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Abstract
This paper presents of some new Wirtinger-type integral inequalities by using Bessel
functions. We establish one weighted Wirtinger inequality.
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1 Introduction
The Wirtinger inequality plays a very important role in the theory of approximation, the
theory of Sobolev’s spaces, the theory of function of several variables and functional anal-
ysis. In 1916. Wirtinger established an integral inequality.

Theorem 1.1 (Wirtinger inequality) Let f : R →R be a continuous periodic function with
period 2π and let f ′ ∈ L2. Then, if

∫ 2π

0 f (x) dx = 0 the following inequality holds:

∫ 2π

0
f 2(x) dx ≤

∫ 2π

0
f ′2(x) dx,

with equality if and only if f (x) = a cos x + b sin x, where a and b are constants.

Theorem 1.2 Let f (x) be a smooth function with period 2π . Then, for all real t,

∫ 2π

0

[
f (x) – f (x + t)

]2 dx ≤ 4 sin2 t
2

∫ 2π

0
f ′2(x) dx. (1)

Equality is attained if and only if f (x) = a cos x + b sin x + c, where a, b, c are real constants
(for t = 0 equality holds always).

In [1], Beesack obtained the following generalization of the Wirtinger inequality: If k > 1,
f (x) ∈ C1([0,π ]), f (0) = 0, then

∫ π

0

(
f ′(x)

)2k dx ≥ 2k – 1
(k sin π

2k )2k

∫ π

0
f 2k(x) dx, k ≥ 1. (2)

In [2], Hall proved the following theorem:
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Theorem 1.3 Suppose that k ∈ N , f (x) ∈ C2[0,π ] and f (0) = f (π ) = 0. Let H(u) be an even
function, increasing and strictly convex on R+, and such that H(0) = H ′(0) = 0; moreover,
uH ′′(u) → 0 as u → 0. Then we have

∫ π

0
H

(
f ′(x)/f (x)

)
f 2k(x) ≥ (2k – 1)λ

∫ π

0
f 2k(x) dx, λ = λ(k, H), (3)

where λ = λ(k, H) is determined by the equation

∫ ∞

0

G′(u)
G(u) + (2k – 1)λ

du
u

= kπ , G(u) := uH ′(u) – H(u). (4)

For each non-negative constant p, the associated Bessel equation is

x2 d2y
dx2 + x

dy
dx

+
(
x2 – p2)y = 0. (5)

Since Bessel’s differential equation is a second-order equation, there must be two linearly
independent solutions, which are called Bessel functions. These functions play important
roles in many areas of applied mathematics (see [3, 4]). Typically the general solution is
given as

y = a1Jp(x) + a2Yp(x),

where a1 and a2 are arbitrary constants.
Special functions Jp(x) are Bessel functions of the first kind, which are finite at x = 0 for

all real values of p, and Yp(x) are Bessel functions of the second kind, which are singular
at x = 0.

The Bessel function of the first kind of order p can be determined using an infinite power
series expansion as follows: Jp(x) =

∑+∞
k=0

(–1)k

k!�(k+p+1) ( x
2 )2k+p. Since �(k + 1) = k!, it follows that

Jp(x) =
+∞∑

k=0

(–1)k

k!(k + p)!

(
x
2

)2k+p

. (6)

For integer order p, functions Jp and J–p are not linearly independent, J–p = (–1)pJp. In
contrast, for non-integer orders, Jp and J–p are linearly independent.

The most important Bessel functions are J0(x) and J1(x). For p = – 1
2 and p = 1

2 , this func-
tions expansion as follows:

J–1/2(x) =
√

2
πx

cos x, (7)

J1/2(x) =
√

2
πx

sin x. (8)

2 Main results
Theorem 2.1 Let f ′ ∈ L2k on [0,π ], with f (0) = f (π ) = 0. Then the following inequality
holds:

∫ π

0
f 2k(x) dx ≤ 1

2k – 1

(
π

2

)2k(∫ π
2

0
J0

(
π

2k
cos t

)

cos t dt
)2k ∫ π

0
f ′2k(x) dx. (9)
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Proof Since Jn(z) = ( z
2 )n ∑+∞

r=0 (–1)r ( z
2 )2r

r!(n+r)! , it follows that J0( π
2k cos t) =

∑+∞
r=0 (–1)r ( π

2k
cos t

2 )2r

(r!)2 .

∫ π
2

0
J0

(
π

2k
cos t

)

cos t dt =
∫ π

2

0

+∞∑

r=0

(–1)r ( π
2k

cos t
2 )2r

(r!)2 cos t dt

=
+∞∑

r=0

(–1)r π2r

(2k)2r22r(r!)2

∫ π
2

0
cos2r+1 t dt.

Using the integration by parts formula on the integral I2r+1 =
∫ π

2
0 cos2r+1 t dt and the fact

that
∫ π/2

0 cos t dt = 1, we obtained the recurrence relation I2r+1 = 2r
2r+1 I2r–1, which implies

I2r+1 = (2r)!!
(2r+1)!! = ((2r)!!)2

(2r+1)! = (2rr!)2

(2r+1)! .
The above equality becomes

∫ π
2

0
J0

(
π

2k
cos t

)

cos t dt =
+∞∑

r=0

(–1)r π2r

(2k)2r22r(r!)2
(2rr!)2

(2r + 1)!

=
2k
π

+∞∑

r=0

(–1)r ( π
2k )2r+1

(2r + 1)!
=

2k
π

sin
π

2k
,

which implies

sin2k π

2k
=

(
π

2k

)2k(∫ π
2

0
J0

(
π

2k
cos t

)

cos t dt
)2k

.

By (2) it follows that
∫ π

0
f 2k(x) dx

≤ 1
2k – 1

k2k π2k

4kk2k

(∫ π
2

0
J0

(
π

2k
cos t

)

cos t dt
)2k ∫ π

0
f ′2k(x) dx,

∫ π

0
f 2k(x) dx

≤ 1
2k – 1

(
π

2

)2k(∫ π
2

0
J0

(
π

2k
cos t

)

cos t dt
)2k ∫ π

0
f ′2k(x) dx. �

Theorem 2.2 If f ′ ∈ L2k is absolutely continuous on [0,π ], with f (0) = f (π ) = 0 then

∫ π

0
f 2k(x) dx ≤ π2k

2k + 1
C(k)

∫ π

0
f ′2(x)f 2(k–1)(x) dx, (10)

where C(k) :=
∫ π

2
0 xk J2k

1/2(x) dx
∫ π

2
0 xk+1J2k+1

1/2 (x) dx
.

Proof Starting with the right side of (10), we obtain

π2k

2k + 1
C(k)

∫ π

0
f ′2(x)f 2(k–1)(x) dx

=
π2k

2k + 1

∫ π
2

0 xkJ2k
1/2(x) dx

∫ π
2

0 xk+1J2k+1
1/2 (x) dx

∫ π

0
f ′2(x)f 2(k–1)(x) dx



Mirković Advances in Difference Equations  (2018) 2018:206 Page 4 of 5

=
π2k ∫ π

2
0 xk(

√
2

πx )2k sin2k x dx

(2k + 1)
∫ π

2
0 xk+1(

√
2

πx )2k+1 sin2k+1 x dx

∫ π

0
f ′2(x)f 2(k–1)(x) dx

=
π2k

2k + 1

√
π

2

∫ π
2

0 sin2k x dx
∫ π

2
0 sin2k+1 x dx

∫ π

0
f ′2(x)f 2(k–1)(x) dx.

Since
∫ π

2
0 sinp x cosq x dx = �( p+1

2 )�( q+1
2 )

2�( p+q
2 +1) , for p = 2k and q = 0, we get

∫ π
2

0 sin2k x dx =
�( 1

2 )�( 2k+1
2 )

2�(k+1) ; For p = 2k + 1 and q = 0, we get
∫ π

2
0 sin2k+1 x dx = �( 1

2 )�(k+1)
2�( 2k+3

2 )
.

By integrating by parts, we obtain �( 2k+1
2 ) = (2k)!

2kk!
√

π , �( 2k+3
2 ) = (2k+1)!

22k+1k!
√

π , and since
�( 1

2 ) =
√

π , �(k + 1) = k!, it follows

π2k

2k + 1

√
π

2

π
2

(2k)!
22k (k!)2

(k!)2

(2k+1)!

∫ π

0
f ′2(x)f 2(k–1)(x) dx

=
1

2k + 1

(√
π

2

)2k+ 3
2 ((2k)!)2(2k + 1)

(2kk!)2(k!)2

∫ π

0
f ′2(x)f 2(k–1)(x) dx

=
1

2k + 1

(√
π

2

)2k+ 3
2
(

(2k – 1)!
k(k!)

)2

k2
∫ π

0
f ′2(x)f 2(k–1)(x) dx.

If in (4) we put H(u) = u2, G(u) = u2, then (6) gives λ = 1
k2(2k–1) , so (3) becomes

∫ π

0
f ′2(x)f 2(k–1)(x) dx ≥ 1

k2

∫ π

0
f 2k(x) dx,

which implies

π2k

2k + 1
C(k)

∫ π

0
f ′2(x)f 2(k–1)(x) dx ≥

(√
π

2

)2k+ 3
2
(

(2k – 1)!
k(k!)

)2 ∫ π

0
f 2k(x) dx.

Since (
√

π
2 )2k+ 3

2 > 1 and ( (2k–1)!
k(k!) )2 > 1, inequality (10) is established. �

Theorem 2.3 Let f (x) be a smooth function with period 2π . Then, for all real t,

∫ 2π

0

[
f (x) – f (x + t)

]2 dx ≤ tπ J2
1/2

(
t
2

)∫ 2π

0
f ′2(x) dx. (11)

Equality is attained if and only if f (x) = A cos x+B sin x+C, where A, B, C are real constants
(for t = 0 equality holds always).

Proof From the equation J2
n (t) = 2

π

∫ π
2

0 J2n(2t cos x) dx, for n = 1
2 , the right side of (11) be-

comes

2t
∫ π

2

0
J1(t cos x) dx

∫ 2π

0
f ′2(x) dx

= 2t
∫ π

2

0

+∞∑

n=0

(–1)n

n!(n + 1)!

(
t cos x

2

)2n+1

dx
∫ 2π

0
f ′2(x) dx
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= 2t
+∞∑

n=0

(–1)n

n!(n + 1)!

(
t
2

)2n+1 ∫ π
2

0
cos2n+1 x dx

∫ 2π

0
f ′2(x) dx

= 2t
+∞∑

n=0

(–1)n

n!(n + 1)!
t2n+1

2 · 22n
22nn!n!

(2n + 1)!

∫ 2π

0
f ′2(x) dx

= t
+∞∑

n=0

(–1)nn!t2n+1

(n + 1)n!(2n + 1)!

∫ 2π

0
f ′2(x) dx

= t
+∞∑

n=0

(–1)nt2n+1

(n + 1)(2n + 1)!

∫ 2π

0
f ′2(x) dx

= t
[

t
1!

–
t3

2 · 3!
+

t5

3 · 5!
–

t7

4 · 7!
+ · · ·

]∫ 2π

0
f ′2(x) dx

= t
[

2t2

2!t
–

4t4

2 · 4!t
+

6t6

3 · 6!t
–

8t8

4 · 8!t
+

10t10

5 · 10!t
– · · ·

]∫ 2π

0
f ′2(x) dx

= 2t
[

t2

2!t
–

t4

4!t
+

t6

6!t
–

t8

8!t
+

t10

10!t
– · · ·

]∫ 2π

0
f ′2(x) dx

= 2t
+∞∑

n=1

(–1)n+1 t2n

t(2n)!

∫ 2π

0
f ′2(x) dx

= t

(

1 –
+∞∑

n=0

(–1)n t2n

(2n)!

)∫ 2π

0
f ′2(x) dx

= 2(1 – cos t)
∫ 2π

0
f ′2(x) dx = 4 sin2 t

2

∫ 2π

0
f ′2(x) dx.

Equation (1) implies the desired inequality (11). �
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