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Abstract
In this paper, we deal with the averaging principle for a two-time-scale system of
jump-diffusion stochastic differential equations. Under suitable conditions, we
expand the weak error in powers of timescale parameter. We prove that the rate of
weak convergence to the averaged dynamics is of order 1. This reveals that the rate of
weak convergence is essentially twice that of strong convergence.
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1 Introduction
We consider a two-time-scale system of jump-diffusion stochastic differential equation of
the form

dXε
t = a

(
Xε

t , Y ε
t
)

dt + b
(
Xε

t
)

dBt + c
(
Xε

t–
)

dPt , Xε
0 = x, (1.1)

dY ε
t =

1
ε

f
(
Xε

t , Y ε
t
)

dt +
1√
ε

g
(
Xε

t , Y ε
t
)

dWt + h
(
Xε

t–, Y ε
t–

)
dNε

t , Y ε
0 = y, (1.2)

where Xε
t ∈ R

n, Y ε
t ∈ R

m, the drift functions a(x, y) ∈ R
n, f (x, y) ∈ R

m, the diffusion func-
tions b(x) ∈ R

n×d1 , c(x) ∈ R
n, g(x, y) ∈ R

m×d2 , and h(x, y) ∈ R
m, Bt and Wt are d1- and d2-

dimensional independent Brownian motions on a complete stochastic base (�,F ,Ft ,P),
respectively, Pt is a scalar Poisson process with intensity λ1, and Nε

t is a scalar Poisson
process with intensity λ2

ε
. The positive parameter ε is small and describes the ratio of time

scales between Xε
t and Y ε

t . Systems (1.1)–(1.2) with two time scales occur frequently in
applications, including chemical kinetics, signal processing, complex fluids, and financial
engineering.

With the separation of time scale, we can view the state variable of the system as being
divided into two parts, the “slow” variable Xε

t and the “fast” variable Y ε
t . It is often the

case that we are interested only in the dynamics of the slow component. Then a simplified
equation, which is independent of the fast variable and possesses the essential features
of the system, is highly desirable. Such a simplified equation is often constructed by av-
eraging procedure as in [2, 20] for deterministic ordinary differential equations and in
the further development [7, 8, 13–16, 18, 19, 25] for stochastic differential equations with
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continuous Gaussian processes. As far as averaging for stochastic dynamical systems in
infinite-dimensional space is concerned, it is worth quoting the important works [4–6,
26] and also the works [9, 10, 21]. For related works on averaging for multivalued stochas-
tic differential equations, we refer the reader to [12, 22].

To derive the averaged dynamics of system (1.1)–(1.2), we introduce the fast motion
equation with a frozen slow component x ∈R

n of the form

dY x
t = f

(
x, Y x

t
)

dt + g
(
x, Y x

t
)

dWt + h
(
x, Y x

t–
)

dNt , Y x
0 = y, (1.3)

and denote its solution by Y ε
t (y). Under suitable conditions on f , g , and h, Y ε

t (y) induces a
unique invariant measure μx(dy) on R

m, which is ergodic and ensures the averaged equa-
tion

dX̄t = ā(X̄t) dt + b(X̄t) dBt + c(X̄t–) dPt , X̄0 = x,

where the averaging nonlinearity is defined by setting

ā(x) =
∫

Rm
a(x, y)μx(dy)

= lim
t→+∞Ea

(
x, Y x

t (y)
)
.

In [11], it was shown that, under the stated conditions, the slow motion Xε
t converges

strongly to the solution X̄t of the averaged equation with jumps. The order of convergence
1
2 in the strong sense was provided in [17]. To our best knowledge, there is no literature
addressing the weak order in averaging principle for jump-diffusion stochastic differential
systems. In fact, it is fair to say that the weak convergence in stochastic averaging theory
of systems driven by jump noise is not fully developed yet, although some strong approx-
imation results on the rate of strong convergence were obtained [1, 23, 24].

Therefore, in this paper, we aim to study this problem. Here we are interested in the rate
of weak convergence of the averaging dynamics to the true solution of slow motion Xε

t . In
other word, we will determine the order, with respect to timescale parameter ε, of weak
deviation between original solution to slow equation and the solution of the corresponding
averaged equation. The main technique we adapted is finding an expansion with respect to
ε of the solutions of the Kolmogorov equations associated with the jump diffusion system.
The solvability of the Poisson equation associated with the generator of frozen equation
provides an expression for the coefficients of the expansion. As a result, the boundedness
for the coefficients of expansion can be proved by smoothing effect of the corresponding
transition semigroup in the space of bounded and uniformly continuous functions, where
some regular conditions on the drift and diffusion terms are needed.

Our result shows that the weak convergence rate is 1 even when there are jump compo-
nents in the system. It is the main contribution of this work. We would like to stress that
an asymptotic method was first applied by Bréhier [3] to an averaging result for stochas-
tic reaction–diffusion equations in the case of Gaussian noise of additive type, which was
included only in the fast motion. However, the extension of this argument is not straight-
forward. The method used in the proof of weak order in [3] is strictly related to the differ-
entiability in time of averaged process. Therefore, once the noise is introduced in the slow
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equation, difficulties arise, and the procedure becomes more complicated. Our result in
this paper bridges such a gap, in which the slow and fast motions are both perturbed by
noise with jumps.

The rest of the paper is structured as follows. Section 2 is devoted to notations and
assumptions and summarizes preliminary results. The ergodicity of a fast process and the
averaged dynamics of system with jumps is introduced in Sect. 3. Then the main result of
this article, which is derived via the asymptotic expansions and uniform error estimates,
is presented in Sect. 4. Finally, we give the Appendix.

It should be pointed out that in the whole paper the letter C with or without subscripts
denotes generic positive constants independent of ε.

2 Assumptions and preliminary results
For any integer d, the scalar product and norm on the d-dimensional Euclidean space R

d

are denoted by (·, ·)
Rd and ‖ · ‖

Rd , respectively. For any integer k, we denote by Ck
b(Rd,R)

the space of all k-times differentiable functions on R
d with bounded uniformly continuous

derivatives up to the kth order.
In what follows, we assume that the drift and diffusion coefficients arising in the system

fulfill the following conditions.
(A1) The mappings a(x, y), b(x), c(x), f (x, y), g(x, y), and h(x, y) are of class C2 and have

bounded first and second derivatives. Moreover, we assume that a(x, y), b(x), and
c(x) are bounded.

(A2) There exists a constant α > 0 such that, for any x ∈R
n and y ∈R

m,

yT g(x, y)gT (x, y)y ≥ α‖y‖Rm .

(A3) There exists a constant β > 0 such that, for any y1, y2 ∈R
m and x ∈R

n,

(
y1 – y2, f (x, y1) – f (x, y2) + λ2

(
h(x, y1) – h(x, y2)

))
Rm

+
∥∥g(x, y1) – g(x, y2)

∥∥2
Rm + λ2

∣∣h(x, y1) – h(x, y2)
∣∣2

≤ –β‖y1 – y2‖2
Rm .

Remark 2.1 Notice that from (A1) it immediately follows that the following directional
derivatives exist and are controlled:

∥∥Dxa(x, y) · k1
∥∥
Rn ≤ L‖k1‖Rn ,

∥∥Dya(x, y) · l1
∥∥
Rn ≤ L‖l1‖Rm ,

∥∥D2
xxa(x, y) · (k1, k2)

∥∥
Rn ≤ L‖k1‖Rn‖k2‖Rn ,

∥∥D2
yya(x, y) · (l1, l2)

∥∥
Rn ≤ L‖l1‖Rm‖l2‖Rm ,

where L is a constant independent of x, y, k1, k2, l1, and l2. For the differentiability of
mappings b, c, f , g , and h, we possess similar results. For example, we have

∥∥D2
xxb(x) · (k1, k2)

∥∥
Rn ≤ L‖k1‖Rn‖k2‖Rn , k1, k2 ∈R

n,
∥∥D2

yyf (x, y) · (l1, l2)
∥∥
Rm ≤ L‖l1‖Rm‖l2‖Rm‖, l1, l2 ∈R

m.
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As far as assumption (A2) is concerned, it is a sort of nondegeneracy condition, which
we assume in order to have the regularizing effect of the Markov transition semigroup
associated with the fast dynamics. Assumption (A3) is the dissipative condition, which
determines how the fast equation converges to its equilibrium state.

As assumption (A1) holds, for any ε > 0 and any initial conditions x ∈ R
n and y ∈ R

m,
system (1.1)–(1.2) admits a unique solution, which, to emphasize the dependence on the
initial data, is denoted by (Xε

t (x, y), Y ε
t (x, y)). Moreover, we have the following lemma (for

a proof, see, e.g., [17]).

Lemma 2.1 Under assumptions (A1), (A2), and (A3), for any x ∈ R
n, y ∈ R

m, and ε > 0,
we have

E
∥∥Xε

t (x, y)
∥∥2
Rn ≤ CT

(
1 + ‖x‖2

Rn + ‖y‖2
Rm

)
, t ∈ [0, T], (2.1)

and

E
∥∥Y ε

t (x, y)
∥∥2
Rn ≤ CT

(
1 + ‖x‖2

Rm + ‖y‖2
Rm

)
, t ∈ [0, T]. (2.2)

3 Frozen equation and averaged equation
Fixing ε = 1, we consider the fast equation with frozen slow component x ∈R

n,

⎧
⎨

⎩
dY x

t (y) = f (x, Y x
t (y)) dt + g(x, Y x

t (y)) dWt + h(x, Y x
t–(y)) dNt ,

Y x
0 = y.

(3.1)

Under assumptions (A1)–(A3), such a problem has a unique solution, which satisfies [17]

E
∥
∥Y x

t (y)
∥
∥2
Rm ≤ C

(
1 + ‖x‖2

Rn + e–βt‖y‖2
Rm

)
, t ≥ 0. (3.2)

Let Y x
t (y′) be the solution of problem (3.1) with initial value Y x

0 = y′, the Itô formula implies
that, for any t ≥ 0,

E
∥
∥Y x

t (y) – Y x
t
(
y′)∥∥2

Rm ≤ ∥
∥y – y′∥∥2

Rm e–βt . (3.3)

Moreover, as discussed in [17] and [11], equation (3.1) admits a unique ergodic invariant
measure μx satisfying

∫

Rm
‖y‖2

Rmμx(dy) ≤ C
(
1 + ‖x‖2

Rn
)
. (3.4)

Then, by averaging the coefficient a with respect to the invariant measure μx we can define
the R

n-valued mapping

ā(x) :=
∫

Rm
a(x, y)μx(dy), x ∈R

n.
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Due to assumption (A1), it is easily to check that ā(x) is twice differentiable with bounded
derivatives, and hence it is Lipschitz-continuous:

∥
∥ā(x1) – ā(x2)

∥
∥
Rn ≤ C‖x1 – x2‖Rn , x1, x2 ∈R

n.

According to the invariance property of μx, (3.4), and assumption (A1), we have

∥
∥Ea

(
x, Y x

t (y)
)

– ā(x)
∥
∥2
Rn =

∥∥
∥∥

∫

Rm
E

(
a
(
x, Y x

t (y)
)

– a
(
x, Y x

t (z)
))

μx(dz)
∥∥
∥∥

2

Rn

≤
∫

Rm
E

∥
∥Y x

t (y) – Y x
t (z)

∥
∥2
Rmμx(dz)

≤ e–βt
∫

Rm
‖y – z‖2

Rmμx(dz)

≤ Ce–βt(1 + ‖x‖2
Rn + ‖y‖2

Rm
)
. (3.5)

Now we can introduce the effective dynamical system

⎧
⎨

⎩
dX̄t(x) = ā(X̄t(x)) dt + b(X̄t(x)) dBt + c(X̄t–(x)) dPt ,

X̄0 = x.
(3.6)

As the coefficients ā, b, and c are Lipschitz-continuous, this equation admits a unique
solution such that

E
∥∥X̄t(x)

∥∥2
Rn ≤ CT

(
1 + ‖x‖2

Rn
)
, t ∈ [0, T]. (3.7)

With these assumptions and notation, we have the following result, which is a direct
consequence of Lemmas 4.1, 4.2, and 4.5.

Theorem 3.1 Assume that x ∈ R
n and y ∈ R

m. Then, under assumptions (A1), (A2), and
(A3), for any T > 0 and φ ∈ C3

b(Rn,R), there exists a constant CT ,φ,x,y such that

∣∣Eφ
(
Xε

T (x, y)
)

– Eφ
(
X̄T (x)

)∣∣ ≤ CT ,φ,x,yε.

As a consequence, the weak order in the averaging principle for jump-diffusion stochastic
systems is 1.

4 Asymptotic expansion
Let φ ∈ C3

b(Rn,R) and define the function uε(t, x, y) : [0, T] ×R
n ×R

m →R by

uε(t, x, y) = Eφ
(
Xε

t (x, y)
)
.

We are now ready to seek an expansion formula for uε(t, x, y) with respect to ε of the form

uε(t, x, y) = u0(t, x, y) + εu1(t, x, y) + rε(t, x, y), (4.1)

where u0 and u1 are smooth functions, which will be constructed further, and rε is the
remainder term. To this end, let us recall the Kolmogorov operator corresponding to the
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slow motion equation, with a frozen fast component y ∈R
m, which is a second-order op-

erator of the form

L1�(x) =
(
a(x, y), Dx�(x)

)
Rn +

1
2

Tr
[
D2

xx�(x) · b(x)bT (x)
]

+ λ1
(
�

(
x + c(x)

)
– �(x)

)
, � ∈ C2

b
(
R

n,R
)
.

For any frozen slow component x ∈ R
m, the Kolmogorov operator for equation (3.1) is

given by

L2	(y) =
(
f (x, y), Dy	(y)

)
Rm +

1
2

Tr
[
D2

yy	(y) · g(x, y)gT (x, y)
]

+ λ2
(
	

(
y + h(x, y)

)
– 	(y)

)
, 	 ∈ C2

b
(
R

m,R
)
.

We set

Lε := L1 +
1
ε
L2.

It is known that uε(t, x, y) solves the equation

⎧
⎨

⎩

∂
∂t uε(t, x, y) = Lεuε(t, x, y),

uε(0, x, y) = φ(x).
(4.2)

Also, recall the Kolmogorov operator associated with the averaged equation (3.6) is de-
fined as

L̄�(x) =
(
ā(x), Dx�(x)

)
Rn +

1
2

Tr
[
D2

xx�(x) · b(x)bT (x)
]

+ λ1
(
�

(
x + c(x)

)
– �(x)

)
, � ∈ C2

b
(
R

n,R
)
.

Setting

ū(t, x) = Eφ
(
X̄t(x)

)
,

we have
⎧
⎨

⎩

∂
∂t ū(t, x) = L̄ū(t, x),

ū(0, x) = φ(x).
(4.3)

4.1 The leading term
Let us begin with constructing the leading term. By substituting expansion (4.1) into (4.2)
we see that

∂u0

∂t
+ ε

∂u1

∂t
+

∂rε

∂t
= L1u0 + εL1u1 + L1rε

+
1
ε
L2u0 + L2u1 +

1
ε
L2rε .
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By equating the powers of ε, we obtain the following system of equations:

L2u0 = 0, (4.4)

∂u0

∂t
= L1u0 + L2u1. (4.5)

According to (4.4), we can conclude that u0 does not depend on y, that is,

u0(t, x, y) = u0(t, x).

We also impose the initial condition u0(0, x) = φ(x). Noting that L2 is the generator of a
Markov process defined by equation (3.1), which admits a unique invariant measure μx,
we have

∫

Rm
L2u1(t, x, y)μx(dy) = 0. (4.6)

Thanks to (4.5), this yields

∂u0

∂t
(t, x) =

∫

Rm

∂u0

∂t
(t, x)μx(dy)

=
∫

Rm
L1u0(t, x)μx(dy)

=
∫

Rm

(
a(x, y), Dxu0(t, x)

)
Rnμ

x(dy)

+
1
2

Tr
[
D2

xxu0(t, x) · b(x)bT (x)
]

+ λ1
(
u0

(
x + c(x)

)
– u0(x)

)

= L̄u0(t, x),

so that u0 and ū are described by the same evolutionary equation. By a uniqueness argu-
ment, we easily have the following lemma.

Lemma 4.1 Under assumptions (A1), (A2), and (A3), for any x ∈ R
n, y ∈ R

m, and T > 0,
we have u0(T , x, y) = ū(T , x).

4.2 Construction of u1

According to Lemma 4.1, (4.3), and (4.5), we get

L̄ū = L1ū + L2u1,

which means that

L2u1(t, x, y) =
(
ā(x) – a(x, y), Dxū(t, x)

)
Rn

:= –ρ(t, x, y), (4.7)
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where ρ is of class C2 with respect to y, with uniformly bounded derivatives. Moreover,
for any t ≥ 0 and x ∈R

n, equality (4.6) guarantees that

∫

Rm
ρ(t, x, y)μx(dy) = 0.

For any y ∈R
m and s > 0, we have

∂

∂s
Psρ(t, x, y) =

(
f (x, y), Dy

[
Psρ(t, x, y)

])
Rm +

1
2

Tr
[
D2

yy
[
Psρ(t, x, y)

] · g(x, y)gT (x, y)
]

+ λ2
(
Ps

[
ρ
(
t, x, y + h(x, y)

)]
– Ps

[
ρ(t, x, y)

])
, (4.8)

where

Ps
[
ρ(t, x, y)

]
:= Eρ

(
t, x, Y x

s (y)
)
.

Recalling that μx is the unique invariant measure corresponding to the Markov process
Y x

t (y) defined by equation (3.1), from Lemma A.1 we infer that

∣∣
∣∣Eρ

(
t, x, Y x

s (y)
)

–
∫

Rm
ρ(t, x, z)μx(dz)

∣∣
∣∣

=
∣
∣∣
∣

∫

Rm
E

[
ρ
(
t, x, Y x

s (y)
)

– ρ
(
t, x, Y x

s (z)
)]

μx(dz)
∣
∣∣
∣

≤
∫

Rm

∣∣E
(
a
(
x, Y x

s (z)
)

– a
(
x, Y x

s (y)
)
, Dxū(t, x)

)
Rn

∣∣μx(dz)

≤ C
∫

Rm
E

∥
∥Y x

s (z) – Y x
s (y)

∥
∥
Rnμ

x(dz).

Now it follows from (3.3) and (3.4) that

∣∣
∣∣Eρ

(
t, x, Y x

s (y)
)

–
∫

Rm
ρ(t, x, z)μx(dz)

∣∣
∣∣ ≤ C

(
1 + ‖x‖Rn + ‖y‖Rm

)
e– β

2 s,

which implies

lim
s→+∞Eρ

(
t, x, Y x

s (y)
)

=
∫

Rm
ρ(t, x, z)μx(dz) = 0.

With the aid of the last limit, we can deduce from (4.8) that

(
f (x, y), Dy

∫ +∞

0

[
Psρ(t, x, y)

]
ds

)

Rm

+
1
2

Tr

[
D2

yy

∫ +∞

0

[
Psρ(t, x, y)

] · g(x, y)gT (x, y) ds
]

+ λ2

(∫ +∞

0
Ps

[
ρ
(
t, x, y + h(x, y)

)]
ds –

∫ +∞

0
Ps

[
ρ(t, x, y)

]
ds

)

=
∫ +∞

0

∂

∂s
Ps

[
ρ(t, x, y)

]
ds
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= lim
s→+∞Eρ

(
t, x, Y x

s (y)
)

– ρ(t, x, y)

=
∫

Rm
ρ(t, x, z)μx(dz) – ρ(t, x, y)

= –ρ(t, x, y),

which implies

L2

(∫ +∞

0
Psρ(t, x, y) ds

)
= –ρ(t, x, y).

Therefore,

u1(t, x, y) :=
∫ +∞

0
Eρ

(
t, x, Y x

s (y)
)

ds (4.9)

is the solution to equation (4.7).

Lemma 4.2 Under assumptions (A1), (A2), and (A3), for any x ∈ R
n, y ∈ R

m, and T > 0,
we have

∣∣u1(t, x, y)
∣∣ ≤ CT

(
1 + ‖x‖Rn + ‖y‖Rm

)
, t ∈ [0, T]. (4.10)

Proof By (4.9) we have

u1(t, x, y) =
∫ +∞

0
E

(
ā(x) – a

(
x, Y x

s (y)
)
, Dxū(t, x)

)
Rn ds,

so that

∣
∣u1(t, x, y)

∣
∣ ≤

∫ +∞

0

∥
∥ā(x) – E

[
a
(
x, Y x

s (y)
)]∥∥

Rn · ∥∥Dxū(t, x)
∥
∥
Rn ds.

Therefore, from Lemma A.1 and (3.5) we get

∣
∣u1(t, x, y)

∣
∣ ≤ CT

(
1 + ‖x‖Rn + ‖y‖Rm

)∫ +∞

0
e– β

2 s ds ≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)
. �

4.3 Determination of remainder rε

We now turn to the construction for the remainder term rε . It is known that

(
∂t – Lε

)
uε = 0,

which, together with (4.4) and (4.5), implies

(
∂t – Lε

)
rε = –

(
∂t – Lε

)
u0 – ε

(
∂t – Lε

)
u1

= –
(

∂t –
1
ε
L2 – L1

)
u0 – ε

(
∂t –

1
ε
L2 – L1

)
u1

= ε(L1u1 – ∂tu1). (4.11)

To estimate the remainder term rε , we need the following two lemmas.
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Lemma 4.3 Under assumptions (A1), (A2), and (A3), for any x ∈ R
n, y ∈ R

m, and T > 0,
we have

∣∣
∣∣
∂u1

∂t
(t, x, y)

∣∣
∣∣ ≤ CT

(
1 + ‖x‖Rn + ‖y‖Rm

)
.

Proof In view of (4.9), we get

∂u1

∂t
(t, x, y) =

∫ +∞

0
E

(
ā(x) – a

(
x, Y x

s (y)
)
,

∂

∂t
Dxū(t, x)

)

Rn
ds.

By Lemma A.6 introduced in Sect. 4.3 we have

∣∣∣
∣
∂u1

∂t
(t, x, y)

∣∣∣
∣ ≤

∫ +∞

0
E

(∥∥ā(x) – a
(
x, Y x

s (y)
)∥∥

Rn ·
∥∥∥
∥

∂

∂t
Dxū(t, x)

∥∥∥
∥
Rn

)
ds

≤ CT

∫ +∞

0
E

∥∥ā(x) – a
(
x, Y x

s (y)
)∥∥

Rn ds,

so that from (3.5) we have
∣∣
∣∣
∂u1

∂t
(t, x, y)

∣∣
∣∣ ≤ CT

(
1 + ‖x‖Rn + ‖y‖Rm

)
. �

Lemma 4.4 Under assumptions (A1), (A2), and (A3), for any x ∈ R
n, y ∈ R

m, and T > 0,
we have

∣∣L1u1(t, x, y)
∣∣ ≤ CT

(
1 + ‖x‖Rn + ‖y‖Rm

)
, t ∈ [0, T].

Proof Recalling that u1(t, x, y) is the solution of equation (4.7) and equality (4.9) holds, we
have

L1u1(t, x, y) =
(
a(x, y), Dxu1(t, x, y)

)
Rn +

1
2

Tr
[
D2

xxu1(t, x, y) · b(x)bT (x)
]

+ λ1
[
u1

(
t, x + c(x), y

)
– u1(t, x, y)

]
, (4.12)

and then, in order to prove the boundedness of L1u1, we have to estimate the three terms
arising in the right-hand side of (4.12).

Step 1: Estimate of (a(x, y), Dxu1(t, x, y))Rn .
For any k ∈R

n, we have

Dxu1(t, x, y) · k =
∫ +∞

0

(
Dx

(
ā(x) – Ea

(
x, Y x

s (y)
)) · k, Dxū(t, x)

)
Rn ds

+
∫ +∞

0

(
ā(x) – Ea

(
x, Y x

s (y)
)
, D2

xxū(t, x) · k
)
Rn ds

=: I1(t, x, y, k) + I2(t, x, y, k).

By Lemma A.1 and A.4 we infer that

∣
∣I1(t, x, y, k)

∣
∣

≤ ∥
∥Dxū(t, x)

∥
∥
Rn

∫ +∞

0

∥
∥Dx

(
ā(x) – Ea

(
x, Y x

s (y)
)) · k

∥
∥
Rn ds
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≤ CT‖k‖Rn
(
1 + ‖x‖Rn + ‖y‖Rm

)∫ +∞

0
e– β

2 s ds

≤ CT‖k‖Rn
(
1 + ‖x‖Rn + ‖y‖Rm

)
. (4.13)

By Lemma A.2 and inequality (3.5) we obtain

∣∣I2(t, x, y, k)
∣∣ ≤ CT‖k‖Rn

∫ +∞

0

∥∥ā(x) – Ea
(
x, Y x

s (y)
)∥∥

Rn ds

≤ CT‖k‖Rn
(
1 + ‖x‖Rn + ‖y‖Rm

)∫ +∞

0
e– β

2 s ds

≤ CT‖k‖Rn
(
1 + ‖x‖Rn + ‖y‖Rm

)
.

This, together with (4.13), implies

∥
∥Dxu1(t, x, y) · k

∥
∥ ≤ CT‖k‖Rn

(
1 + ‖x‖Rn + ‖y‖Rm

)
,

and then, as a(x, y) is bounded, it follows that

∣∣(a(x, y), Dxu1(t, x, y)
)
Rn

∣∣ ≤ CT
∥∥a(x, y)

∥∥
Rn

(
1 + ‖x‖Rn + ‖y‖Rm

)

≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)
.

Step 2: Estimate of Tr[D2
xxu1(t, x, y) · b(x)bT (x)].

Since u1(t, x, y) is given by the representation formula (4.9), for any k1, k2 ∈ R
n, we have

D2
xxu1(t, x, y) · (k1, k2)

=
∫ +∞

0
E

(
D2

xx
(
ā(x) – a

(
x, Y x

s (y)
)) · (k1, k2), Dxū(t, x)

)
Rn ds

+
∫ +∞

0
E

(
Dx

(
ā(x) – a

(
x, Y x

s (y)
)) · k1, D2

xxū(t, x) · k2
)
Rn ds

+
∫ +∞

0
E

(
Dx

(
ā(x) – a

(
x, Y x

s (y)
)) · k2, D2

xxū(t, x) · k1
)
Rn ds

+
∫ +∞

0
E

(
ā(x) – a

(
x, Y x

s (y)
)
, D3

xxxū(t, x) · (k1, k2)
)
Rn ds

:=
4∑

i=1

Ji(t, x, y, k1, k2).

Thanks to Lemma A.1 and Lemma A.5, we get

∣∣J1(t, x, y, k1, k2)
∣∣

≤
∫ +∞

0

∣∣E
(
D2

xx
(
ā(x) – a

(
x, Y x

s (y)
)) · (k1, k2), Dxū(t, x)

)
Rn

∣∣ds

≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)‖k1‖Rn‖k2‖Rn

∫ +∞

0
e– β

2 s ds

≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)‖k1‖Rn‖k2‖Rn . (4.14)
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By Lemma A.4 and (3.5) we infer that

∣
∣J2(t, x, y, k1, k2)

∣
∣

≤
∫ +∞

0

∣∣E
(
Dx

(
ā(x) – a

(
x, Y x

s (y)
)) · k1, D2

xxū(t, x) · k2
)
Rn

∣∣ds

≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)‖k1‖Rn‖k2‖Rn

∫ +∞

0
e– β

2 s ds

≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)‖k1‖Rn‖k2‖Rn . (4.15)

With a similar argument, we can also show that

∣∣J3(t, x, y, k1, k2)
∣∣

≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)‖k1‖Rn‖k2‖Rn . (4.16)

Using Lemma A.3 and (3.5), we get

∣∣J4(t, x, y, k1, k2)
∣∣

≤ CT‖k1‖Rn · ‖k2‖Rn · (1 + ‖x‖Rn + ‖y‖Rm
)∫ +∞

0
e– β

2 s ds

≤ CT‖k1‖Rn · ‖k2‖Rn
(
1 + ‖x‖Rn + ‖y‖Rm

)
. (4.17)

In view of estimates (4.14), (4.15), (4.16), and (4.17), we can conclude that there exists a
constant CT such that

∣∣D2
xxu1(t, x, y) · (k1, k2)

∣∣ ≤ CT‖k1‖Rn · ‖k2‖Rn
(
1 + ‖x‖Rn + ‖y‖Rm

)
, t ∈ [0, T],

which means that, for fixed y ∈ R
m and t ∈ [0, T],

∥
∥D2

xxu1(t, x, y)
∥
∥

L(Rn ,R) ≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)
,

where ‖ · ‖L(Rn ,R) denotes the usual operator norm on the Banach space consisting of
bounded and linear operators from R

n to R. As the diffusion function g is bounded, we
get

Tr
(
D2

xxu1(t, x, y)ggT) ≤ CT
∥∥D2

xxu1(t, x, y)
∥∥

L(Rn ,R)

≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)
.

Step 3: Estimate of λ1[u1(t, x + c(x), y) – u1(t, x, y)].
By Lemma 4.2 and the boundedness condition of c(x), we directly have

∣
∣λ1

[
u1

(
t, x + c(x), y

)
– u1(t, x, y)

]∣∣

λ1
[∣∣u1

(
t, x + c(x), y

)∣∣ +
∣∣u1(t, x, y)

∣∣]

≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)
, t ∈ [0, T].
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Finally, it is now easy to gather all previous estimates for terms in (4.12) and conclude

∣∣L1u1(t, x, y)
∣∣ ≤ CT

(
1 + ‖x‖Rn + ‖y‖Rm

)
, t ∈ [0, T]. �

Lemma 4.5 Under the conditions of Lemma 4.3, for any T > 0, x ∈ R
n, and y ∈ R

m, we
have

∣∣rε(T , x, y)
∣∣ ≤ CTε

(
1 + ‖x‖Rn + ‖y‖Rm

)
.

Proof By the variation-of-constant formula we write equation (4.11) in thes integral form

rε(T , x, y) = E
[
rε

(
0, Xε

T (x, y), Y ε
T (x, y)

)]

+ ε

[∫ T

0
E

(
L1u1 –

∂u1

∂s

)(
s, Xε

T–s(x, y), Y ε
T–s(x, y)

)
ds

]
.

Since uε and ū satisfy the same initial condition, we have

∣∣rε(0, x, y)
∣∣ =

∣∣uε(0, x, y) – ū(0, x) – εu1(0, x, y)
∣∣

= ε
∣
∣u1(0, x, y)

∣
∣,

so that, thanks to (4.10), (2.1), and (2.2), we have

E
[
rε(0, Xε

T (x, y), Y ε
T (x, y)

] ≤ Cε
(
1 + ‖x‖Rn + ‖y‖Rm

)
. (4.18)

Using Lemmas 4.3 and 4.4 yields

E

[(
L1u1 –

∂u1

∂s

)
(
s, Xε

T–s(x, y), Y ε
T–s(x, y)

)
]

≤ CE
(
1 +

∥∥Xε
T–s(x, y)

∥∥ +
∥∥Y ε

T–s(x, y)
∥∥)

,

and, according to (2.1) and (2.2), this implies that

E

[∫ T

0

(
L1u1 –

∂u1

∂s

)
(
s, Xε

T–s(x, y), Y ε
T–s(x, y)

)
ds

]

≤ CT
(
1 + ‖x‖Rn + ‖y‖Rm

)
.

The last inequality, together with (4.18), yields

∣
∣rε(T , x, y)

∣
∣ ≤ εCT

(
1 + ‖x‖Rn + ‖y‖Rm

)
. �

Appendix
In this appendix, we collect some technical results to which we appeal in the proofs of the
main results in Sect. 4.
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Lemma A.1 For any T > 0, there exists a constant CT > 0 such that, for any x, k ∈ R
n and

t ∈ [0, T], we have

∣∣Dxū(t, x) · k
∣∣ ≤ CT‖k‖Rn .

Proof Observe that, for any k ∈R
n,

Dxū(t, x) · k = E
[
Dφ

(
X̄t(x)

) · ηk,x
t

]

= E
(
φ′(X̄t(x)

)
,ηk,x

t
)
Rn ,

where η
k,x
t denotes the first mean-square derivative of X̄t(x) with respect to x ∈ R

n along
the direction k ∈R

n. Then we have
⎧
⎨

⎩
dη

k,x
t = Dxā(X̄t(x)) · ηk,x

t dt + Dxb(X̄t(x)) · ηk,x
t dBt + Dxc(X̄t–(x)) · ηk,x

t– dPt ,

η
k,x
0 = k.

This means that η
k,x
t is the solution of the integral equation

ηk,x
t = k +

∫ t

0
Dxā

(
X̄s(x)

) · ηk,x
s ds +

∫ t

0
Dxb

(
X̄s(x)

) · ηk,x
s dBs

+
∫ t

0
Dxc

(
X̄s–(x)

) · ηk,x
s– dPs,

and then, thanks to assumption (A1), we get

E
∥∥ηk,x

t
∥∥2
Rn ≤ CT‖k‖2

Rn + CT

∫ t

0
E

∥∥ηk,x
s

∥∥2
Rn ds.

Then by the Gronwall lemma it follows that

E
∥∥ηk,x

t
∥∥2
Rn ≤ CT‖k‖2

Rn , t ∈ [0, T], (A.1)

so that

∣
∣Dxū(t, x) · k

∣
∣ ≤ CT‖k‖Rn . �

Next, we introduce a similar result for the second derivative of ū(t, x).

Lemma A.2 For any T > 0, there exists a constant CT > 0 such that, for any x, k1, k2 ∈ R
n

and t ∈ [0, T], we have

∣∣D2
xxū(t, x) · (k1, k2)

∣∣ ≤ CT‖k1‖Rn · ‖k2‖Rn .

Proof For any k1, k2 ∈R
n, we have

D2
xxū(t, x) · (k1, k2) = E

[
φ′′(X̄t(x)

) · (ηk1,x
t ,ηk2,x

t
)

+ φ′(X̄t(x)
) · ξ k1,k2,x

t
]
, (A.2)
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where ξ
k1,k2,x
t is the solution of the second variation equation corresponding to the aver-

aged equation, which may be rewritten in the following form:

ξ
k1,k2,x
t =

∫ t

0

[
Dxā

(
X̄s(x)

) · ξ k1,k2,x
s + D2

xxā
(
X̄s(x)

) · (ηk1,x
s ,ηk2,x

s
)]

ds

+
∫ t

0

[
D2

xxb
(
X̄s(x)

) · (ηk1,x
s ,ηk2,x

s
)

+ Dxb
(
X̄s(x)

) · ξ k1,k2,x
s

]
dBs

+
∫ t

0

[
D2

xxc
(
X̄s–(x)

) · (ηk1,x
s– ,ηk2,x

s–
)

+ Dxc
(
X̄s–(x)

) · ξ k1,k2,x
s–

]
dPs.

Thus, by assumption (A1) and (A.1) we have

E
∥
∥ξ

k1,k2,x
t

∥
∥2
Rn ≤ CT

∫ t

0

({
E

∥
∥ηk1,x

s
∥
∥2
Rn

} 1
2
{
E

∥
∥ηk2,x

s
∥
∥2
Rn

} 1
2 + E

∥
∥ξ k1,k2,x

s
∥
∥2
Rn

)
ds

≤ CT‖k1‖Rn · ‖k2‖Rn + CT

∫ t

0
E

∥∥ξ k1,k2,x
s

∥∥2
Rn ds.

By the Gronwall lemma we have

E
∥
∥ζ

k1,k2,x
t

∥
∥2
Rn ≤ CT‖k1‖Rn · ‖k2‖Rn .

Returning to (A.2), we get

∣
∣D2

xxū(t, x) · (k1, k2)
∣
∣ ≤ CT‖h1‖Rn · ‖k2‖Rn . �

Using analogous arguments, we can prove the following estimate for the third-order
derivative of ū(t, x) with respect to x.

Lemma A.3 For any T > 0, there exists a constant CT > 0 such that, for any x, k1, k2, k3 ∈R
n

and t ∈ [0, T], we have

∣
∣D3

xxxū(t, x) · (k1, k2, k3)
∣
∣ ≤ CT‖k1‖Rn · ‖k2‖Rn · ‖k3‖Rn .

The following lemma states the boundedness for the first derivative of ā(x)–Ea(x, Y x
t (y))

with respect to x.

Lemma A.4 There exists a constant C > 0 such that, for any x ∈ R
n, y ∈ R

m, k ∈ R
n, and

t > 0,

∥
∥Dx

(
ā(x) – Ea

(
x, Y x

t (y)
)) · k

∥
∥
Rn ≤ Ce– β

2 t‖k‖Rn
(
1 + ‖x‖Rn + ‖y‖Rm

)
.

Proof The proof is a modification of the proof of [3, Prop. C.2]. For any t0 > 0, we set

ãt0 (x, y, t) = â(x, y, t) – â(x, y, t + t0),

where

â(x, y, t) := Ea
(
x, Y x

t (y)
)
.



Zhang et al. Advances in Difference Equations  (2018) 2018:197 Page 16 of 20

Then we have

lim
t0→+∞ ãt0 (x, y, t) = Ea

(
x, Y x

t (y)
)

– ā(x).

By the Markov property we have

ãt0 (x, y, t) = â(x, y, t) – Ea
(
x, Y x

t+t0 (y)
)

= â(x, y, t) – Eâ
(
x, Y x

t0 (y), t
)
.

Due to assumption (A1), for any k ∈R
n, we have

Dxãt0 (x, y, t) · k = Dxâ(x, y, t) · k – EDx
(
â
(
x, Y x

t0 (y), t
)) · k

= â′
x(x, y, t) · k – Eâ′

x
(
x, Y x

t0 (y), t
) · k

– Eâ′
y
(
x, Y x

t0 (y), t
) · (DxY x

t0 (y) · k
)
, (A.3)

where the symbols â′
x and â′

y denote the directional derivatives with respect to x and y,
respectively. Note that the first derivative ζ

x,y,k
t = DxY x

t (y) · k, at the point x and along the
direction k ∈R

n, is the solution of the equation

dζ
x,y,k
t =

(
f ′
x
(
x, Y x

t (y)
) · k + f ′

y
(
x, Y x

t (y)
) · ζ x,y,k

t
)

dt

+
(
g ′

x
(
x, Y x

t (y)
) · k + g ′

y
(
x, Y x

t (y)
) · ζ x,y,k

t
)

dWt

+
(
h′

x
(
x, Y x

t–(y)
) · k + h′

y
(
x, Y x

t–(y)
) · ζ x,y,k

t–
)

dNt

with initial data ζ
x,y,k
0 = 0. Hence, by assumption (A1), it is straightforward to check

E
∥∥ζ

x,y,k
t

∥∥
Rm ≤ C‖k‖Rn (A.4)

for any t ≥ 0. Note that, for any y1, y2 ∈R
m, we have

∥∥â(x, y1, t) – â(x, y2, t)
∥∥
Rn =

∥∥Ea
(
x, Y x

t (y1)
)

– Ea
(
x, Y x

t (y2)
)∥∥

Rn

≤ CE
∥∥Y x

t (y1) – Y x
t (y2)

∥∥
Rm

≤ Ce– β
2 t‖y1 – y2‖Rm ,

where (3.3) was used to obtain the last inequality. This means that

∥∥â′
y(x, y, t) · l

∥∥
Rm ≤ Ce– β

2 t‖l‖Rm , l ∈R
m. (A.5)

From (A.4) and (A.5) we obtain

∥∥E
[
â′

y
(
x, Y x

t0 (y), t
) · (DxY x

t0 (y) · k
)]∥∥

Rm

=
∥
∥E

[
â′

y
(
x, Y x

t0 (y), t
) · (ζ x,y,k

t0

)]∥∥
Rm

≤ Ce– β
2 t‖k‖Rn . (A.6)
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Then by easy calculations we have

â′
x(x, y1, t) · k – â′

x(x, y2, t) · k

= E
(
a′

x
(
x, Y x

t (y1)
)) · k – E

(
a′

x
(
x, Y x

t (y2)
)) · k

+ E
(
a′

y
(
x, Y x

t (y1)
) · ζ x,y1,k

t – a′
y
(
x, Y x

t (y2)
) · ζ x,y2,k

t
)

= E
(
a′

x
(
x, Y x

t (y1)
)) · k – E

(
a′

x
(
x, Y x

t (y2)
)) · k

+ E
([

a′
y
(
x, Y x

t (y1)
)

– a′
y
(
x, Y x

t (y2)
)] · ζ x,y1,k

t
)

+ E
(
a′

y
(
x, Y x

t (y2)
) · (ζ x,y1,k

t – ζ
x,y2,k
t

))

:=
3∑

i=1

Ni(t, x, y1, y2, k). (A.7)

Now, we estimate the three terms in the right-hand side of the equality. Concerning
N1(t, x, y1, y2, k), we have

∥∥N1(t, x, y1, y2, k)
∥∥
Rn

≤ E
∥∥(

a′
x
(
x, Y x

t (y1)
)) · k –

(
a′

x
(
x, Y x

t (y2)
)) · k

∥∥
Rn

≤ CE
∥
∥Y x

t (y1) – Y x
t (y2)

∥
∥
Rm · ‖k‖Rn

≤ Ce– β
2 t‖y1 – y2‖Rm · ‖k‖Rn . (A.8)

Next, by assumption (A1) we get

∥∥N2(t, x, y1, y2, k)
∥∥
Rn

≤ E
∥∥[

a′
y
(
x, Y x

t (y1)
)

– a′
y
(
x, Y x

t (y2)
)] · ζ x,y1,k

t
∥∥
Rn

≤ C
{
E

∥
∥ζ

x,y1,k
t

∥
∥2
Rm

} 1
2 · {E∥

∥Y x
t (y1) – Y x

t (y2)
∥
∥2
Rm

} 1
2

≤ Ce– β
2 t‖k‖Rn · ‖y1 – y2‖Rm . (A.9)

For the third term, using assumption (A1) again, we can infer that

∥∥N3(t, x, y1, y2, k)
∥∥
Rn

≤ E
∥
∥a′

y
(
x, Y x

t (y2)
) · (ζ x,y1,k

t – ζ
x,y2,k
t

)∥∥
Rn

≤ CE
∥∥ζ

x,y1,k
t – ζ

x,y2,k
t

∥∥
Rm

≤ Ce– β
2 t‖y1 – y2‖Rm · ‖k‖Rn . (A.10)

Now, returning to (A.7) and taking into account (A.8), (A.9), and (A.10), we get

∥
∥â′

x(x, y1, t) · k – â′
x(x, y2, t) · k

∥
∥

≤ Ce– β
2 t‖y1 – y2‖Rm · ‖k‖Rn ,
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which leads to

∥
∥â′

x(x, y, t) · h – Eâ′
x
(
x, Y x

t0 (y), t
) · k

∥
∥
Rn

≤ Ce– β
2 t(1 + ‖y‖Rm +

∥
∥Y x

t0 (y)
∥
∥
Rm

) · ‖k‖Rn

≤ e– β
2 t(1 + ‖x‖Rn + ‖y‖Rm

) · ‖k‖Rn , (A.11)

where we used inequality (3.2). Returning to (A.3), by (A.6) and (A.11) we conclude that

∥∥Dxãt0 (x, y, t) · k
∥∥
Rn ≤ Ce– β

2 t(1 + ‖x‖Rn + ‖y‖Rm
)‖k‖Rn .

Taking the limit as t0 → +∞, we obtain

∥∥Dx
(
ā(x) – Ea

(
x, Y x

t (y)
))∥∥

Rn ≤ Ce– β
2 t‖k‖Rn

(
1 + ‖x‖Rn + ‖y‖Rm

)
. �

Proceeding with similar arguments, we obtain the following higher-order differentiabil-
ity.

Lemma A.5 There exists a constant C > 0 such that, for any x, k1, k2 ∈ R
n, y ∈ R

m, and
t > 0,

∥∥D2
xx

(
ā(x) – Ea

(
x, Y x

t (y)
))

(k1, k2)
∥∥
Rn

≤ Ce– β
2 t‖k1‖Rn‖k2‖Rn

(
1 + ‖x‖Rn + ‖y‖Rm

)
.

Finally, we introduce the following auxiliary result.

Lemma A.6 There exists a constant C > 0 such that, for any x, k ∈R
n, y ∈R

m, and t > 0,

∥
∥∥
∥

∂

∂t
Dxū(t, x) · k

∥
∥∥
∥
Rn

≤ C‖k‖Rn .

Proof For simplicity of presentation, we will prove it for the one-dimensional case. The
multidimensional situation can be treated similarly, and only notations are somewhat in-
volved. In this case, we only need to show that

∣∣
∣∣
∂

∂t
∂

∂x
ū(t, x)

∣∣
∣∣ ≤ C. (A.12)

In fact, for any φ ∈ C3
b(R,R), we have

∂

∂x
ū(t, x) =

∂

∂x
Eφ

(
X̄t(x)

)
= E

(
φ′(X̄t(x)

) · ∂

∂x
X̄t(x)

)
.

If we define

ςx
t :=

∂

∂x
X̄t(x),
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then we have

ςx
t = 1 +

∫ t

0
ā′(X̄s(x)

) · ςx
s ds +

∫ t

0
b′(X̄s(x)

) · ςx
s dBs

+
∫ t

0
c′(X̄s–(x)

) · ςx
s– dPs.

The boundedness of ā′, b′, and c′ guarantees that

E
∣
∣ςx

t
∣
∣2 ≤ CT , t ∈ [0, T]. (A.13)

By Itô’s formula we have

E
[
φ′(X̄t(x)

) · ςx
t
]

= φ′(x) + E

∫ t

0

[
φ′(X̄s(x)

)
ā′(X̄s(x)

)
ςx

s + ςx
s φ′′(X̄s(x)

)
ā
(
X̄s(x)

)]
ds

+ E

∫ t

0
b′(X̄s(x)

)
)ςx

s φ′′(X̄s(x)
)
b
(
X̄s(x)

)
ds

+
1
2
E

∫ t

0
ςx

s φ′′′(X̄s(x)
)
b2(X̄s(x)

)
ds

+ λ1E

∫ t

0
φ′(X̄s(x)

)
c′(X̄s–(x)

)
ςx

s ds

+ λ1E

∫ t

0
ςx

s
[
φ′(X̄s–(x) + c

(
X̄s–(x)

))
– φ′(X̄s–(x)

)]
ds

+ λ1E

∫ t

0
c′(X̄s–(x)

)
ςx

s
[
φ′(X̄s–(x) + c

(
X̄s–(x)

))
– φ′(X̄s–(x)

)]
ds.

Since φ belongs to C3
b(R,R), from assumption (A1) it follows that, for any t ∈ [0, T],

∣∣
∣∣
∂

∂t

[
∂

∂x
ū(t, x)

]∣∣
∣∣ =

∣∣
∣∣
∂

∂t
E

[
φ′(X̄t(x)

) · ςx
t
]
∣∣
∣∣

≤ C
∣
∣Eςx

t
∣
∣.

Then, taking (A.13) into account, we easily arrive at (A.12). �
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