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Abstract
The aim of this paper is to obtain some new oscillatory conditions for all solutions of
nonlinear difference equation with non-monotone or non-decreasing argument

�x(n) + p(n)f (x(τ (n))) = 0, n = 0, 1, . . . ,

where (p(n)) is a sequence of nonnegative real numbers and (τ (n)) is a
non-monotone or non-decreasing sequence, f ∈ C(R,R) and xf (x) > 0 for x �= 0.
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1 Introduction
Oscillation theory of difference equations has attracted many researchers. In recent years
there has been much research activity concerning the oscillation and nonoscillation of
solutions of delay difference equations. For these oscillatory and nonoscillatory results, we
refer, for instance, to [1–23]. As far as we can see, there is not yet a study in the literature
about the solutions of Eq. (1) to be oscillatory under the (τ (n)) is a non-monotone or
non-decreasing sequence. So, in the present paper, our aim is to obtain new oscillatory
conditions for all solutions of Eq. (1). Consider the nonlinear difference equation with
general argument

�x(n) + p(n)f
(
x
(
τ (n)

))
= 0, n = 0, 1, . . . , (1)

where (p(n))n≥0 is a sequence of nonnegative real numbers and (τ (n))n≥0 is a sequence of
integers such that

τ (n) ≤ n – 1 for all n ≥ 0 and lim
n→∞ τ (n) = ∞ (2)

and

f ∈ C(R,R) and xf (x) > 0 for x �= 0. (3)
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� denotes the forward difference operator �x(n) = x(n + 1) – x(n).
Define

r = – min
n≥0

τ (n).

Clearly, r is a positive integer.
By a solution of the difference equation (1), we mean a sequence of real numbers

(x(n))n≥–r which satisfies (1) for all n ≥ 0.
A solution (x(n))n≥–r of the difference equation (1) is called oscillatory, if the terms x(n)

of the sequence are neither eventually positive nor eventually negative. Otherwise, the
solution is said to be nonoscillatory.

If f (x) = x, then Eq. (1) takes the form

�x(n) + p(n)x
(
τ (n)

)
= 0, n = 0, 1, . . . . (4)

In particular, if we take τ (n) = n – �, where � > 0, then Eq. (4) reduces to

�x(n) + p(n)x(n – �) = 0. (5)

In 1989, Erbe and Zhang [8] proved that each one of the conditions

lim inf
n→∞ p(n) >

��

(� + 1)�+1 (6)

and

lim sup
n→∞

n∑

j=n–�

p(j) > 1 (7)

is sufficient for all solutions of (5) to be oscillatory.
In the same year, 1989, Ladas, Philos and Sficas [12] established that all solutions of (5)

are oscillatory if

lim inf
n→∞

[
1
�

n–1∑

j=n–�

p(j)

]

>
��

(� + 1)�+1 . (8)

Clearly, condition (7) improves to (5).
In 1991, Philos [15] extended the oscillation criterion (8) to the general case of Eq. (4),

by establishing that, if the sequence (τ (n))n≥0 is increasing, then the condition

lim inf
n→∞

[
1

n – τ (n)

n–1∑

j=τ (n)

p(j)

]

> lim sup
n→∞

(n – τ (n))n–τ (n)

(n – τ (n) + 1)n–τ (n)+1 (9)

suffices for the oscillation of all solutions of Eq. (4).
In 1998, Zhang and Tian [20] found that if (τ (n)) is non-decreasing,

lim
n→∞

(
n – τ (n)

)
= ∞ (10)
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and

lim inf
n→∞

n–1∑

j=τ (n)

p(j) >
1
e

, (11)

then all solutions of Eq. (4) are oscillatory.
Later, in 1998, Zhang and Tian [21] found that if (τ (n)) is non-decreasing or non-

monotone,

lim sup
n→∞

p(n) > 0 (12)

and (10) holds, then all solutions of Eq. (4) are oscillatory.
In 2008, Chatzarakis, Koplatadze and Stavroulakis [3] proved that if (τ (n)) is non-

decreasing or non-monotone h(n) = max0≤s≤n τ (s),

lim sup
n→∞

n∑

j=τ (n)

p(j) > 1, (13)

then all solutions of Eq. (3) are oscillatory.
In 2008, Chatzarakis, Koplatadze and Stavroulakis [4] proved that if (τ (n)) is non-

decreasing or non-monotone, h(n) = max0≤s≤n τ (s),

lim sup
n→∞

n∑

j=τ (n)

p(j) < ∞ (14)

and (10) holds, then all solutions of Eq. (4) are oscillatory.
In 2006, Yan, Meng and Yan [18] found that if (τ (n)) is non-decreasing,

lim inf
n→∞

n–1∑

j=τ (n)

p(j) > 0 (15)

and

lim inf
n→∞

n–1∑

j=τ (n)

p(j)
(

j – τ (j) + 1
j – τ (j)

)j–τ (j)+1

> 1, (16)

then all solutions of Eq. (4) are oscillatory.
In 2016, Öcalan [16] proved that if (τ (n)) is non-decreasing or non-monotone, h(n) =

max0≤s≤n τ (s) and (16) holds, then all solutions of Eq. (4) are oscillatory.
Set

k(n) =
(

n – τ (n) + 1
n – τ (n)

)n–τ (n)+1

, n ≥ 1. (17)

Clearly

e ≤ k(n) ≤ 4, n ≥ 1. (18)
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Observe that it is easy to see that

n–1∑

j=τ (n)

p(j)k(j) ≥ e
n–1∑

j=τ (n)

p(j)

and therefore condition (16) is better than condition (11).
When the case τ (n) = n – �, where � > 0, then Eq. (1) reduces to

�x(n) + p(n)f
(
x(n – �)

)
= 0, n = 0, 1, . . . . (19)

For Eq. (19), we can suggest references [11] and [17] for the reader.

2 Main results
In this section we investigated the oscillatory behavior of all solutions of Eq. (1). We
present new sufficient conditions for the oscillation of all solutions of Eq. (1) under the
assumption that the argument (τ (n)) is non-monotone or non-decreasing sequence. Set

h(n) = max
0≤s≤n

τ (s). (20)

Clearly, (h(n)) is non-decreasing, and τ (n) ≤ h(n) for all n ≥ 0. We note that if (τ (n)) is
non-decreasing, then we have τ (n) = h(n) for all n ≥ 0.

Assume that the f in Eq. (1) satisfies the following condition:

lim sup
x→0

x
f (x)

= M, 0 ≤ M < ∞. (21)

Theorem 1 Assume that (2), (3) and (21) hold. If (τ (n)) is non-monotone or non-
decreasing, and

lim inf
n→∞

n–1∑

j=τ (n)

p(j) >
M
e

, (22)

then all solutions of Eq. (1) oscillate.

Proof Assume, for the sake of contradiction, that (x(n)) is an eventually positive solution
of (1). Then there exists n1 ≥ n0 such that x(n), x(τ (n)), x(h(n)) > 0 for all n ≥ n1. Thus,
from Eq. (1) we have

�x(n) = –p(n)f
(
x
(
τ (n)

)) ≤ 0 for all n ≥ n1.

Thus (x(n)) is non-increasing and has a limit k ≥ 0 as n → ∞. Now, we claim that k = 0.
Otherwise, k > 0. By (3), f (x) > 0 and then limn→∞ f (x(n)) = f (k) > 0. So, summing up (1)
from n1 to n – 1, we get

x(n) = x(n1) –
n–1∑

j=n1

p(j)f
(
x
(
τ (j)

))
. (23)
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On the other hand, condition (22) implies that

∞∑

j=n1

p(j) = ∞. (24)

In view of (23) and (24), we obtain for n → ∞

k = x(n1) – f (k)
∞∑

j=n1

p(j) = –∞.

This is a contradiction to the fact that k > 0. Therefore limn→∞ x(n) = 0. Now, suppose
M > 0. Then, in view of (21) we can choose n2 ≥ n1 so large that

f
(
x(n)

) ≥ 1
2M

x(n) for n ≥ n2. (25)

On the other hand, we know from [4, Lemma 1.5] (also see [16, Lemma 1]) that

lim inf
n→∞

n–1∑

j=τ (n)

p(j) = lim inf
n→∞

n–1∑

j=h(n)

p(j). (26)

Since h(n) ≥ τ (n) and (x(n)) is non-increasing, by (1) and (25) we have

�x(n) +
1

2M
p(n)x

(
h(n)

) ≤ 0, n ≥ n3. (27)

Also, from (22) and (26), it follows that there exists a constant c > 0 such that

n∑

j=h(n)

p(j) ≥
n–1∑

j=h(n)

p(j) ≥ c >
M
e

, n ≥ n3 ≥ n2. (28)

So, from (28), there exists an integer n∗ ∈ (h(n), n), for all n ≥ n3 such that

n∗∑

j=h(n)

p(j) >
M
2e

and
n∑

j=n∗
p(j) >

M
2e

. (29)

Summing up (27) from h(n) to n∗ and using (x(n)) is non-increasing, then we have

x
(
n∗ + 1

)
– x

(
h(n)

)
+

1
2M

n∗∑

j=h(n)

p(j)x
(
h(j)

) ≤ 0,

or

x
(
n∗ + 1

)
– x

(
h(n)

)
+

1
2M

x
(
h
(
n∗))

n∗∑

j=h(n)

p(j) ≤ 0.

Thus, by (29), we have

–x
(
h(n)

)
+

1
2M

x
(
h
(
n∗))M

2e
< 0. (30)
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Summing (27) from n∗ to n and using the same facts, we get

x(n + 1) – x
(
n∗) +

1
2M

n∑

j=n∗
p(j)x

(
h(j)

) ≤ 0.

Thus, by (29), we have

–x
(
n∗) +

1
2M

x
(
h(n)

)M
2e

< 0. (31)

Combining the inequalities (30) and (31), we obtain

x
(
n∗) > x

(
h(n)

) 1
4e

> x
(
h
(
n∗))

(
1
4e

)2

,

and hence we have

x(h(n∗))
x(n∗)

< (4e)2 for n ≥ n4.

Let

w = lim inf
n→∞

x(h(n∗))
x(n∗)

≥ 1, (32)

and because of 1 ≤ w ≤ (4e)2, w is finite.
Now dividing (1) with x(n) and then summing up from h(n) to n – 1, we obtain

n–1∑

j=h(n)

�x(j)
x(j)

+
n–1∑

j=h(n)

p(j)
f (x(τ (j)))

x(j)
= 0. (33)

It is well known that

ln

(
x(n)

x(h(n))

)
≤

n–1∑

j=h(n)

�x(j)
x(j)

. (34)

So, by (33) and (34), we have

ln

(
x(n)

x(h(n))

)
+

n–1∑

j=h(n)

p(j)
f (x(τ (j)))

x(τ (j))
x(τ (j))

x(j)
≤ 0.

Since h(n) ≥ τ (n) and (x(n)) is non-increasing, we get

ln

(
x(h(n))

x(n)

)
≥

n–1∑

j=h(n)

p(j)
f (x(τ (j)))

x(τ (j))
x(h(j))

x(j)
. (35)

Taking lower limits on both of (35) and using (21), (22) and (32), we obtain ln(w) > w
e . But

this is impossible since ln(x) ≤ x
e for all x > 0.
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Now, we consider the case where M = 0. In this case, it is clear that by (21), we have

lim
x→0

x
f (x)

= 0. (36)

Since x
f (x) > 0, by (36), for sufficiently large integers, we get

x
f (x)

< ε

and

f (x)
x

>
1
ε

, (37)

where ε > 0 is an arbitrary real number. Thus, since τ (n) ≤ h(n) and (h(n)) is non-
decreasing, by (1) and (37), we have

�x(n) +
1
ε

p(n)x
(
h(n)

)
< 0, n ≥ n1. (38)

Summing up (38) from h(n) to n, we obtain

x(n + 1) – x
(
h(n)

)
+

1
ε

n∑

j=h(n)

p(j)x
(
h(j)

)
< 0,

and so, we get

–x
(
h(n)

)
+

1
ε

x
(
h(n)

) n∑

j=h(n)

p(j) < 0. (39)

Thus, by (28) and (39), we can write

c
ε

< 1

or

ε > c.

This contradicts limx→0
x

f (x) = 0. The proof of the theorem is completed. �

Theorem 2 Assume that (2), (3), (24) and (21) hold with 0 < M < ∞. If (τ (n)) is non-
monotone, and

lim sup
n→∞

n∑

j=h(n)

p(j) > θM, (40)

where h(n) is defined by (20) and θ > 1 is a constant, then all solutions of Eq. (1) oscillate.
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Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution
(x(n)) of (1). In view of (24), we know from the proof of Theorem 1 that limn→∞ x(n) = 0
for n ≥ n1.

On the other hand, by (21) and for every θ > 1, there exists a δ > 0 such that

x
f (x)

≤ θM for |x| < δ.

Since x(n) → 0 as n → ∞, we can find a n2 such that 0 < x(n) < δ for n ≥ n2, which yields

x(n)
f (x(n))

≤ θM

or equivalently

f
(
x(n)

) ≥ 1
θM

x(n) for n ≥ n2. (41)

From Eqs. (1) and (41), we get

�x(n) +
1

θM
p(n)x

(
τ (n)

) ≤ 0.

Since h(n) ≥ τ (n) and (x(n)) is non-increasing, we obtain

�x(n) +
1

θM
p(n)x

(
h(n)

) ≤ 0. (42)

Summing up (42) from h(n) to n, and using the fact that (h(n)) is non-decreasing

x(n + 1) – x
(
h(n)

)
+

1
θM

n∑

j=h(n)

p(j)x
(
h(j)

) ≤ 0

or

–x
(
h(n)

)
+

1
θM

x
(
h(n)

) n∑

j=h(n)

p(j) < 0.

This implies

–x
(
h(n)

)
[

1 –
1

θM

n∑

j=h(n)

p(j)

]

< 0 for n ≥ n2

and hence

n∑

j=h(n)

p(j) < θM.

Therefore, we obtain

lim sup
n→∞

n∑

j=h(n)

p(j) ≤ θM.

This is a contradiction to (40). The proof is completed. �
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Now, assume that f is non-decreasing function, then we have the following result.

Theorem 3 Assume that (2), (3), (24) and (21) hold with 0 < M < ∞. If f is non-decreasing,
(τ (n)) is non-monotone and

lim sup
n→∞

n∑

j=h(n)

p(j) > M, (43)

where h(n) is defined by (20), then all solutions of Eq. (1) oscillate.

Proof Assume, for the sake of contradiction, that there exists a nonoscillatory solution
(x(n)) of (1). In view of (24), we know from the proof of Theorem 1 that limn→∞ x(n) = 0
for n ≥ n1.

Since τ (n) ≤ h(n), (x(n)) is non-increasing and (h(n)), f are non-decreasing, for Eq. (1),
we have

�x(n) + p(n)f
(
x
(
h(n)

)) ≤ 0. (44)

Summing up (44) from h(n) to n, we get

x(n + 1) – x
(
h(n)

)
+

n∑

j=h(n)

p(j)f
(
x
(
h(j)

)) ≤ 0

or

–x
(
h(n)

)
+ f

(
x
(
h(n)

)) n∑

j=h(n)

p(j) < 0

and so

–x
(
h(n)

)
[

1 –
f (x(h(n)))

x(h(n))

n∑

j=h(n)

p(j)

]

< 0.

Therefore

f (x(h(n)))
x(h(n))

n∑

j=h(n)

p(j) < 1

and hence, we have

lim sup
n→∞

n∑

j=h(n)

p(j) ≤ M.

This is a contradiction to (43). The proof is completed. �

Remark 1 We remark that if (τ (n)) is non-decreasing, then we have τ (n) = h(n) for all
n ∈ N. Therefore, the condition (40) in Theorem 2 and the condition (43) in Theorem 3,
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respectively, reduce to

lim sup
n→∞

n∑

j=τ (n)

p(j) > θM, (45)

and

lim sup
n→∞

n∑

j=τ (n)

p(j) > M. (46)

Now, we present an example to show the significance of our results.

Example 1 Consider the nonlinear delay difference equation

�x(n) +
1
e

x
(
τ (n)

)
ln

(
10 +

∣∣x
(
τ (n)

)∣∣) = 0, n ≥ 0, (47)

where

τ (n) =

⎧
⎪⎪⎨

⎪⎪⎩

n – 1 if n ∈ [3k, 3k + 1],

–3n + 12k + 3 if n ∈ [3k + 1, 3k + 2],

5n – 12k – 13 if n ∈ [3k + 2, 3k + 3],

k ∈ N0.

By (20), we see that

h(n) := max
s≤n

τ (s) =

⎧
⎪⎪⎨

⎪⎪⎩

n – 1 if n ∈ [3k, 3k + 1],

3k if n ∈ [3k + 1, 3k + 2.6],

5n – 12k – 13 if n ∈ [3k + 2.6, 3k + 3],

k ∈N0.

If we put p(n) = 1
e and f (x) = x ln(10 + |x|). Then we have

M = lim sup
x→0

x
f (x)

= lim sup
x→0

x
x ln(10 + |x|) =

1
ln(10)

and

lim inf
n→∞

n–1∑

j=τ (n)

p(j) =
1
e

>
M
e

=
1

e ln(10)
,

that is, all conditions of Theorem 1 are satisfied and therefore all solutions of (47) oscillate.
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