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Abstract
In this work, we deal with two-point Riemann–Liouville fractional boundary value
problems. Firstly, we establish a new comparison principle. Then, we show the
existence of extremal solutions for the two-point Riemann–Liouville fractional
boundary value problems, using the method of upper and lower solutions. The
performance of the approach is tested through a numerical example.
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1 Introduction
The purpose of this paper is to consider the existence of solution for the following non-
linear fractional differential equation with two-point boundary conditions:

⎧
⎨

⎩

LDα
a+ u(t) = f (t, u(t)), t ∈ (a, b), 1 < α < 2,

I2–α
a+ u(t)|t=a = A, u(b) = B,

(1.1)

where f ∈ C([a, b] × R, R); A, B ∈ R; LDα
a+ and I2–α

a+ denote the Riemann–Liouville frac-
tional derivative of order α and the Riemann–Liouville fractional integral of order 2 – α,
respectively.

The monotone iterative technique, combined with the method of upper and lower so-
lutions, is a powerful tool for proving the existence of solutions for nonlinear ordinary
differential equations [1–3] and for nonlinear Caputo fractional differential equations of
order 0 < α < 2, see [4–7] and the references therein. Also many people paid attention to
the existence result of solution of the initial value problem for fractional differential equa-
tions involving Riemann–Liouville fractional derivative of order 0 < α < 1, see [8–11] and
the references therein. However, only few papers considered the method of lower and up-
per solutions for Riemann–Liouville fractional differential equations with order 1 < α < 2.

In this paper, we present a method based on upper and lower solutions to prove the ex-
istence of solutions for Riemann–Liouville fractional differential equations (1.1). We es-
tablish a new comparison principle and show the existence of extremal solutions for (1.1),
applying the monotone iterative technique and the method of lower and upper solutions.
Moreover, we consider a numerical example to illustrate the accuracy of the presented
method.
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2 The comparison principle
Let C(J) denote the Banach space of all continuous functions from J = [a, b] into R with
the norm ‖x‖C = supt∈J |x(t)|. Let AC(J) be the space of functions f which are absolutely
continuous on J and ACm(J) = {f : J → R and f (m–1)(x) ∈ AC(J)}. To define the solutions
of (1.1), we also consider C2–α(J) = {x : x ∈ C(a, b], (t – a)2–αx(t) ∈ C(J), 1 < α < 2} with the
norm ‖x‖C2–α

= sup{(t – a)2–α|x(t)| : t ∈ J}. Obviously, the space C2–α(J) is a Banach space.
We recall the following definitions and basic properties from fractional calculus. For

more details, one can see [12].

Definition 2.1 The integral

Iα
a+ f (t) =

1
�(α)

∫ t

a
(t – s)α–1f (s) ds, α > 0,

is called Riemann–Liouville fractional integral of order α, where � is the gamma function.

Definition 2.2 For a function f (t) given in the interval [0,∞), the expression

LDα
a+ f (t) =

1
�(n – α)

(
d
dt

)n ∫ t

a
(t – s)n–α–1f (s) dt,

where n = [α] + 1, [α] denotes the integer part of number α > 0, is called the Riemann–
Liouville fractional derivative of order α.

Lemma 2.1 ([12]) Let α > 0, m = [α] + 1, and let xm–α(t) = Im–α
a+ x(t) be the fractional in-

tegral of order m – α. If x(t) ∈ L1(a, b) and xm–α(t) ∈ ACm(J), then we have the following
equality:

(
Iα

a+
)LDα

a+ x(t) = x(t) –
m∑

k=1

x(m–k)
m–α (a)

�(α – k + 1)
(t – a)α–k .

For 1 < α < 2 and u ∈ C2–α(J), we easily get

1
�(α – 1)

I2–α
a+ u(t)|t=a = lim

x→a+

[
(t – a)2–αu(t)

]
. (2.1)

From Lemma 2.1 and simple calculations, we also have the following.

Lemma 2.2 The linear boundary value problem

⎧
⎨

⎩

LDα
a+ u(t) + Mu(t) = σ (t), t ∈ (a, b),

I2–α
a+ u(t)|t=a = A, u(b) = B,

(2.2)

where M is a constant and σ ∈ C2–α(J), has the following integral representation of solution:

u(t) = B
(t – a)α–1

(b – a)α–1 + A
(t – a)α–2

�(α – 1)
– A

(t – a)α–1

�(α – 1)(b – a)

–
∫ b

a
G(t, s)

(
σ (s) – Mu(s)

)
ds,
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where

G(t, s) =
1

�(α)

⎧
⎨

⎩

(t–a)α–1

(b–a)α–1 (b – s)α–1 – (t – s)α–1, a ≤ s ≤ t ≤ b,
(t–a)α–1

(b–a)α–1 (b – s)α–1, a ≤ t ≤ s ≤ b.

By Lemma 2.2, we may say that u ∈ C2–α(J) is a solution of (1.1) if the following integral
equation holds:

u(t) = B
(t – a)α–1

(b – a)α–1 + A
(t – a)α–2

�(α – 1)
– A

(t – a)α–1

�(α – 1)(b – a)
–

∫ b

a
G(t, s)f

(
s, u(s)

)
ds. (2.3)

Lemma 2.3 ([5]) Let G be the Green function given in Lemma 2.2. Then
(1) G(t, s) ≥ 0 for all a ≤ t, s ≤ b;
(2) maxt∈J G(t, s) = G(s, s), s ∈ J ;
(3) G(s, s) has a unique maximum, given by

max
s∈J

G(s, s) = G
(

a + b
2

,
a + b

2

)

=
1

�(α)

(
b – a

4

)α–1

;

(4)
∫ b

a G(t, s) ds ≤ 1
�(α)

(α–1)α–1

αα+1 (b – a)α .

Lemma 2.4 Suppose that M satisfies the following inequality:

0 ≤ M <
4α–1(α – 1)�(α)

(b – a)α
. (2.4)

Then problem (2.2) has a unique solution.

Proof Define the operator T : C2–α(J) → C2–α(J) by

(Tu)(t) = B
(t – a)α–1

(b – a)α–1 + A
(t – a)α–2

�(α – 1)
– A

(t – a)α–1

�(α – 1)(b – a)

–
∫ b

a
G(t, s)

(
σ (s) – Mu(s)

)
ds.

We will show that the operator T has a unique fixed point. Let u, v ∈ C2–α(J). By
Lemma 2.3, one has

‖Tu – Tv‖C2–α
= max

t∈J

{

(t – a)2–α

∣
∣
∣
∣

∫ b

a
G(t, s)

(
Mu(s) – Mv(s)

)
ds

∣
∣
∣
∣

}

≤ max
t∈J

{

(t – a)2–α M
�(α)

(
b – a

4

)α–1 ∫ b

a

∣
∣u(s) – v(s)

∣
∣ds

}

≤ max
t∈J

(t – a)2–α M
�(α)

(
b – a

4

)α–1 ∫ b

a
(s – a)α–2 ds‖u – v‖C2–α

≤ (b – a)2–α M
�(α)

(
b – a

4

)α–1 (b – a)α–1

α – 1
‖u – v‖C2–α

=
M(b – a)α

4α–1(α – 1)�(α)
‖u – v‖C2–α

.
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That is to say, T is a contracting operator on C2–α(J). Therefore, the operator T has a
unique fixed point, and we get the desired result. �

The key tool to get our main results is the following comparison principle.

Lemma 2.5 If x ∈ C2–α(J) and satisfies the relations
⎧
⎨

⎩

LDα
a+ x(t) + Mx(t) ≥ 0, t ∈ (a, b),

I2–α
a+ x(t)|t=a ≤ 0, x(b) ≤ 0,

(2.5)

with

0 ≤ M < �(α)
αα+1(α – 1)1–α

(b – a)α
. (2.6)

Then, for any t ∈ (a, b), x(t) ≤ 0.

Proof Suppose that there exists t ∈ (a, b) such that x(t) > 0. Let x(t∗) = max{x(t) : t ∈
(a, b)} = ρ , ρ > 0. From (2.5), there exist q(t) ≥ 0 and A∗ ≤ 0, B∗ ≤ 0 such that

⎧
⎨

⎩

LDα
a+ x(t) + Mx(t) – q(t) = 0, t ∈ (a, b),

I2–α
a+ x(t)|t=a = A∗, x(b) = B∗.

By Lemmas 2.2 and 2.3, we obtain that ∀t ∈ (a, b),

x(t) = B∗ (t – a)α–1

(b – a)α–1 + A∗ (t – a)α–2

�(α – 1)
– A∗ (t – a)α–1

�(α – 1)(b – a)
–

∫ b

a
G(t, s)

(
q(s) – Mx(s)

)
ds

≤
∫ b

a
G(t, s)

(
Mx(s) – q(s)

)
ds ≤ M

∫ b

a
G(t, s)x(s) ds

≤ M
1

�(α)
(α – 1)α–1

αα+1 (b – a)αρ.

Let t = t∗, one has

ρ ≤ M
1

�(α)
(α – 1)α–1

αα+1 (b – a)αρ.

So

M
1

�(α)
(α – 1)α–1

αα+1 (b – a)α ≥ 1,

which contradicts M 1
�(α)

(α–1)α–1

αα+1 (b – a)α < 1. Hence x(t) ≤ 0, ∀t ∈ (a, b). The proof is com-
plete. �

Remark 2.1 Note that the following inequality

1
�(α)

(α – 1)α–1

αα+1 (b – a)α ≤ 1
�(α)

(b – a)α

(α – 1)4α–1

holds, i.e., (2.4) implies (2.6).
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For problem (1.1), we list the definitions of upper and lower solutions below.

Definition 2.3 A function ϕ ∈ C2–α(J) is called a lower solution of problem (1.1) if it
satisfies

⎧
⎨

⎩

LDα
a+ϕ(t) ≥ f (t,ϕ(t)), t ∈ (a, b),

I2–α
a+ ϕ(t)|t=a ≤ A, ϕ(b) ≤ B.

(2.7)

Analogously, the function φ ∈ C2–α(J) is called an upper solution of problem (1.1) if it
satisfies

⎧
⎨

⎩

LDα
a+φ(t) ≤ f (t,φ(t)), t ∈ (a, b),

I2–α
a+ φ(t)|t=a ≥ A, φ(b) ≥ B.

(2.8)

The following assumptions will be used in the sequel:
(H) Let φ and ϕ be a couple of upper and lower solutions of (1.1), and let (2.4) hold.

f : J × R → R satisfies

f (t, u) – f (t, v) ≤ –M(u – v) for ϕ(t) ≤ v ≤ u ≤ φ(t). (2.9)

3 The main result
In this section, we prove the existence of extremal solutions of problem (1.1) by the mono-
tone iterative technique.

Theorem 3.1 Let (H) hold. Suppose that η, θ ∈ C2–α(J) such that
⎧
⎨

⎩

LDα
a+η(t) + Mη(t) = f (t,ϕ(t)) + Mϕ(t), t ∈ (a, b),

I2–α
a+ η(t)|t=a = A, η(b) = B,

(3.1)

⎧
⎨

⎩

LDα
a+θ (t) + Mθ (t) = f (t,φ(t)) + Mφ(t), t ∈ (a, b),

I2–α
a+ θ (t)|t=a = A, θ (b) = B.

(3.2)

Then ϕ(t) ≤ η(t) ≤ θ (t) ≤ φ(t), and θ (t), η(t) are an upper and a lower solution of (1.1),
respectively.

Proof By Lemma 2.4, η and θ are well defined. Let m(t) = ϕ(t) – η(t). Then
⎧
⎨

⎩

LDα
a+ m(t) + Mm(t) = LDα

a+ϕ(t) – LDα
a+η(t) + Mϕ(t) – Mη(t) ≥ 0,

I2–α
a+ m(t)|t=a ≤ 0, m(b) ≤ 0.

(3.3)

By Lemma 2.5, we have m(t) ≤ 0, that is, ϕ(t) ≤ η(t), ∀t ∈ (a, b). A similar argument using
the property of upper solution of problem (1.1) gives θ (t) ≤ φ(t), ∀t ∈ (a, b).

Again, let ω(t) = η(t) – θ (t). By (2.9) , we have

⎧
⎪⎪⎨

⎪⎪⎩

LDα
a+ω(t) + Mω(t) = LDα

a+η(t) – LDα
a+θ (t) + Mη(t) – Mθ (t)

= f (t,ϕ(t)) – f (t,φ(t)) – M(φ(t) – ϕ(t)) ≥ 0,

I2–α
a+ ω(t)|t=a ≤ 0, ω(b) ≤ 0.

(3.4)
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By Lemma 2.5 again, we also have ω(t) ≤ 0, that is, η(t) ≤ θ (t), ∀t ∈ (a, b). Then

ϕ(t) ≤ η(t) ≤ θ (t) ≤ φ(t), t ∈ (a, b).

Next, we prove that η(t) is the lower solution of (1.1). Note that

LDα
a+η(t) = f

(
t,ϕ(t)

)
+ Mϕ(t) – Mη(t)

= f
(
t,ϕ(t)

)
+ Mϕ(t) – Mη(t) – f

(
t,η(t)

)
+ f

(
t,η(t)

) ≥ f
(
t,η(t)

)
, t ∈ (a, b).

Furthermore, by I2–α
a+ η(t)|t=a = A and η(b) = B and the definition of lower solution, we easily

get that η(t) is a lower solution of (1.1). Similarly, θ (t) is an upper solution of (1.1). The
proof is complete. �

Theorem 3.2 Suppose (H) holds, then there exist monotone iterative sequences {un}, {vn} ⊂
[ϕ,φ] such that un → u∗, vn → v∗ (n → ∞) uniformly in [ϕ,φ], and u∗, v∗ are a minimal
and a maximal generalized solution of (1.1) in [ϕ,φ], respectively.

Proof For any un–1, vn–1 ∈ C2–α(J), n ≥ 1, we may define two sequences {un}, {vn} ⊂ [ϕ,φ]
satisfying the following equation:

⎧
⎨

⎩

LDα
a+ un(t) + Mun(t) = f (t, un–1(t)) + Mun–1(t), t ∈ (a, b),

I2–α
a+ un(t)|t=a = A, un(b) = B.

(3.5)

⎧
⎨

⎩

LDα
a+ vn(t) + Mvn(t) = f (t, vn–1(t)) + Mvn–1(t), t ∈ (a, b),

I2–α
a+ vn(t)|t=a = A, vn(b) = B.

(3.6)

By Lemma 2.4, {un} and {vn} are well defined. Now, using Theorem 3.1 and induction, we
immediately conclude that

ϕ = u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0 = φ.

Using the standard arguments, moreover, it is easy to show that {(t – a)2–αun} and
{(t – a)2–αvn} are uniformly bounded and equicontinuous in C(J). By the Arzela–Ascoli
theorem, we obtain that (t – a)2–αun → (t – a)2–αu∗, (t – a)2–αvn → (t – a)2–αv∗ (n → ∞)
uniformly in J , i.e., un → u∗, vn → v∗ (as n → ∞) in C2–α(J) and that u∗, v∗ ∈ [ϕ,φ] are
solutions of problem (1.1).

Finally, we prove that u∗ and v∗ are a minimal and a maximal solution of (1.1) in [ϕ,φ],
respectively. Let u(t) ∈ C2–α(J) be any solution of (1.1). Suppose that there exists a positive
integer n such that un(t) ≤ u(t) ≤ vn(t), t ∈ J . Let λ(t) = un+1(t) – u(t). By (2.9), we have

LDα
a+λ(t) + Mλ(t) = LDα

a+
(
un+1(t) – u(t)

)
+ M

(
un+1(t) – u(t)

)

= f
(
t, un(t)

)
+ M

(
un(t) – un+1(t)

)
– f

(
t, u(t)

)
+ M

(
un+1(t) – u(t)

)

≥ 0, t ∈ (a, b).

Besides, I2–α
a+ λ(t)|t=a = 0 and λ(b) = 0. By Lemma 2.5, we get λ ≤ 0, that is, un+1(t) ≤ u(t).

Similar to the proof of above, we get u(t) ≤ vn+1(t). Since u0 ≤ u(t) ≤ v0, then un ≤ u(t) ≤
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vn, by induction, taking the limit n → ∞, we obtain u∗ ≤ u(t) ≤ v∗. This completes the
proof. �

4 Numerical example
We apply the previous analysis and general numerical scheme to an example to verify the
performance of the proposed approach.

Consider the following problem:

⎧
⎨

⎩

LD
3
2
0+ u(t) + 1

30 u2(t)et + 1
30 u(t)et + 1

30 et = 0, t ∈ (0, 1),

I1/2
0+ u(t)|t=0 = 0, u(1) = 0.

(4.1)

Taking u0(t) ≡ 0, v0(t) ≡ 1, we have

⎧
⎨

⎩

LD
3
2
0+ 0 + 1

30 et ≥ 0, t ∈ (0, 1),

I1/2
0+ u0(t)|t=0 = 0, u0(1) = 0,

⎧
⎨

⎩

LD
3
2
0+ 1 + et

10 = et

10 – 1
2
√

π
t– 3

2 ≤ 0, t ∈ (0, 1),

I1/2
0+ v0(t)|t=0 = 0, v0(1) = 1 ≥ 0,

which shows that u0(t) and v0(t) are a lower and an upper solution of (4.1), respectively.
On the other hand, note that f (t, u(t)) = – 1

30 u2(t)et – 1
30 u(t)et – 1

30 et is valid for

f (t, x) – f (t, y) ≤ –
1

30
(x – y), ∀t ∈ [0, 1],

where u0(t) ≤ y ≤ x ≤ v0(t). Hence the constant M used in the algorithm is M = 1
30 <

√
π

2 .
To sum up, condition (H) of Theorem 3.2 is satisfied. Then (4.1) has two extremal gen-
eralized solutions u∗, v∗ ∈ [u0, v0] which are obtained by taking limits from its iterative
sequences.

Applying Lemma 2.2 and (4.1) to (3.5) and (3.6), we have

un(t) =
1

30

∫ 1

0
G(t, s)

[
esu2

n–1(s) +
(
es – 1

)
un–1(s) + un(s) + es]ds, (4.2)

where

G(t, s) =
2√
π

⎧
⎨

⎩

t 1
2 (1 – s) 1

2 – (t – s) 1
2 , 0 ≤ s ≤ t ≤ 1,

t 1
2 (1 – s) 1

2 , 0 ≤ t ≤ s ≤ 1,

and a similar formula for vn(t). Let uni ≈ un(ti), f n
j = esj u2

n(sj) + (esj – 1)un(sj) + esj , and
Gij = G(ti, sj). Then, using the composite trapezoidal quadrature formula to approximate
the integral on the right-hand side of (4.2), we can obtain the following linear system:

uni =
h

30

N∑

j=1

Gijunj +
h

30

N∑

j=1

Gijf n–1
j , (4.3)
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Table 1 The performance of the error value E(n), for example

n 0 1 2 3 4

E(n) 1.0000 0.0247 8.3537×10–7 4.4207×10–9 2.3160×10–11

Figure 1 The graphs of un and vn , n = 0, 1, 2, 3, for example

where ti = ih, h = 1
N , 0 < i ≤ N , N ∈ N+. So, (4.3) can be written as a matrix-vector system:

(

I –
h

30
(Gij)

)

Un =
(

h
30

(Gij)
)

Fn–1,

where Un = (un1, un2, . . . , unN )T , Fn–1 = (f n–1
1 , f n–1

2 , . . . , f n–1
N )T and I is an identity matrix.

Here, for a given accuracy ε, we take un and vn as ε-accurate approximations of u∗

and v∗, respectively, according to the stopping criteria E(n) < ε, E(n) is defined by E(n) =
max{|vn(t) – un(t)| : t ∈ (0, 1]}. We found that for ε = 10–10, at n = N = 4, error values
E(4) < ε. Table 1 displays E(n) versus n for selected values of n, and the graphs of un, vn,
for selected values of n, are plotted in Fig. 1.
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