(T , QR \ Qr , Q) = i(T , QR, Q) – i(T , Qr , Q) = 1.

Then T has at least one fixed point on QR \ Qr , which implies that BVP (1.2) has at least
one positive solution. The proof is completed. �

Now we consider another case of the problem (1.2). For this purpose, we define a linear
operator Lτ for any sufficiently small 0 < τ < 1

2 as follows:

(Lτ x)(t) =
∫ 1–τ

τ

K(t, s)a(s)sα–2x(s) ds, t ∈ [0, 1].

Obviously, from Lemma 2.7 we know that Lτ : E → E is a u0-bounded and positive oper-
ator with r(Lτ ) > 0. Moreover Lτ has a positive eigenfunction xτ corresponding to its first
eigenvalue λτ = (r(Lτ ))–1.
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Lemma 4.5 Suppose that (H0) and (H1) hold, there exists an eigenvalue λ̃1 of L such that

lim
τ→0+

λτ = λ̃1.

Proof Take τn ∈ (0, 1
2 ) (n = 1, 2, . . .) such that τ1 ≥ τ2 ≥ · · · ≥ τn ≥ · · · and τn → 0 (n → ∞).

So for any m > n and x ≥ θ , we have

(Lτn x)(t) ≤ (Lτm x)(t) ≤ (Lx)(t), t ∈ [0, 1],

and

(
Lk

τn x
)
(t) ≤ (

Lk
τm x

)
(t) ≤ (

Lkx
)
(t), t ∈ [0, 1], k = 2, 3, . . . ,

where Lk
τn = L(Lk–1

τn ), k = 2, 3, . . . . Consequently, ‖Lk
τn‖ ≤ ‖Lk

τm‖ ≤ ‖Lk‖, k = 1, 2, . . . . From
Gelfand’s formula, we get λ1 ≤ λτm ≤ λτn , where λ1 is the first eigenvalue of L. Since {λτn}
is monotonous with lower boundedness λ1, let

lim
n→∞λτn = λ̃1.

Now we shall show that λ̃1 is an eigenvalue of L. Suppose xτn is a positive eigenfunction
of Lτn corresponding to λτn with ‖xτn‖ = 1, n = 1, 2, . . . , i.e.,

xτn (t) = λτn

∫ 1–τn

τn

K(t, s)a(s)sα–2xτn (s) ds = λτn Lτn xτn (t), t ∈ [0, 1]. (4.11)

It follows from the uniform continuity of the function K(t, s) that {xτn} is equicontinuous
and uniformly bounded. By the Arzela–Ascoli theorem, {xτn} has a subsequence which
converges to some x̃0 as n → ∞. Without loss of generality, we may assume xτn → x̃0 as
well. Obviously, x̃0 ≥ θ and ‖̃x0‖ = 1.

By (4.11), we have

x̃0(t) = λ̃1

∫ 1

0
K(t, s)a(s)sα–2̃x0(s) ds, t ∈ [0, 1],

that is, x̃0 = λ̃1L̃x0 and λ̃1 is the eigenvalue of the operator L. The proof is completed. �

Theorem 4.6 Suppose that the conditions (H0), (H1) and (H2) are satisfied, and

lim sup
y→0+

f (t, y)
y

< λ1, uniformly on t ∈ [0, 1], (4.12)

lim inf
y→+∞

f (t, y)
y

> λ̃1, uniformly on t ∈ [0, 1], (4.13)

where λ1, λ̃1 are the eigenvalues of L and λ1 is the first eigenvalue of L. Then BVP (1.2) has
at least one positive solution.



Jiang et al. Advances in Difference Equations  (2018) 2018:169 Page 11 of 14

Proof It follows from (4.12) that there exist r > 0 and ε3 (0 < ε3 < λ1) such that

f (t, y) ≤ (λ1 – ε3)y, 0 ≤ y ≤ r, t ∈ [0, 1]. (4.14)

Now we show that

Tx � x, x ∈ ∂Qr . (4.15)

Otherwise, there exists v0 ∈ ∂Qr such that v0 ≤ Tv0. Then we have

0 ≤ v0(t) ≤ (Tv0)(t), ∀t ∈ [0, 1]. (4.16)

By (4.16) and (4.14), we have

v0(t) ≤
∫ 1

0
K(t, s)a(s)f

(
s, sα–2v0(s)

)
ds

≤ (λ1 – ε3)
∫ 1

0
K(t, s)a(s)sα–2v0(s) ds = (λ1 – ε3)(Lv0)(t),

i.e.

v0 ≤ (λ1 – ε3)(Lv0). (4.17)

Acting L on (4.17) n – 1 times, we obtain

v0(t) ≤ (λ1 – ε3)n(Lnv0
)
(t).

So we have

∥
∥Ln∥∥ ≥ ‖Lnv0‖

‖v0‖ ≥ 1
(λ1 – ε3)n , n = 1, 2, . . . .

By Gelfand’s formula, we know

r(L) = lim
n→∞

∥
∥Ln∥∥

1
n ≥ lim

n→∞

(
1

(λ1 – ε)n

) 1
n

>
1

λ1 – ε3
>

1
λ1

,

which is a contradiction with r(L) = λ–1
1 . So (4.15) holds.

It follows from (4.13) that there exist ε4 (0 < ε4 < λ̃1) and R0 > 1 such that

f (t, y) ≥ (̃λ1 + ε4)y, y ≥ R0, t ∈ [0, 1]. (4.18)

From the proof of Lemma 4.5, there exists τ ∈ (0, 1
2 ) such that λ̃1 ≤ λτ = (r(Lτ ))–1 < λ̃1 +

ε4. Take R = max{R0, R0H(1)
�τ2 }. We shall check that

Tx � x, x ∈ ∂QR. (4.19)
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If it is not true, there exists φ ∈ ∂QR such that Tφ ≤ φ. Then it follows from the con-
struction of Q that

φ(t) ≥ �t(1 – t)
H(1)

‖φ‖ ≥ �τ (1 – τ )
H(1)

R ≥ �τ 2

H(1)
R ≥ R0, t ∈ [τ , 1 – τ ].

Thus, by (4.18) we have

φ(t) ≥ (Tφ)(t) =
∫ 1

0
K(t, s)a(s)f

(
s, sα–2φ(s)

)
ds

≥
∫ 1–τ

τ

K(t, s)a(s)f
(
s, sα–2φ(s)

)
ds

≥ (̃λ1 + ε4)
∫ 1–τ

τ

K(t, s)a(s)sα–2φ(s) ds

= (̃λ1 + ε4)(Lτ φ)(t). (4.20)

Notice that φ ≥ θ , by Lemma 2.10, there exists μ ≥ 0 such that φ = μxτ , xτ is the positive
eigenfunction corresponding to the first eigenvalue λτ of the operator Lτ . If μ = 0, then
φ(t) ≡ 0, t ∈ [0, 1]. If μ > 0, by (4.20), we know that μxτ (t) ≥ (̃λ1 + ε4)(Lτ φ)(t) = μ(̃λ1 +
ε4)(Lτ xτ )(t), i.e. xτ ≥ (̃λ1 + ε4)Lτ xτ . Considering λτ < λ̃1 + ε4, we have xτ = λτ Lτ xτ < (̃λ1 +
ε4)Lτ xτ , a contradiction. Thus, (4.19) is true. By (4.15), (4.19) and Lemma 4.2, we know
that T has a positive fixed point in QR \ Qr , which implies that BVP (1.2) has at least one
positive solution. The proof is completed. �

Example 4.7 Consider the following problem:

⎧
⎨

⎩

–D
3
2
0+x(t) + 1

5 x(t) = a(t)f (t, x(t)), 0 < t < 1,

x(0) = 0, x(1) = 0.
(4.21)

Here

a(t) =
1

4√t 8
√

(1 – t)3
, t ∈ (0, 1), f (t, y) =

√
y + ln(1 + y), (t, y) ∈ [0, 1] × [0,∞).

Obviously, f : [0, 1] × [0,∞) → [0,∞) is continuous, a : (0, 1) → [0,∞) is continuous and
a(t) is singular at t = 0 and t = 1. Moreover,

0 <
∫ 1

0
sα–1(1 – s)α–1a(s) ds =

∫ 1

0
s

3
2 –1(1 – s)

3
2 –1 1

4√s 8
√

(1 – s)3
ds

=
∫ 1

0
s

5
4 –1(1 – s)

9
8 –1 ds = B

(
5
4

,
9
8

)

< +∞,

0 <
∫ 1

0
sα–2(1 – s)α–2a(s) ds =

∫ 1

0
s

3
2 –2(1 – s)

3
2 –2 1

4√s 8
√

(1 – s)3
ds

=
∫ 1

0
s

1
4 –1(1 – s)

1
8 –1 ds = B

(
1
4

,
1
8

)

< +∞,

where B(·, ·) denotes a beta function.
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Noticing that �(·) is strictly increasing on [2,∞), so for any y ∈ [0,∞) we have

h(y) =
α – 2

�(α – 1)
+

+∞∑

k=1

yk

�((k + 1)α – 2)
= –

1
2
√

π
+

+∞∑

k=1

yk

�( 3
2 k – 1

2 )

= –
1

2
√

π
+ y +

+∞∑

k=2

yk

�( 3
2 k – 1

2 )
≤ –

1
2
√

π
+ y +

+∞∑

k=2

yk

�(k)

= –
1

2
√

π
+ y

(

1 +
+∞∑

k=2

yk

�(k)

)

= –
1

2
√

π
+ yey. (4.22)

By direct calculation, we have

1
2
√

π
≈ 0.282095,

1
5

e
1
5 ≈ 0.244281,

(4.22) implies that h( 1
5 ) < 0, combining with the monotonicity of h(y), we can obtain 1

5 < b̃
(b̃ is unique zero point of function h, i.e., h(b̃) = 0).

On the other hand, it is obvious that

lim inf
y→0+

f (t, y)
y

= lim inf
y→0+

√y + ln(1 + y)
y

= +∞,

lim sup
y→+∞

f (t, y)
y

= lim sup
y→+∞

√y + ln(1 + y)
y

= 0,

uniformly on t ∈ [0, 1], which implies that

lim sup
y→+∞

f (t, y)
y

< λ1 < lim inf
y→0+

f (t, y)
y

.

Therefore, all conditions of Theorem 4.4 are satisfied. Thus Theorem 4.4 ensures that
BVP (4.21) has at least one positive solution.

Remark 4.8 In BVP (4.21), note that a(t) is singular at t = 0 and t = 1, that is to say, the
nonlinearity has singularity at t = 0 and t = 1. This is in essence different from a Dirichlet-
type BVP [4, 10, 13].
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