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Abstract
In this paper, we study a kind of difference equations with Riemann–Liouville-like
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1 Introduction
In this paper, we study the fractional difference equation

⎧
⎨

⎩

�α
α–1u(t) = f (t + α, u(t + α)), t ∈N0,α ∈ (0, 1],

�α–1
α–1u(t)|t=0 = u0,

(1.1)

where �α is the Riemann–Liouville-like fractional difference, which is defined in later
sections, f : Nα × R → R, f (t, u) is continuous with respect to t and u, and Nα = {α,α +
1,α + 2, . . .}.

In the last decade, fractional differential equations have been recognized as valuable
tools to describe many phenomena in various fields of engineering, physics, science, and
so on. A huge number of results focused on fractional differential equations; see the
monographs of Kilbas et al. [12] and Zhou [17, 18], the papers [1, 10], and the references
therein. Within the past ten years, however, there has been more interest in developing
discrete fractional equations, that is, fractional difference equations. This development
has demonstrated that fractional difference equations have a number of unexpected diffi-
culties and technical complications [2–6, 9, 13–15].

Motivated by the works mentioned, in this paper, we investigate the existence and at-
tractivity of solutions for fractional difference equations. In Sect. 2, we describe the dis-
crete fractional difference calculus and some properties. The main results are obtained
in Sect. 3. Using the Picard iteration method, we prove the existence of equation (1.1) in
Sect. 3.1. In Sect. 3.2, we also obtain the existence of attractive solutions for fractional
difference equations. Section 3.3 is devoted to inducing the existence and attractivity of
equation (1.1) by Schauder’s fixed point theorem according to the introduced weighted
space. Finally, we provide three examples to illustrate our results.
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2 Preliminaries
This section is devoted to some preliminary facts.

Definition 2.1 (see [5, 11]) Let ν > 0. The νth fractional sum is defined by

�–ν
a f (t) =

1
�(ν)

t–ν∑

s=a

(
t – σ (s)

)(ν–1)f (s), (2.1)

where f is defined for s = a mod (1), and �–ν
a f is defined for t = a + ν mod (1), t(ν) =

�(t+1)
�(t–ν+1) , σ (s) = s + 1, and � is the gamma function. The fractional sum �–ν maps functions
defined on Na to functions defined on Na+ν .

Definition 2.2 (see [5, 11]) Let μ > 0 and m – 1 ≤ μ ≤ m, where m is a positive integer.
The μth fractional difference is defined as

�μ
a f (t) = �m(

�–(m–μ)
a f (t)

)
. (2.2)

Lemma 2.1 (see [4]) Assume that μ + 1 is not a nonpositive integer. Then

�–ν
a t(μ) =

�(μ + 1)
�(μ + ν + 1)

t(μ+ν). (2.3)

Lemma 2.2 (see [4]) Assume that the following factorial functions are well defined. Then:
(i) �t(μ) = μt(μ–1);

(ii) (t – μ)t(μ) = t(μ+1);
(iii) μ(μ) = �(μ + 1);
(iv) t(μ+ν) = (t – ν)(μ)t(ν).

We indicate the following properties of the gamma function (see [7, 12]):
(i) for all x ∈R, excluding x = 0, –1, –2, . . . ,

�(x)�(1 – x) =
π

sin(πx)
;

(ii) the gamma function is logarithmically convex function on the positive real axis, that
is, log�(x) is convex.

By the log-convexity property of the gamma function we have that

�
(
λx + (1 – λ)y

) ≤ �λ(x)�1–λ(y), λ ∈ (0, 1), x, y > 0.

Lemma 2.3
(i) If 0 < α < 1, then (t(ν))α ≤ t(αν);

(ii) If α > 1 and ν > 0, then

(
t(–ν))α ≤ �(t – [t] + αν)

�α(t – [t] + ν)
t(–αν) for t ∈R

+.

Here [t] means the integer part of t.
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Proof The proof of (i) is given in [4]. Chen [8] proved (ii) for t ∈ N1. We prove (ii) for all
t ∈R

+:

�α–1(t + 1)�(t + αν + 1)�α
(
t – [t] + ν

)

= tα–1(t – 1)α–1 · · · (t – [t]
)α–1(t + αν)(t – 1 + αν) · · · (t – [t] + αν

)

× �
(
t – [t] + αν

)
�α

(
t – [t] + ν

)

=
[

tα

(

1 +
αν

t

)][

(t – 1)α
(

1 +
αν

t – 1

)]

· · ·
[
(
t – [t]

)α

(

1 +
αν

(t – [t])

)]

× �
(
t – [t] + αν

)
�α

(
t – [t] + ν

)

<
[

tα

(

1 +
ν

t

)α][

(t – 1)α
(

1 +
ν

t – 1

)α]

· · ·
[
(
t – [t]

)α

(

1 +
ν

(t – [t])

)α]

× �
(
t – [t] + αν

)
�α

(
t – [t] + ν

)

= (t + ν)α(t – 1 + ν)α · · · (t – [t] + ν
)α

�α
(
t – [t] + ν

)
�

(
t – [t] + αν

)

= �α(t + ν + 1)�
(
t – [t] + αν

)
,

where the inequality 1 + αν
t < (1 + ν

t )α is used. Then

�α–1(t + 1)
�α(t + ν + 1)

≤ �(t – [t] + αν)
�α(t – [t] + ν)

· 1
�(t + αν + 1)

.

Hence

(
t(–ν))α =

�α(t + 1)
�α(t + ν + 1)

≤ �(t – [t] + αν)
�α(t – [t] + ν)

· �(t + 1)
�(t + αν + 1)

=
�(t – [t] + αν)
�α(t – [t] + ν)

t(–αν)

for t ∈R
+. The proof is completed. �

Remark 2.1 In (ii), if t – [t] + αν ∈ (0, 1), then we also have that

(
t(–ν))α ≤ t(–αν).

Lemma 2.4 (see [12, (1.5.15)]) The quotient expansion of two gamma functions at infinity
is

�(z + a)
�(z + b)

= za–b
(

1 + O
(

1
z

))
(∣
∣arg(z + a)

∣
∣ < π , |z| → ∞)

. (2.4)

By Lemma 2.4 we can easily get that

t(–ν) → 0 as t → ∞ (ν > 0) (2.5)

and

t(a)

t(b) → 0 as t → ∞ (a < b). (2.6)
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Lemma 2.5
(i) If –1 < t < r, then t(–ν) ≥ r(–ν) for ν > 0;

(ii) If ν – 1 < t < r, then t(ν) ≤ r(ν) for ν > 0;
(iii) If α,β ≥ 0, then t(β)t(–α) ≤ t(β–α) for t > β – 1.

Proof (i) Since

t(–ν)

r(–ν) =
�(t + 1)�(r + ν + 1)
�(t + ν + 1)�(r + 1)

=
�(t + 1)�(r + ν + 1)

�(λ(r + ν + 1) + (1 – λ)(t + 1))�((1 – λ)(r + ν + 1) + λ(t + 1))
,

where λ = ν
r–t+ν

∈ (0, 1), by the log-convexity property of the gamma function, we get that

t(–ν)

r(–ν) =
�(t + 1)�(r + ν + 1)

�(λ(r + ν + 1) + (1 – λ)(t + 1))�((1 – λ)(r + ν + 1) + λ(t + 1))

≥ �(t + 1)�(r + ν + 1)
(�(r + ν + 1))λ+1–λ(�(t + 1))1–λ+λ

= 1.

Then t(–ν) ≥ r(–ν) for –1 < t < r and ν > 0.
(ii) Since

t(ν)

r(ν) =
�(t + 1)�(r – ν + 1)
�(t – ν + 1)�(r + 1)

,

similarly to (i), we can easily get that t(ν) ≤ r(ν) for ν – 1 < t < r and ν > 0.
(iii) By (i) we know that

t(–α) ≤ (t – β)(–α) for t > β – 1.

According to (iv) of Lemma 2.2, it is easy to get that

t(β)t(–α) ≤ t(β)(t – β)(–α) = t(β–α) for t > β – 1.

The proof is completed. �

Remark 2.2 Chen and Liu [9] obtained (i) of Lemma 2.5. However, the proof holds in the
case that t → ∞. Then we give the proof as before.

Lemma 2.6 (see [3]) Let a,ν ∈R, a > ν > –1, and a ≤ b. Then

b∑

s=a
s(ν) =

(b + 1)(ν+1) – a(ν+1)

ν + 1
. (2.7)

In particular, if a = ν , then

b∑

s=ν

s(ν) =
(b + 1)(ν+1)

ν + 1
. (2.8)
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Remark 2.3 Let ν > 0 be noninteger, and let m – 1 ≤ μ ≤ m, where m is a positive integer.
Set ν = m – μ. Then we have

t–μ∑

s=a+ν

(
t – σ (s)

)(μ–1) =
(t – a – ν)(μ)

μ
. (2.9)

Lemma 2.7 (see [4]) Let f be a real-value function defined on Na, and let μ,ν > 0. Then
we have the following equalities:

(i) �–ν
a+μ(�–μ

a f (t)) = �
–(μ+ν)
a f (t) = �

–μ
a+ν(�–ν

a f (t));
(ii) �–ν

a �f (t) = ��–ν
a f (t) – (t–a)(ν–1)

�(ν) f (a).

Definition 2.3 The discrete Mittag-Leffler function is defined by

Fα,β (λ, t) =
∞∑

n=0

λn t(nα)

�(nα + β)
(|λ| < 1

)
,

where α,β ∈R
+ and λ ∈C.

Notice that the series is absolutely convergent for |λ| < 1. In fact, since

∣
∣
∣
∣

t(nα)

�(nα + β)

∣
∣
∣
∣ =

∣
∣
∣
∣

�(t + 1)
�(t – nα + 1)�(nα + β)

∣
∣
∣
∣

=
∣
∣
∣
∣
�(t + 1)�(nα – t) sin(π (t – nα + 1))

π�(nα + β)

∣
∣
∣
∣

≤ 1
π

�(t + 1)�(nα – t)
�(nα + β)

≤ 1
π

�(t + 1)(�(t + 1))η(�(nα + β))1–η

�(nα + β)

=
1
π

(�(t + 1))1+η

(�(nα + β))η

≤ (�(t + 1))1+η

π

for η = t+1
nα+β–t–1 and n > 2t+1

α
, we have

∞∑

n> 2t+1
α

∣
∣
∣
∣λ

n t(α)

�(nα + β)

∣
∣
∣
∣ ≤ (�(t + 1))1+η

π

∞∑

n> 2t+1
α

|λ|n.

It is easy to see that the series
∑∞

n=0 λn t(α)

�(nα+β) (|λ| < 1) is absolutely convergent.

Definition 2.4 A solution u of the fractional difference equation (1.1) is said to be attrac-
tive if u(t) → 0 as t → ∞.

The space �∞
n0 is the set of real sequences defined on the set of positive integers where

any individual sequence is bounded with respect to the usual supremum norm. It is well
known that, under the supremum norm, �∞

n0 is a Banach space [16].
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Definition 2.5 (see [16]) A set � of sequences in �∞
n0 is uniformly Cauchy (or equi-

Cauchy) if for every ε > 0, there exists an integer N such that |x(i) – x(j)| < ε whenever
i, j > N for any x = {x(n)} in �.

Theorem 2.1 (see [16, Discrete Arzelà–Ascoli’s theorem]) A bounded, uniformly Cauchy
subset � of �∞

n0 is relatively compact.

Definition 2.6 Let (X, d) be a metric space. An operator T : X → X is a Picard operator
if there exists x∗ ∈ X such that Fix T = {x∗} and the sequence {Tn(x0)}n∈N converges to x∗

for all x0 ∈ X.

Theorem 2.2 (Schauder’s fixed point theorem) Let � be a closed, convex, and nonempty
subset of a Banach space X. Let T : � → � be a continuous operator such that T� is a
relatively compact subset of X. Then T has at least one fixed point in �.

According to Definitions 2.1–2.2, it is suitable to rewrite the fractional difference equa-
tions (1.1) in the equivalent summation equation

u(t) =
u0

�(α)
t(α–1) +

1
�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)f
(
s + α, u(s + α)

)
, t ∈Nα . (2.10)

3 Main results
3.1 Results via Picard iteration method
Theorem 3.1 Assume that

(H1) f (t, u) satisfies the Lipschitz condition

∣
∣f (t, u1) – f (t, u2)

∣
∣ ≤ A|u1 – u2|, (3.1)

where 0 < A < 1 is independent of t;
(H2) there exists a constant M > 0 such that |f (t, u(t))| ≤ M for t ∈Nα .

Then the fractional difference equation (1.1) has at least one solution.

Proof Define the sequence {gn(·) : n ∈N0} as follows:

g0(t) =
u0

�(α)
t(α–1), t ∈Nα , (3.2)

gn(t) = g0(t) +
1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)f
(
s + α, gn–1(s + α)

)
, t ∈Nα , n ∈N0. (3.3)

Clearly, by induction we have

∣
∣gn(t) – gn–1(t)

∣
∣ ≤ MAn–1 t(nα)

�(nα + 1)
.



Zhang and Zhou Advances in Difference Equations  (2018) 2018:191 Page 7 of 15

In fact, for n = 1, by condition (H1) we can conclude that

∣
∣g1(t) – g0(t)

∣
∣ ≤ 1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)M

= M
t(α)

�(α + 1)
.

Without loss of generality, we assume that

∣
∣gn–1(t) – gn–2(t)

∣
∣ ≤ MAn–2 t((n–1)α)

�((n – 1)α + 1)
.

Then

∣
∣gn(t) – gn–1(t)

∣
∣ ≤ A

1
�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)MAn–2 (s + α)((n–1)α)

�((n – 1)α + 1)

=
MAn–1

�((n – 1)α + 1)
�–α(t + α)((n–1)α)

= MAn–1 t(nα)

�(nα + 1)
.

Set

g(t) = lim
n→∞ gn(t) = lim

n→∞
(
gn(t) – g0(t)

)
+ g0(t) =

∞∑

k=1

(
gk(t) – gk–1(t)

)
+ g0(t).

Since the series M
A

∑∞
k=1 Ak t(kα)

�(kα+1) = M
A Fα,β(A, t) is absolutely convergent for 0 < A < 1, the

existence of the solution for the fractional difference equation (1.1) is proved. The proof
is completed. �

3.2 Results via Schauder’s fixed point theorem
In this section, we deal with the existence and attractivity of the solution for fractional
difference equations by a fixed point theorem. First, for any u ∈ �∞

α , we define the operator
T as follows:

Tu(t) =
u0

�(α)
t(α–1) +

1
�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)f
(
s + α, u(s + α)

)
, t ∈Nα . (3.4)

Then the existence of the solution of the fractional difference equation (1.1) is equivalent
to that T has a fixed point.

Theorem 3.2 Assume that
(H3) there exist constants β1 ∈ (α, 1), δ > 0, and L1 ≥ 0 such that

∣
∣f (t, u)

∣
∣ ≤ L1(t + 1)(–β1)|u|δ for t ∈Nα and u ∈R. (3.5)
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Furthermore, suppose that

|u0|
�(α)

α(α–1) +
L1�(1 – β1)
�(1 + α – β1)

α(α–β1) ≤ 1.

Then the fractional difference equation (1.1) has at least one solution in S1. Further, the
solutions of (1.1) are attractive.

Proof Choose γ > 0 sufficiently small such that

α + γ – 1 < 0, 1 – β1 – γ δ > 0, α + γ – β1 – γ δ < 0,

and

|u0|
�(α)

(α + γ )(α+γ –1) +
L1�(1 – β1 – γ δ)
�(1 + α – β1 – γ δ)

(α + γ )(α–β1+γ –γ δ) ≤ 1.

For t ∈Nα , define the closed subset S1 ⊂ �∞
α as follows:

S1 =
{

u ∈ �∞
α :

∣
∣u(t)

∣
∣ ≤ t(–γ ) for t ∈Nα

}
.

It is easy to see that S1 is a closed, bounded, and convex subset of the Banach space �∞
α .

In the case δ > 1, we can get the following inequality by (ii) of Lemma 2.3 and Re-
mark 2.1:

(
t(–γ ))δ ≤ �(α + γ δ)

�δ(α + γ )
t(–γ δ) ≤ t(–γ δ) for t ∈Nα .

Combining this with (i) of Lemma 2.3, we have

(
t(–γ ))δ ≤ t(–γ δ) for δ > 0, t ∈Nα . (3.6)

We first show that T is continuous in S1 and maps S1 into S1. Applying (H3), (3.4), and
(3.6) to any u ∈ S1, we have

∣
∣Tu(t)

∣
∣ ≤ |u0|

�(α)
t(α–1) +

1
�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)∣∣f
(
s + α, u(s + α)

)∣
∣

≤ |u0|
�(α)

t(α–1) +
1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)L1(s + α + 1)(–β1)∣∣u(s + α)
∣
∣δ

≤ |u0|
�(α)

t(α–1) +
1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)L1(s + α + γ δ)(–β1)∣∣u(s + α)
∣
∣δ

≤ |u0|
�(α)

t(α–1) +
L1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)(s + α + γ δ)(–β1)((s + α)(–γ ))δ

≤ |u0|
�(α)

t(α–1) +
L1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)(s + α + γ δ)(–β1)(s + α)(–γ δ)
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≤ |u0|
�(α)

t(α–1) +
L1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)(s + α)(–β1–γ δ)

=
|u0|
�(α)

t(α–1) +
L1�(1 – β1 – γ δ)
�(1 + α – β1 – γ δ)

(t + α)(α–β1–γ δ)

≤ |u0|
�(α)

t(α–1) +
L1�(1 – β1 – γ δ)
�(1 + α – β1 – γ δ)

t(α–β1–γ δ)

=
( |u0|

�(α)
(t + γ )(α+γ –1) +

L1�(1 – β1 – γ δ)
�(1 + α – β1 – γ δ)

(t + γ )(α–β1–γ δ+γ )
)

t(–γ )

≤
( |u0|

�(α)
(α + γ )(α+γ –1)

+
L1�(1 – β1 – γ δ)
�(1 + α – β1 – γ δ)

(α + γ )(α–β1–γ δ+γ )
)

t(–γ )

≤ t(–γ ),

which implies that T maps S1 into S1.
By (2.5) it is easy to see that for all ε > 0, there exists K1 ∈N+ large enough such that

L1�(1 – β1 – γ δ)
�(1 + α – β1 – γ δ)

t(α–β1–γ δ) ≤ ε

2
and

u0

�(α)
t(α–1) ≤ ε

2
for t ∈Nα+K1 . (3.7)

Let un, u ∈ S1, n = 1, 2, . . . , and limn→∞ un = u. Applying (2.9), for t ∈ {α,α + 1, . . . ,α +
K1 – 1}, we have

∣
∣Tun(t) – Tu(t)

∣
∣

≤ 1
�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)∣∣f
(
s + α, un(s + α)

)
– f

(
s + α, u(s + α)

)∣
∣

≤ 1
�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)
max

s∈[0,1,...,K1–1]

∣
∣f

(
s + α, un(s + α)

)
– f

(
s + α, u(s + α)

)∣
∣

=
t(α)

�(α + 1)
max

s∈[0,1,...,K1–1]

∣
∣f

(
s + α, un(s + α)

)
– f

(
s + α, u(s + α)

)∣
∣

≤ (α + K1 – 1)(α)

�(α + 1)
max

s∈[0,1,...,K1–1]

∣
∣f

(
s + α, un(s + α)

)
– f

(
s + α, u(s + α)

)∣
∣

→ 0 as n → ∞.

For t ∈Nα+K1 , by (3.6) we also have

∣
∣Tun(t) – Tu(t)

∣
∣

≤ 1
�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)(∣∣f
(
s + α, un(s + α)

)∣
∣ +

∣
∣f

(
s + α, u(s + α)

)∣
∣
)

≤ 2L1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)(s + α + γ δ)(–β1)∣∣u(s + α)
∣
∣δ
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≤ 2L1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)(s + α + γ δ)(–β1)((s + α)(–γ ))δ

≤ 2L1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)(s + α + γ δ)(–β1)(s + α)(–γ δ)

≤ 2L1

�(α)

t–α∑

s=0

(
t – σ (s)

)(α–1)(s + α)(–β1–γ δ)

=
2L1�(1 – β1 – γ δ)
�(1 + α – β1 – γ δ)

(t + α)(α–β1–γ δ)

≤ 2L1�(1 – β1 – γ δ)
�(1 + α – β1 – γ δ)

t(α–β1–γ δ)

≤ ε.

Hence we can get that

‖Tun – Tu‖ = sup
t∈Nα

∣
∣Tun(t) – Tu(t)

∣
∣ → 0 as n → ∞.

Thus T is continuous in S1.
In the following, we prove that TS1 is relatively compact. For t1, t2 ∈ Nα+K1 , we have

∣
∣Tu(t2) – Tu(t1)

∣
∣ ≤

∣
∣
∣
∣

u0

�(α)
t(α–1)
2 –

u0

�(α)
t(α–1)
1

∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
�(α)

t2–α∑

s=0

(
t2 – σ (s)

)(α–1)f
(
s + α, u(s + α)

)

–
1

�(α)

t1–α∑

s=0

(
t1 – σ (s)

)(α–1)f
(
s + α, u(s + α)

)
∣
∣
∣
∣
∣

≤ u0

�(α)
t(α–1)
2 +

u0

�(α)
t(α–1)
1

+

∣
∣
∣
∣
∣

1
�(α)

t2–α∑

s=0

(
t2 – σ (s)

)(α–1)f
(
s + α, u(s + α)

)
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
�(α)

t1–α∑

s=0

(
t1 – σ (s)

)(α–1)f
(
s + α, u(s + α)

)
∣
∣
∣
∣
∣

≤ u0

�(α)
t(α–1)
2 +

u0

�(α)
t(α–1)
1 +

L1�(1 – β1 – γ δ)
�(1 + α – β1 – γ δ)

t(α–β1–γ δ)
2

+
L1�(1 – β1 – γ δ)
�(1 + α – β1 – γ δ)

t(α–β1–γ δ)
1

≤ 2ε.

Therefore {Tu : u ∈ S1} is a bounded and uniformly Cauchy subset by Definition 2.5. Hence
TS1 is relatively compact by Theorem 2.1. Due to Schauder’s fixed point theorem, T has
a fixed point. All functions in S1 tend to 0 as t → ∞, and hence the solution of (1.1) is
attractive. The proof is completed. �
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3.3 Results in a weighted space
Let �∞

α be the set of all real sequences u = {u(t)}∞t=α with the norm ‖u‖ = supt∈Nα
|u(t)|.

Then (�∞
α ,‖ · ‖) is a Banach space. For any u ∈ �∞

α , we introduce a new norm as follows:

‖u‖β2 = sup
t∈Nα

{ |u(t)|
t(β2)

}

,

where β2 ∈ (α, 1). It is easy to see that (�∞
α ,‖ · ‖β2 ) is also a Banach space.

Define the closed subset

Sβ2 =
{

u ∈ �∞
α : ‖u‖β2 ≤ (α|u0| + M)�(α + 1 – β2)

�(α + 1)

}

.

Obviously, Sβ2 is a bounded, closed, and convex subset of the Banach space (�∞
α ,‖ · ‖β2 ).

Definition 3.1 A function f : [0,∞)×R→R is β2-continuous if for any ε > 0, there exists
δ = δε > 0 such that for all (t, u1), (t, u2) ∈ [0,∞) ×R, we have

∣
∣f (t, u1) – f (t, u2)

∣
∣ < ε,

provided that |u1–u2|
t(β2) < δ.

Obviously, u is a solution of (1.1) if and only if the operator T has a fixed point.

Theorem 3.3 Assume that (H2) holds and f is β2-continuous. Then the fractional dif-
ference equation (1.1) has at least one solution in Sβ2 . Further, the solutions of (1.1) are
attractive.

Proof We first show that T is continuous in Sβ2 and maps Sβ2 into Sβ2 . Applying (3.4), for
any u ∈ Sβ2 , we have

|Tu(t)|
t(β2) ≤ |u0|t(α–1)

�(α)t(β2) +
1

�(α)t(β2)

t–α∑

s=0

(
t – σ (s)

)(α–1)∣∣f
(
s + α, u(s + α)

)∣
∣

≤ |u0|t(α–1)

�(α)t(β2) +
M

�(α)t(β2)

t–α∑

s=0

(
t – σ (s)

)(α–1)

=
|u0|t(α–1)

�(α)t(β2) +
Mt(α)

�(α + 1)t(β2)

=
|u0|�(t – β2 + 1)
�(α)�(t – α + 2)

+
M�(t – β2 + 1)

�(α + 1)�(t – α + 1)

≤ (α|u0| + M)�(α + 1 – β2)
�(α + 1)

,

which implies that T maps Sβ2 into Sβ2 .
Let un, u ∈ Sβ2 , n = 1, 2, . . . , and limn→∞ un = u, which means that ‖un – u‖β2 → 0 as

n → ∞, that is,

sup
t∈Nα

|un(t) – u(t)|
t(β2) → 0 as n → ∞.
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Combining this with (2.9), we have

|Tun(t) – Tu(t)|
t(β2)

≤ 1
�(α)t(β2)

t–α∑

s=0

(
t – σ (s)

)(α–1)∣∣f
(
s + α, un(s + α)

)
– f

(
s + α, u(s + α)

)∣
∣

≤ ε

�(α)t(β2)

t–α∑

s=0

(
t – σ (s)

)(α–1)

=
εt(α)

�(α + 1)t(β2)

≤ ε.

Hence we get that

‖Tun – Tu‖β2 = sup
t∈Nα

{ |Tun(t) – Tu(t)|
t(β2)

}

→ 0 as n → ∞,

and thus T is continuous in Sβ2 .
In the following, we prove that TSβ2 is relatively compact. To this end, we define

Hu(t) =
Tu(t)
t(β2) for t ∈Nα , u ∈ Sβ2 .

According to this process, it is easy to see that {Hu(·) : u ∈ Sβ2} is uniformly bounded.
Next, we prove that {Hu(·) : u ∈ Sβ2} is uniformly Cauchy. For t1, t2 ∈ Nα such that t1 < t2,
we have

∣
∣Hu(t2) – Hu(t1)

∣
∣

=
∣
∣
∣
∣
Tu(t2)
t(β2)
2

–
Tu(t1)
t(β2)
1

∣
∣
∣
∣

≤
∣
∣
∣
∣

u0t(α–1)
2

�(α)t(β2)
2

–
u0t(α–1)

1

�(α)t(β2)
1

∣
∣
∣
∣ +

∣
∣
∣
∣
∣

1
�(α)t(β2)

2

t2–α∑

s=0

(
t2 – σ (s)

)(α–1)f
(
s + α, u(s + α)

)

–
1

�(α)t(β2)
1

t1–α∑

s=0

(
t1 – σ (s)

)(α–1)f
(
s + α, u(s + α)

)
∣
∣
∣
∣
∣

≤ |u0|
�(α)

(
�(t2 – β2 + 1)
�(t2 – α + 2)

+
�(t1 – β2 + 1)
�(t1 – α + 2)

)

+

∣
∣
∣
∣
∣

1
�(α)t(β2)

2

t2–α∑

s=0

(
t2 – σ (s)

)(α–1)f
(
s + α, u(s + α)

)
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

1
�(α)t(β2)

1

t1–α∑

s=0

(
t1 – σ (s)

)(α–1)f
(
s + α, u(s + α)

)
∣
∣
∣
∣
∣

≤ |u0|
�(α)

(
�(t2 – β2 + 1)
�(t2 – α + 2)

+
�(t1 – β2 + 1)
�(t1 – α + 2)

)
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+
M

�(α)t(β2)
2

t2–α∑

s=0

(
t2 – σ (s)

)(α–1) +
M

�(α)t(β2)
1

t1–α∑

s=0

(
t1 – σ (s)

)(α–1)

≤ |u0|
�(α)

(
�(t2 – β2 + 1)
�(t2 – α + 2)

+
�(t1 – β2 + 1)
�(t1 – α + 2)

)

+
Mt(α)

2

�(α + 1)t(β2)
2

+
Mt(α)

1

�(α + 1)t(β2)
1

≤ |u0|
�(α)

(
�(t2 – β2 + 1)
�(t2 – α + 2)

+
�(t1 – β2 + 1)
�(t1 – α + 2)

)

+
M

�(α + 1)

(
�(t2 – β2 + 1)
�(t2 – α + 1)

+
�(t1 – β2 + 1)
�(t1 – α + 1)

)

=
|u0|
�(α)

[

tα–β2–1
2

(

1 + O
(

1
t2

))

+ tα–β2–1
1

(

1 + O
(

1
t1

))]

+
M

�(α + 1)

[

tα–β2
2

(

1 + O
(

1
t2

))

+ tα–β2
1

(

1 + O
(

1
t1

))]

→ 0 as t1 → ∞, t2 → ∞.

Therefore, {Hu : u ∈ Sβ2} is a bounded and uniformly Cauchy subset by Definition 2.5.
Thus {Tu(t)

t(β2) : u ∈ Sβ2} is relatively compact by Theorem 2.1. Hence T(Sβ2 ) is relatively com-
pact in Sβ2 . Due to Schauder’s fixed point theorem, T has a fixed point. All functions in Sβ2

tend to 0 as t → ∞, and hence the solution of (1.1) is attractive. The proof is completed.
�

4 Example
As applications of our main results, we consider the following examples.

Example 4.1 Consider the equation

⎧
⎨

⎩

�0.5
–0.5u(t) = (t + 0.7)(–0.7) sin u(t + 0.5), t ∈N0,

�–0.5
–0.5u(t)|t=0 = 0,

(4.1)

where f (t, u(t)) = (t + 0.2)(–0.7) sin u(t), t ∈N0.5. Since

∣
∣f (t, u1) – f (t, u2)

∣
∣ =

∣
∣(t + 0.2)(–0.7)(sin u1 – sin u2)

∣
∣ (4.2)

≤ �(1.7)
�(2.4)

|u1 – u2| (4.3)

and

∣
∣f (t, u)

∣
∣ =

∣
∣(t + 0.2)(–0.7) sin u

∣
∣ ≤ �(1.7)

�(2.4)
for t ∈N0.5 and u ∈ �∞

0.5, (4.4)

(H1) and (H2) hold. By Theorem 3.1 we get that (4.1) has at least one attractive solution.

Example 4.2 Consider

⎧
⎨

⎩

�0.5
–0.5u(t) = (t + 0.7)(–0.7)u1.2(t + 0.5), t ∈N0,

�–0.5
–0.5u(t)|t=0 = 0,

(4.5)
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where f (t, u(t)) = (t + 0.2)(–0.7)u1.2(t), t ∈ N0.5. Since α = 0.5, β1 = 0.7, δ = 1.2, γ = 0.2, we
have that

α + γ – 1 < 0, 1 – β1 – γ δ > 0, α + γ – β1 – γ δ < 0, (4.6)

and

∣
∣f (t, u)

∣
∣ ≤ L1(t + γ δ)(–β1)|u|δ for t ∈ N0.5 and u ∈ �∞

0.5. (4.7)

Then (H3) holds. By Theorem 3.2 we get that (4.5) has at least one attractive solution.

Example 4.3 Consider

⎧
⎨

⎩

�0.5
–0.5u(t) = (t + 0.7)(–0.7) sin((t + 0.5)(–0.6)u(t + 0.5)), t ∈N0,

�–0.5
–0.5u(t)|t=0 = 0,

(4.8)

where f (t, u(t)) = (t + 0.2)(–0.7) sin(t(–0.6)u(t)), t ∈N0.5. Let β2 = 0.6 ∈ (0.5, 1). Since

∣
∣f (t, u1) – f (t, u2)

∣
∣ =

∣
∣(t + 0.2)(–0.7)(sin

(
t(–0.6)u1

)
– sin

(
t(–0.6)u2

))∣
∣

≤ �(1.7)
�(2.4)

t(–0.6)t(0.6) |u1 – u2|
t(0.6)

≤ �(1.7)
�(2.4)

|u1 – u2|
t(0.6) (4.9)

and

∣
∣f (t, u)

∣
∣ =

∣
∣(t + 0.2)(–0.7) sin

(
t(–0.6)u(t)

)∣
∣ ≤ �(1.7)

�(2.4)
for t ∈N0.5 and u ∈ �∞

0.5. (4.10)

Then f is β2-continuous, and (H2) holds. By Theorem 3.3 we get that (4.8) has at least one
attractive solution.
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