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Abstract
The Fibonacci sequence was firstly used in the theory of sequence spaces by Kara and
Başarir (Casp. J. Math. Sci. 1(1):43–47, 2012). Afterward, Kara (J. Inequal. Appl.
2013(1):38, 2013) defined the Fibonacci difference matrix F̂ by using the Fibonacci
sequence (fn) for n ∈ {0, 1, . . .} and introduced new sequence spaces related to the
matrix domain of F̂. In this paper, by using the Fibonacci difference matrix F̂ defined
by the Fibonacci sequence and the notion of ideal convergence, we introduce the
Fibonacci difference sequence spaces cI0(F̂), c

I(F̂), and �I∞(F̂). Further, we study some
inclusion relations concerning these spaces. In addition, we discuss some properties
on these spaces such as monotonicity and solidity.

Keywords: Fibonacci difference matrix; Fibonacci I-convergence; Fibonacci
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1 Introduction
Let N and R denote the sets of natural and real numbers, respectively. By ω we denote the
vector space of all real sequences. Any vector subspace of ω is called a sequence space.
Throughout the paper, �∞, c, and c0 are the classes of bounded, convergent, and null se-
quences, respectively, with norm ‖x‖∞ = supk∈N |xk|. Let λ and μ be two sequence spaces,
and let A = (ank) be an infinite matrix of real numbers ank , n, k ∈ N. Then we say that A
defines a matrix transformation from λ into μ, and we denote it by writing A : λ −→ μ if
for every sequence x = (xk) ∈ λ, the sequence Ax = {An(x)}, the A-transform of x, is in μ,
where

An(x) =
∞∑

k=0

ankxk for n ∈N. (1.1)

By (λ,μ) we denote the class of all matrices A. Thus A ∈ (λ,μ) if and only if the series on the
right side of (1.1) converges for each n ∈N and every x ∈ λ and Ax ∈ μ for all x ∈ λ, where
An = (ank)k∈N denotes the sequence in the nth row of A. The concept of matrix domain
has fundamental importance for this study. So, the matrix domain of an infinite matrix A
in a sequence space λ is defined by

λA :=
{

x = (xk) ∈ ω : Ax ∈ λ
}

, (1.2)
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which is a sequence space. If A = �, where � is the backward difference matrix defined by

� = �nk =

⎧
⎨

⎩
(–1)n–k , n – 1 ≤ k ≤ n,

0, 0 ≤ k < n – 1 or k > n,

for all n, k ∈ N, then λ� is called the difference sequence space defined by the domain of
a triangle matrix A whenever λ is a normed linear space or paranormed sequence space.
The notion of difference sequence spaces was introduced by Kizmaz [22] as follows:

λ(�) :=
{

x = (xn) ∈ ω : (xn – xn+1) ∈ λ
}

for λ ∈ {�∞, c, c0}. In recent years, some researchers have addressed the approach to con-
structing a new sequence space by means of the matrix domain of a particular limitation
method; see, for instance, [2–4, 10, 11, 15, 20, 26] and the references therein. Quite re-
cently, Kara [12] has introduced the difference sequence space

�∞(F̂) =
{

x = (xn) ∈ ω : sup
n∈N

∣∣∣∣
fn

fn+1
xn –

fn+1

fn
xn–1

∣∣∣∣ < ∞
}

,

which is derived by the Fibonacci difference matrix F̂ = (f̂nk) defined as follows:

f̂nk =

⎧
⎪⎪⎨

⎪⎪⎩

– fn+1
fn , k = n – 1,

fn
fn+1

, k = n,

0, 0 ≤ k < n – 1 or k > n,

(1.3)

for all n, k ∈ N, where {fn}∞n=0 is the sequence of Fibonacci numbers defined by the linear
recurrence equalities f0 = f1 = 1 and fn = fn–1 + fn–2, n ≥ 2, with the following fundamental
properties (see Koshy [23]):

lim
n→∞

fn+1

fn
=

1 +
√

5
2

= α (Golden Ratio), (1.4)

n∑

k=0

fk = fn+2 – 1 (n ∈N),

∑

k

1
fk

converges,

fn–1fn+1 – f 2
n = (–1)n+1, n ≥ 1 (Cassini’s formula),

which yields f 2
n–1 + fnfn–1 – f 2

n = (–1)n+1 by substituting for fn+1 in Cassini’s formula.
For a more detailed information about Fibonacci sequence spaces, we refer to [5–7, 18,

25]. By using the same infinite Fibonacci matrix F̂ and the same technique, Başarir et al.
[1] have introduced the Fibonacci difference sequence spaces c0(F̂) and c(F̂) as the sets of
all sequences whose F̂-transforms are in the spaces c0 and c, respectively, that is,

c0(F̂) :=
{

x = (xn) ∈ ω : lim
n→∞ F̂n(x) = 0

}
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and

c(F̂) :=
{

x = (xn) ∈ ω : ∃� ∈R � lim
n→∞ F̂n(x) = �

}
,

where the sequence F̂n(x) is the F̂-transform of a sequence x = (xn) ∈ ω, defined as follows:

F̂n(x) =

⎧
⎨

⎩

f0
f1

x0 = x0, n = 0,
fn

fn+1
xn – fn+1

fn xn–1, n ≥ 1.
(1.5)

By an ideal we mean a family of sets I ⊂ P(X) (where P(X) is the power set of X) such
that (i) ∅ ∈ I , (ii) A ∪ B ∈ I for all A, B ∈ I , and (iii) for each A ∈ I and B ⊂ A, we have B ∈ I ;
I is called admissible in X if it contains all singletons, that is, if I ⊃ {{x} : x ∈ X}. A filter
on X is a nonempty family of sets F ⊂ P(X) satisfying (i) ∅ /∈ F , (ii) A, B ∈ F implies that
A ∩ B ∈ F , and (iii) for any A ∈ F and B ⊃ A, we have B ∈ F . For each ideal I , there is a
filter F (I) corresponding to I (a filter associated with ideal I), that is, F (I) = {K ⊆ X : Kc ∈
I}, where Kc = X \ K . In 1999, Kostyrko et al. [24] defined the notion of I-convergence,
which depends on the structure of ideals of subsets of N as a generalization of statistical
convergence introduced by Fast [9] and Steinhaus [29] in 1951. Later on, the notion of
I-convergence was further investigated from the sequence space point of view and linked
with the summability theory by Šalát et al. [27], Tripathy and Hazarika [30–32], Khan and
Ebadullah [19], Das et al. [8], and many other authors. Šalát et al. [28] extended the notion
of summability fields of an infinite matrix of operators A with the help of the notion of
I-convergence, that is, the notion of I-summability and introduced new sequence spaces
cI

A and mI
A, the I-convergence field and bounded I-convergence field of an infinite matrix

A, respectively. For further details on ideal convergence, we refer to [14, 16, 17].
Throughout the paper, cI

0, cI , and �I∞ denote the I-null, I-convergent, and I-bounded
sequence spaces, respectively. In this paper, by combining the definitions of Fibonacci dif-
ference matrix F̂ and ideal convergence we introduce the sequence spaces cI

0(F̂), cI(F̂), and
�I∞(F̂). Further, we study some topological and algebraic properties of these spaces. Also,
we study some inclusion relations concerning these spaces.

Now, we recall some definitions and lemmas, which will be used throughout the paper.

Definition 1.1 ([9, 29]) A sequence x = (xn) ∈ ω is said to be statistically convergent to a
number � ∈ R if, for every ε > 0, the natural density of the set {n ∈ N : |xn – �| ≥ ε} equals
zero, and we write st- lim xn = �. If � = 0, then x = (xn) ∈ ω is said to be st-null.

Definition 1.2 ([27]) A sequence x = (xn) ∈ ω is said to be I-Cauchy if, for every ε > 0,
there exists a number N = N(ε) such that the set {n ∈N : |xn – xN | ≥ ε} ∈ I .

Definition 1.3 ([24]) A sequence x = (xn) ∈ ω is said to be I-convergent to a number � ∈R

if, for every ε > 0, the set {n ∈ N : |xn – �| ≥ ε} ∈ I , and we write I- lim xn = �. If � = 0, then
(xn) ∈ ω is said to be I-null.

Definition 1.4 ([19]) A sequence x = (xn) ∈ ω is said to be I-bounded if there exists K > 0
such that the set {n ∈N : |xn| ≥ K} ∈ I .
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Definition 1.5 ([27]) Let x = (xn) and z = (zn) be two sequences. We say that xn = zn for
almost all n relative to I (in short, a.a.n.r.I) if the set {n ∈N : xn �= zn} ∈ I .

Definition 1.6 ([27]) A sequence space E is said to be solid or normal if (αnxn) ∈ E for any
sequence (xn) ∈ E and any sequence of scalars (αn) ∈ ω with |αn| < 1 for all n ∈N.

Lemma 1.1 ([27]) Every solid space is monotone.

Definition 1.7 ([27]) A sequence space E is said to be a sequence algebra if (xn) ∗ (zn) =
(xn · zn) ∈ E for all (xn), (zn) ∈ E.

Definition 1.8 ([27]) Let K = {ni ∈ N : n1 < n2 < · · · } ⊆ N, and let E be a sequence space.
The K-step space of E is the sequence space

λE
K =

{
(xni ) ∈ ω : (xn) ∈ E

}
.

A canonical preimage of a sequence (xni ) ∈ λE
K is the sequence (yn) ∈ ω defined as

yn =

⎧
⎨

⎩
xn if n ∈ K ,

0 otherwise.

A canonical preimage of the step space λE
K is the set of canonical preimages of all elements

in λE
K , that is, y is in the canonical preimage of λE

K iff y is the canonical preimage of some
element x ∈ λE

K .

Definition 1.9 ([27]) A sequence space E is said to be monotone if it contains the canon-
ical preimages of its step space (i.e., if for all infinite K ⊆ N and (xn) ∈ E, the sequence
(αnxn) with αn = 1 for n ∈ K and αn = 0 otherwise belongs to E).

Definition 1.10 A map h defined on a domain D ⊂ X (i.e., h : D ⊂ X −→ R) is said to
satisfy the Lipschitz condition if |h(x) – h(y)| ≤ K |x – y|, where K is called the Lipschitz
constant.

Remark 1.1 ([27]) The convergence field of I-convergence is the set

F (I) =
{

x = (xk) ∈ �∞ : there exists I- lim x ∈R
}

.

Definition 1.11 ([24]) The convergence field F (I) is a closed linear subspace of �∞ with
respect to the supremum norm, F (I) = �∞ ∩ cI .

Lemma 1.2 ([28]) Let K ∈F (I) and M ⊆N. If M /∈ I , then M ∩ K /∈ I .

Definition 1.12 ([27]) The function h : D ⊂ X −→ R defined by h(x) = I- lim x for all x ∈
F (I) is a Lipschitz function.



Khan et al. Advances in Difference Equations  (2018) 2018:199 Page 5 of 14

2 I-Convergence Fibonacci difference sequence spaces
In this section, we introduce the sequence spaces as the sets of sequences whose F̂-
transforms are in the spaces cI

0, cI , and �I∞. Further, we present some inclusion theorems
and study some topological and algebraic properties on these resulting. Throughout the
paper, we suppose that a sequence x = (xn) ∈ ω and F̂n(x) are connected by relation (1.5)
and I is an admissible ideal of subset of N. We define

cI
0(F̂) :=

{
x = (xn) ∈ ω :

{
n ∈N :

∣∣F̂n(x)
∣∣ ≥ ε

} ∈ I
}

, (2.1)

cI(F̂) :=
{

x = (xn) ∈ ω :
{

n ∈N :
∣∣F̂n(x) – L

∣∣ ≥ ε for some L ∈R
} ∈ I

}
, (2.2)

�I
∞(F̂) :=

{
x = (xn) ∈ ω : ∃K > 0 s.t.

{
n ∈N :

∣∣F̂n(x)
∣∣ ≥ K

} ∈ I
}

, (2.3)

We write

mI
0(F̂) := cI

0(F̂) ∩ �∞(F̂) (2.4)

and

mI(F̂) := cI(F̂) ∩ �∞(F̂). (2.5)

With notation (1.2), the spaces cI
0(F̂), cI(F̂), �I∞(F̂), mI(F̂), and mI

0(F̂) can be redefined as
follows:

cI
0(F̂) =

(
cI

0
)

F̂ , cI(F̂) =
(
cI)

F̂ , �I
∞(F̂) =

(
�I

∞
)

F̂ ,

mI(F̂) =
(
mI)

F̂ , and mI
0(F̂) =

(
mI

0
)

F̂ .

Definition 2.1 Let I be an admissible ideal of subsets of N. A sequence x = (xn) ∈ ω is
called Fibonacci I-Cauchy if for each ε > 0, there exists a number N = N(ε) ∈ N such that
{n ∈N : |F̂n(x) – F̂N (x)| ≥ ε} ∈ I .

Example 2.1 Define If = {A ⊆ N : A is finite}. Then If is an admissible ideal in N, and
cIf (F̂) = c(F̂).

Example 2.2 Define the nontrivial ideal Id = {A ⊆ N : d(A) = 0}, where d(A) is the natural
density of a set A. In this case, cId (F̂) = S(F̂), where S(F̂) is the space of Fibonacci difference
statistically convergent sequence defined as

S(F̂) :=
{

x = (xn) ∈ ω : d
({

n ∈N :
∣∣F̂n(x) – L

∣∣ ≥ ε
})

= 0 for some L ∈R
}

. (2.6)

Theorem 2.1 The sequence spaces cI(F̂), cI
0(F̂), �I∞(F̂), mI

0(F̂), and mI(F̂) are linear over R.

Proof Let x = (xn) and y = (yn) be two arbitrary elements of the space cI(F̂), and let α, β

are scalars. Then, for given ε > 0, there exist L1, L2 ∈R such that

{
n ∈ N :

∣∣F̂n(x) – L1
∣∣ ≥ ε

2

}
∈ I
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and
{

n ∈ N :
∣∣F̂n(y) – L2

∣∣ ≥ ε

2

}
∈ I.

Now, let

A1 =
{

n ∈N :
∣∣F̂n(x) – L1

∣∣ <
ε

2|α|
}

∈F (I)

and

A2 =
{

n ∈N :
∣∣F̂n(y) – L2

∣∣ <
ε

2|β|
}

∈F (I)

be such that Ac
1, Ac

2 ∈ I . Then

A3 =
{

n ∈N :
∣∣αF̂n(x) + βF̂n(y) – (αL1 + βL2)

∣∣ < ε
}

⊇
{{

n ∈N :
∣∣F̂n(x) – L1

∣∣ <
ε

2|α|
}

∩
{

n ∈N :
∣∣F̂n(y) – L2

∣∣ <
ε

2|β|
}}

. (2.7)

Thus, the sets on the right-hand side of (2.7) belong to F (I). By the definition of the filter
associated with an ideal the complement of the set on the left-hand side of (2.7) belongs
to I . This implies that (αx + βy) ∈ cI(F̂). Hence cI(F̂) is a linear space. The proof of the
remaining results is similar. �

Theorem 2.2 The spaces X(F̂) are normed spaces with the norm

‖x‖X(F̂) = sup
n

∣∣F̂n(x)
∣∣, where X ∈ {

mI , mI
0
}

. (2.8)

Proof The proof of the result is easy by existing techniques and hence is omitted. �

Theorem 2.3 Let I ⊆ 2N be a nontrivial ideal. Then the inclusion c(F̂) ⊂ cI(F̂) is strict.

Proof We know that c ⊆ cI and, for any X and Y spaces, X ⊆ Y implies X(F̂) ⊆ Y (F̂) (see
[21], Lemma 2.1). Hence it is easy to see that c(F̂) ⊂ cI(F̂). The following example shows
the strictness of the inclusion.

Example 2.3 Define the sequence x = (xn) ∈ ω such that

F̂n(x) =

⎧
⎨

⎩

√
n if n is a square,

0 otherwise.

Then x ∈ cId (F̂), but x /∈ c(F̂).

Example 2.4 Define the ideal I such that

A ∈ I ⇐⇒ A eventually contains only even natural numbers.
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Then I is a nontrivial ideal in N. When

F̂n(x) = (1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, . . .),

we have

Aε =
{

n ∈N : F̂n(x) �= 0
}

= {1, 2, 3, 5, 6, 7, 10, 12, 14, 16, 18, . . .}

and (xn) ∈ cI
0(F̂). Hence Aε ∈ I and F̂n(x) ∈ cI . Now let us look at the statistical convergence

of the sequence:

lim
n→∞

1
n

|Aε | = lim
n→∞

1
n

∣∣∣∣B +
n
2

∣∣∣∣ =
1
2

,

where B is a finite number, and |Aε | is the cardinality of Aε . Hence F̂n(x) /∈ S. �

Theorem 2.4 A sequence x = (xn) ∈ ω Fibonacci I-converges if and only if for every ε > 0,
there exists N = N(ε) ∈N such that

{
n ∈N :

∣∣F̂n(x) – F̂N (x)
∣∣ < ε

} ∈F (I). (2.9)

Proof Suppose that a sequence x = (xn) ∈ ω is Fibonacci I-convergent to some number
L ∈R. Then, for given ε > 0, the set

Bε =
{

n ∈N :
∣∣F̂n(x) – L

∣∣ <
ε

2

}
∈F (I).

Fix an integer N = N(ε) ∈ Bε . Then we have

∣∣F̂n(x) – F̂N (x)
∣∣ ≤ ∣∣F̂n(x) – L

∣∣ +
∣∣L – F̂N (x)

∣∣ <
ε

2
+

ε

2
= ε

for all n ∈ Bε . Hence (2.9) holds.
Conversely, suppose that (2.9) holds for all ε > 0. Then

Cε =
{

n ∈N : F̂n(x) ∈ [
F̂n(x) – ε, F̂n(x) + ε

]} ∈F (I) for all ε > 0.

Let Jε = [F̂n(x) – ε, F̂n(x) + ε]. Fixing ε > 0, we have Cε ∈ F (I) and C ε
2

∈ F (I). Hence Cε ∩
C ε

2
∈F (I). This implies that

J = Jε ∩ J ε
2

�= ∅,

that is,

{
n ∈N : F̂n(x) ∈ J

} ∈F (I)

and thus

diam(J) ≤ 1
2

diam(Jε),
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where diam(J) denotes the length of an interval J . Proceeding in this way, by induction we
get a sequence of closed intervals

Jε = I0 ⊇ I1 ⊇ · · · ⊇ In ⊇ · · ·

such that

diam(In) ≤ 1
2

diam(In–1) for n = 2, 3, . . .

and

{
n ∈N : F̂n(x) ∈ In

} ∈F (I).

Then there exists a number L ∈ ⋂
n∈N In, and it is a routine work to verify that L =

I- lim F̂n(x), showing that x = (xn) ∈ ω Fibonacci I-converges. Hence the result. �

Theorem 2.5 Let I be an admissible ideal. Then the following are equivalent:
(a) (xn) ∈ cI(F̂);
(b) There exists (yn) ∈ c(F̂) such that xn = yn for a.a.n.r.I;
(c) There exist (yn) ∈ c(F̂) and (zn) ∈ cI

0(F̂) such that xn = yn + zn for all n ∈N and
{n ∈N : |F̂n(x) – L| ≥ ε} ∈ I ;

(d) There exists a subset K = {ni : i ∈ N, n1 < n2 < n3 < · · · } of N such that K ∈F (I) and
limn→∞ |F̂ni (x) – L| = 0.

Proof (a) implies (b). Let x = (xn) ∈ cI(F̂). Then, for any ε > 0, there exists L ∈ R such that

{
n ∈N :

∣∣F̂n(x) – L
∣∣ ≥ ε

} ∈ I.

Let (mt) be an increasing sequence with mt ∈ N such that

{
n ≤ mt :

∣∣F̂n(x) – L
∣∣ ≥ t–1} ∈ I.

Define the sequence y = (yn) as yn = zn for all n ≤ m1 and, for mt < n < mt+1, t ∈ N, as

yn =

⎧
⎨

⎩
xn if |F̂n(x) – L| < t–1,

L otherwise.

Then yn ∈ c(F̂), and from the inclusion

{n ≤ mt : xn �= yn} ⊆ {
n ∈N :

∣∣F̂n(x) – L
∣∣ ≥ ε

} ∈ I

we get xn = yn for a.a.n.r.I.
(b) implies (c). For x = (xn) ∈ cI(F̂), there exists y = (yn) ∈ c(F̂) such that xn = yn for

a.a.n.r.I. Let K = {n ∈N : xn �= yn}. Then K ∈ I . Define the sequence z = (zn) as

zn =

⎧
⎨

⎩
xn – yn if n ∈ K ,

0 otherwise.

Then (zn) ∈ cI
0(F̂) and (yn) ∈ c(F̂).
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(c) implies (d). Let P = {n ∈N : |F̂n(x)| ≥ ε} ∈ I and

K = Pc = {ni ∈ N : i ∈N, n1 < n2 < n3 < · · · } ∈F (I).

Then we have

lim
i→∞

∣∣F̂ni (x) – L
∣∣ = 0.

(d) implies (a). Let ε > 0 be given and suppose that (c) holds. Then, for any ε > 0, by
Lemma 1.2 we have

{
n ∈N :

∣∣F̂n(x) – L
∣∣ ≥ ε

} ⊆ Kc ∪ {
n ∈ K :

∣∣F̂n(x) – L
∣∣ ≥ ε

}
.

Thus (xn) ∈ cI(F̂). �

Theorem 2.6 The inclusions cI
0(F̂) ⊂ cI(F̂) ⊂ �I∞(F̂) are strict.

Proof The inclusion cI
0(F̂) ⊂ cI(F̂) is obvious. Now, to show its strictness, consider the

sequence x = (xn) ∈ ω such that F̂n(x) = 1. It easy to see that F̂n(x) ∈ cI but F̂n(x) /∈ cI
0, that is,

x ∈ cI(F̂) \ cI
0(F̂). Next, let x = (xn) ∈ cI(F̂). Then there exists L ∈R such that I- lim |F̂n(x) –

L| = 0, that is,

{
n ∈N :

∣∣F̂n(x) – L
∣∣ ≥ ε

} ∈ I.

We have

∣∣F̂n(x)
∣∣ =

∣∣F̂n(x) – L + L
∣∣ ≤ ∣∣F̂n(x) – L

∣∣ + |L|.

From this it easily follows that the sequence (xn) must belong to �I∞(F̂). Further, we show
the strictness of the inclusion cI(F̂) ⊂ �I∞(F̂) by constructing the following example.

Example 2.5 Consider the sequence x = (xn) ∈ ω such that

F̂n(x) =

⎧
⎪⎪⎨

⎪⎪⎩

√
n if n is a square,

1 if n is odd nonsquare,

0 if n is even nonsquare.

Then F̂n(x) ∈ �I∞, but F̂n(x) /∈ cI , which implies that x ∈ �I∞(F̂) \ cI(F̂).

Thus the inclusion cI
0(F̂) ⊂ cI(F̂) ⊂ �I∞(F̂) is strict. �

Remark 2.1 A Fibonacci bounded sequence is obviously Fibonacci I-bounded as the
empty set belongs to the ideal I . However, the converse is not true. For example, consider
the sequence

F̂n(x) =

⎧
⎨

⎩
n if n is a square,

0 otherwise.
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Clearly, F̂n(x) is not a bounded sequence. However, {n ∈N : |F̂n(x)| ≥ 1
2 } ∈ I . Hence x = (xn)

is Fibonacci I-bounded.

Theorem 2.7 The spaces mI(F̂) and mI
0(F̂) are Banach spaces normed by (2.8).

Proof Let (x(i)
n ) be a Cauchy sequence in mI(F̂) ⊂ �∞(F̂). Then (x(i)

n ) converges in �∞(F̂),
and limi→∞ F̂ (i)

n (x) = F̂n(x). Let I- lim F̂ (j)
n (x) = Li for i ∈N. Then we have to show that

(i) (Li) is convergent say to L and
(ii) I- lim F̂n(x) = L.
(i) Since (x(i)

n ) is a Cauchy sequence, for each ε > 0, there exists n0 ∈N such that

∣∣F̂ (i)
n (x) – F̂ (j)

n (x)
∣∣ <

ε

3
for all i, j ≥ n0. (2.10)

Now let Ei and Ej be the following sets in I :

Ei =
{

n ∈N :
∣∣F̂ (i)

n (x) – Li
∣∣ ≥ ε

3

}
(2.11)

and

Ej =
{

n ∈N :
∣∣F̂ (j)

n (x) – Lj
∣∣ ≥ ε

3

}
. (2.12)

Consider i, j ≥ n0 and n /∈ Ei ∩ Ej. Then we have

|Li – Lj| ≤
∣∣F̂ (i)

n (x) – Li
∣∣ +

∣∣F̂ (j)
n (x) – Lj

∣∣ +
∣∣F̂ (i)

n (x) – F̂ (j)
n (x)

∣∣

< ε by (2.10), (2.11), and (2.12).

Thus (Li) is a Cauchy sequence in R and thus converges, say to L, that is, limi→∞ Li = L.
(ii) Let δ > 0 be given. Then we can find m0 such that

|Li – L| <
δ

3
for each i > m0. (2.13)

We have (x(i)
n ) → xn as i → ∞. Thus

∣∣F̂ (i)
n (x) – F̂n(x)

∣∣ <
δ

3
for each i > m0. (2.14)

Since (F̂ (j)
n ) is I-converges to Lj, there exists D ∈ I such that, for each n /∈ D, we have

∣∣F̂ (j)
n (x) – Lj

∣∣ <
δ

3
. (2.15)

Without loss of generality, let j > m0. Then, for all n /∈ D, we have by (2.13), (2.14), and
(2.15) that

∣∣F̂n(x) – L
∣∣ ≤ ∣∣F̂n(x) – F̂ (j)

n (x)
∣∣ +

∣∣F̂ (j)
n (x) – Lj

∣∣ + |Lj – L| < δ.
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Hence (xn) is Fibonacci I-convergent to L. Thus mI(F̂) is a Banach space. The other cases
can be similarly established. �

The following results are consequences of Theorem 2.7.

Theorem 2.8 The spaces mI(F̂) and mI
0(F̂) are K-spaces.

Theorem 2.9 The set mI(F̂) is a closed subspace of �∞(F̂).

Since the inclusions mI(F̂) ⊂ �∞(F̂) and mI
0(F̂) ⊂ �∞(F̂) are strict, in view of Theo-

rem 2.9, we have the following result.

Theorem 2.10 The spaces mI(F̂) and mI
0(F̂) are nowhere dense subsets of �∞(F̂).

Theorem 2.11 The spaces cI
0(F̂) and mI

0(F̂) are solid and monotone.

Proof We will prove the result for cI
0(F̂); for mI

0(F̂), the result can be established similarly.
Let x = (xn) ∈ cI

0(F̂). For ε > 0, the set

{
n ∈N :

∣∣F̂n(x)
∣∣ ≥ ε

} ∈ I. (2.16)

Let α = (αn) be a sequence of scalars with |α| ≤ 1 for all n ∈N. Then

∣∣F̂n(αx)
∣∣ =

∣∣αF̂n(x)
∣∣ ≤ |α|∣∣F̂n(x)

∣∣ ≤ ∣∣F̂n(x)
∣∣ for all n ∈N.

From this inequality and from (2.16) we have that

{
n ∈N :

∣∣F̂n(αx)
∣∣ ≥ ε

} ⊆ {
n ∈N :

∣∣F̂n(x)
∣∣ ≥ ε

} ∈ I

implies

{
n ∈N :

∣∣F̂n(αx)
∣∣ ≥ ε

} ∈ I.

Therefore (αxn) ∈ cI
0(F̂). Hence the space cI

0(F̂) is solid, and hence by Lemma 1.1 the space
cI

0(F̂) is monotone. �

Theorem 2.12 The spaces cI
0(F̂) and cI(F̂) are sequence algebras.

Proof Let x = (xn), y = (yn) ∈ cI
0(F̂). Then

I- lim
n→∞

∣∣F̂n(x)
∣∣ = 0 and I- lim

n→∞
∣∣F̂n(y)

∣∣ = 0. (2.17)

Therefore, from (2.17) we have I- lim |F̂n(x · y)| = 0. This implies that {n ∈ N : |F̂n(x · y)| ≥
ε} ∈ I . Thus, (x · y) ∈ cI

0(F̂). Hence cI
0(F̂) is sequence algebra. Similarly, we can prove that

cI(F̂), is a sequence algebra. �

Theorem 2.13 The function h : mI(F̂) →R defined by h(x) = |I– lim F̂n(x)|, where mI(F̂) =
�∞(F̂) ∩ cI(F̂), is a Lipschitz function and hence uniformly continuous.



Khan et al. Advances in Difference Equations  (2018) 2018:199 Page 12 of 14

Proof First of all, we show that the function is well defined. Let x, y ∈ mI(F̂) be such that

x = y ⇒ I- lim F̂n(x) = I- lim F̂n(y)

⇒ ∣∣I- lim F̂n(x)
∣∣ =

∣∣I- lim F̂n(y)
∣∣ ⇒ h(x) = h(y).

Thus h is well defined. Next, let x = (xn), y = (yn) ∈ mI(F̂), x �= y. Then

Ax =
{

n ∈N :
∣∣F̂n(x) – h(x)

∣∣ ≥ |x – y|∗
} ∈ I

and

Ay =
{

n ∈N :
∣∣F̂n(y) – h(y)

∣∣ ≥ |x – y|∗
} ∈ I,

where |x – y|∗ = supn |F̂n(x) – F̂n(y)|. Thus

Bx =
{

n ∈ N :
∣∣F̂n(x) – h(x)

∣∣ < |x – y|∗
} ∈F (I)

and

By =
{

n ∈N :
∣∣F̂n(y) – h(y)

∣∣ < |x – y|∗
} ∈F (I).

Hence B = Bx ∩ By ∈F (I), so that B is a nonempty set. Therefore, choosing n ∈ B, we have

∣∣h(x) – h(y)
∣∣ ≤ ∣∣h(x) – F̂n(x)

∣∣ +
∣∣F̂n(x) – F̂n(y)

∣∣ +
∣∣F̂n(y) – h(y)

∣∣

≤ 3|x – y|∗.

Thus, h is a Lipschitz function and hence uniformly continuous. �

Theorem 2.14 If x = (xn), y = (yn) ∈ mI(F̂) with F̂n(x · y) = F̂n(x) · F̂n(y), then (x · y) ∈ mI(F̂)
and h(x · y) = h(x) · h(y), where h : mI(F̂) →R is defined by h(x) = |I- lim F̂n(x)|.

Proof For ε > 0,

Bx =
{

n ∈ N :
∣∣F̂n(x) – h(x)

∣∣ < ε
} ∈F (I) (2.18)

and

By =
{

n ∈N :
∣∣F̂n(y) – h(y)

∣∣ < ε
} ∈F (I), (2.19)

where ε = |x – y|∗ = supn |F̂n(x) – F̂n(y)|. Now, we have

∣∣F̂n(x · y) – h(x)h(y)
∣∣ =

∣∣F̂n(x)F̂n(y) – F̂n(x)h(y) + F̂n(x)h(y) – h(x)h(y)
∣∣

≤ ∣∣F̂n(x)
∣∣∣∣F̂n(y) – h(y)

∣∣ +
∣∣h(y)

∣∣∣∣F̂n(x) – h(x)
∣∣. (2.20)
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As mI(F̂) ⊆ �∞(F̂), there exists M ∈ R such that |F̂n(x)| < M. Therefore, from equations
(2.18), (2.19), and (2.20) we have

∣∣F̂n(xy) – h(x)h(y)
∣∣ =

∣∣F̂n(x) · F̂n(y) – h(x)h(y)
∣∣

≤ Mε +
∣∣h(y)

∣∣ε = ε1 (say)

for all n ∈ Bx ∩ By ∈F (I). Hence (x · y) ∈ mI(F̂) and h(x · y) = h(x) · h(y). �

3 Conclusion
In this paper, we have introduced and studied new difference sequence spaces cI

0(F̂),
cI(F̂), and �I∞(F̂). We investigated the general type of convergence, that is, Fibonacci I-
convergence for sequences related to the Fibonacci difference matrix F̂ derived by the
sequence of Fibonacci numbers. We studied some inclusion relations concerning these
spaces. Further, we investigated some topological and algebraic properties of these spaces.
These definitions and results provide new tools to deal with the convergence problems of
sequences occurring in many branches of science and engineering.
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