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Abstract
In this paper, an adaptive neural network (NN) synchronization controller is designed
for two identical strict-feedback chaotic systems (SFCSs) subject to dead-zone input.
The dead-zone models together with the system uncertainties are approximated by
NNs. The dynamic surface control (DSC) approach is applied in the synchronization
controller design, and the traditional problem of “explosion of complexity” that
usually occurs in the backstepping design can be avoided. The proposed
synchronization method guarantees the synchronization errors tend to an arbitrarily
small region. Finally, this paper presents two simulation examples to confirm the
effectiveness and the robustness of the proposed control method.
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1 Introduction
Chaos synchronization (CS) has been widely investigated based on the results of [1]. A lot
of works have been given on this theme because of its possible application in many fields
such as communications, information processing [2–18]. For example, Liu et al. [19] dis-
cussed robust synchronization of uncertain complex networks by using impulsive con-
trol. Yu and Cao [20] addressed the synchronization of chaotic systems with time delay.
The synchronization and anti-synchronization via active control approach on fractional
chaotic financial system were studied by Huang et al. in [21]. On the basis of control the-
ory, a lot of methods, such as adaptive control [22], sliding control [23, 24], pinning control
[25], intermittent control [26, 27], have been developed for CS.

In fact, it is known that system uncertainty is unavoidable in many practical applica-
tions, which always affects the control performance. On the other hand, fuzzy logic sys-
tems (FLSs) or neural networks (NNs) are usually employed to approximate unknown
nonlinear functions. A major advantage of these systems is that they can be used to tackle
nonlinear systems that have mismatching conditions and the uncertainties which are lin-
early parameterized. Therefore, approximation-based adaptive control based on NNs or
FLSs is an interesting issue [28–36]. According to the NN model, backstepping control of
an uncertain chaotic system is given in [37]. In [38], the author researches convergence
for strict-feedback systems with functional uncertainties by using NN learning control
methods.
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In addition, the dead zone and dynamic disturbances are the most important nonlinear-
ities in most of industrial processes such as electric servomotors, hydraulic actuators, and
motor. To tackle unknown dead zones and disturbances, some adaptive control techniques
were proposed [39–42]. In [39], nonlinear systems with dead zone are studied based on
dynamical surface control (DSC).

Generally speaking, there are two reasons to motivate the research of this paper. One
is that, in the existing backstepping control of nonlinear systems, the problem “explo-
sion of terms” was not well solved (for example, see [5]). The other is that the control of
strict-feedback chaotic systems (SFCSs) subject to dead-zone input has been rarely in-
vestigated. This paper will propose the synchronization control methods for a class of
uncertain SFCSs with dead-zone input and disturbances. The NN is used to approximate
the unknown nonlinear function due to its good approximation performance. It should be
emphasized that by using NN, the exact mathematical model of the controlled nonlinear
systems can be unknown. By the Lyapunov function method, the synchronization error
will remain in a small neighborhood of zero.

2 Description of the NN
A three-layer MIMO NN is employed to approximate an unknown continuous nonlinear
function. The structure of this kind of NNs is depicted in Fig. 1.

Suppose that there are η, k, and m neurons, then the mathematical model of the above
NN is expressed by

yp(s, wp) =
k∑

j=1

ωpjϕpj

(
η∑

i=1

vjisi + θj

)
= wT

p ωp(·), (1)

Figure 1 NN structure
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in which p = 1, . . . , m,

wp =

⎡

⎢⎢⎣

ωp1
...

ωpk

⎤

⎥⎥⎦ , ωp =

⎡

⎢⎢⎣

ϕp1(
∑η

i=1 v1isi + θ1)
...

ϕph(
∑η

i=1 vhisi + θk)

⎤

⎥⎥⎦ ,

yk represents the output. Usually, the function ϕ(·) is selected as

ϕ(ξ ) =
eξ – e–ξ

eξ + e–ξ
.

Denote

� =

⎡

⎢⎢⎢⎢⎣

wT
1

wT
2
...

wT
m

⎤

⎥⎥⎥⎥⎦
, ϑ =

⎡

⎢⎢⎢⎢⎣

ω1(·) 0 · · · 0
0 ω2(·) · · · 0
...

...
. . .

...
0 0 · · · ωm(·)

⎤

⎥⎥⎥⎥⎦
and y =

⎡

⎢⎢⎢⎢⎣

y1

y2
...

ym

⎤

⎥⎥⎥⎥⎦
,

NN (1) can be expressed by

y = � Tϑ . (2)

NNs (2) will be employed to estimate some unknown continuous nonlinear functions
f (x(t)) in the next section as the form

f
(
x(t)

)
= � ∗Tϑ

(
x(t)

)
+ ε

(
x(t)

)
, (3)

where ε(x(t)) denotes the approximation error, and the ideal approximate parameter � ∗

is defined as

� ∗ = arg min
�

[
max

∣∣� Tϑ
(
x(t)

)
– f

(
x(t)

)∣∣].

3 Controller design and stability analysis
3.1 Problem description
Consider the following uncertain SFCSs as the master system:

⎧
⎪⎪⎨

⎪⎪⎩

ẏk(t) = fk(y
k
(t)) + yk+1(t), k = 1, . . . , n – 1,

ẏn(t) = fn(y
n
(t)),

x(t) = y1(t),

(4)

with y
k
(t) = [y1(t), . . . , yk(t)]T ∈ R

k , fk(·) is assumed to be unknown, and x(t) is the output
variable. The slave SFCS is given by

⎧
⎪⎪⎨

⎪⎪⎩

˙̂yk(t) = fk(ŷ(t)) + ŷk+1(t) + dk(t), k = 1, . . . , n – 1,
˙̂yn(t) = fn(ŷ

n
(t)) + u(t) + dn(t),

x̂(t) = ŷ1(t),

(5)
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Figure 2 Dead zone structure

where ŷ
k
(t) = [ŷ1(t), . . . , ŷk(t)]T ∈ R

k , u(t) ∈ R is the control input and the output of the
dead zone, dk(t) denotes an unknown external disturbance satisfying |dk(t)| ≤ d∗

k , where
d∗

k is a positive constant. The dead-zone input u(t) is described as

u(t) = D
(
μ(t)

)
=

⎧
⎪⎪⎨

⎪⎪⎩

m+(μ(t) – z+), μ(t) ≥ z+,

0, –z– < μ(t) < z+,

m–(μ(t) + z–), μ(t) ≤ –z–,

(6)

where μ(t) denotes the dead-zone input, m+ and m– respectively represent the right and
left slopes, z+ and z– are breakpoints. In addition, the above four parameters are all posi-
tive. This framework of the dead zone is depicted in Fig. 2.

The dead-zone input can be further modeled by

u(t) = m(t)μ(t) + b(t), (7)

where

b(t) =

⎧
⎪⎪⎨

⎪⎪⎩

–m(t)z+, if μ(t) ≥ z+,

–m(t)μ(t), if – z– < μ(t) < z+,

m(t)z–, if μ(t) ≤ –z–,

(8)

and

m(t) =

⎧
⎨

⎩
m+, if μ(t) > 0,

m–, if μ(t) ≤ 0.
(9)

Remark 1 It should be mentioned that the dead-zone model (6) is representative because
the conditions that m+ �= m– and z+ �= z– are involved. The dead-zone models were used
in literature [43–45]. Besides, we know that b(t) is a bounded function. In fact, denote
b̄ = max{m+z+, m+z–, m–z+, m–z–}, it follows from (8) that |b(t)| ≤ b̄.

3.2 Synchronization controller implement
In this part, we will give the detailed procedure of the adaptive NN controller design by
using the backstepping control approach. The objective is to design aNN synchronization
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control such that the variable x̂(t) synchronizes the signal x(t). The backstepping design
procedure is given as follows.

Step 1. Define the synchronization error as

e1(t) = x(t) – x̂(t). (10)

Introducing a virtual signal �1(t), then the updated synchronization error is expressed
by

ζ1(t) = e1(t) – �1(t). (11)

It follows from (4), (5), and (11) that

ζ̇1(t) = f1
(
y

1
(t)

)
– f1

(
ŷ

1
(t)

)
+ y2(t) – ŷ2(t) – d1(t) – �̇1(t). (12)

Unlike the traditional backstepping control approach, in this paper, we will introduce a
virtual signal ξ2(t):

β2ξ̇2(t) + ξ2(t) = δ2(t), (13)

in which ξ2(0) = δ2(0), where δ2(t) is a signal to be designed and β2 > 0 is a constant.
Define e2(t) = y2(t) – ŷ2(t) – ξ2(t). Let

�̇1(t) = –σ1�1(t) + ξ2(t) – δ2(t), (14)

where σ1 is a positive design parameter. As a result, we have

ζ̇1(t) = f1
(
y

1
(t)

)
– f1

(
ŷ

1
(t)

)
+ y2(t) – ŷ2(t) – d1(t) + σ1�1(t) – ξ2(t) + δ2(t). (15)

Let

ζ2(t) = e2(t) – �2(t). (16)

Then we choose the signal δ2(t) as

δ2(t) = –σ1e(t) – �2(t) –
1
2
ζ1(t)�̂ϑT

1
(
e1(t)

)
ϑ1

(
e1(t)

)
, (17)

where � = ‖� ∗‖2, �̃ = � – �̂ with �̂ being the estimation of �.
Let

g1(t) = f1
(
y

1
(t)

)
– f1

(
ŷ

1
(t)

)
. (18)

By employing NN (2), the unknown function g1(t) can be approximated by

g1(t) = � ∗Tϑ
(
e1(t)

)
+ ε

(
e1(t)

)
. (19)
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From (17), (18), and (19), we have

ζ̇1(t) = –σ1ζ1(t) + ζ2(t) + � ∗Tϑ1
(
e1(t)

)
+ ε1

(
e1(t)

)

– d1(t) –
1
2
ζ1(t)�̂ϑT

1
(
e1(t)

)
ϑ1

(
e1(t)

)
. (20)

Step k (k = 2, 3, . . . , n – 1). Let ek(t) = yk(t) – ŷk(t) – ξk(t). Then the updated synchroniza-
tion error is given as

ζk(t) = ek(t) – �k(t). (21)

Differentiating ζk(t) yields

ζ̇k(t) = fk
(
y

k
(t)

)
– fk

(
ŷ

k
(t)

)
+ yk+1(t) – ŷk+1(t) – dk(t) – ξ̇k(t) – �̇k(t). (22)

The virtual signal ξk+1(t) can be designed as

βk+1ξ̇k+1(t) + ξk+1(t) = δk+1(t), ξk+1(0) = δk+1(0). (23)

Choosing

�̇k(t) = –σk�k(t) + ξk+1(t) – δk+1(t), (24)

we have

ζ̇k(t) = fk
(
y

k
(t)

)
– fk

(
ŷ

k
(t)

)
+ yk+1(t) – ŷk+1(t) – dk(t)

– ξ̇k(t) + σk�k(t) – ξk+1(t) + δk+1(t). (25)

Let ζk+1(t) = ek+1(t) – �k+1(t), and the signal δk+1(t) is chosen as

δk+1(t) = –σkek(t) – �k+1(t) + ξ̇k(t) –
1
2
ζk(t)�̂ϑT

k
(
ek(t)

)
ϑk

(
ek(t)

)
– ζk–1(t), (26)

where ek(t) = [e1(t), . . . , ek(t)]T .
Substituting (26) into (25), we obtain

ζ̇k(t) = –σkζk(t) + ζk+1(t) + � ∗Tϑk
(
ek(t)

)
+ εk

(
ek(t)

)

– dk(t) –
1
2
ζk(t)�̂ϑT

k
(
ek(t)

)
ϑk

(
ek(t)

)
– ζk–1(t). (27)

Step n. Let en(t) = yn(t) – ŷn(t) – ξn(t). Then the updated synchronization error is given
as

ζn(t) = en(t) – �n(t). (28)

Differentiating ζk(t), we have

ζ̇n(t) = fn
(
y

n
(t)

)
– fk

(
ŷ

n
(t)

)
– u(t) – dn(t) – ξ̇n(t) – �̇n(t). (29)
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Choosing

�̇n(t) = –σn�n(t), (30)

we have

ζ̇n(t) = � ∗Tϑn
(
en(t)

)
+ εn

(
en(t)

)
– m(t)μ(t) – b(t)

– dn(t) – ξ̇n(t) + σn�n(t). (31)

The control law μ(t) is chosen as

μ(t) =
1

m(t)

[
σnen(t) – ξ̇n(t) +

1
2
ζn(t)�̂ϑT

n
(
en(t)

)
ϑn

(
en(t)

)
+ ζn–1(t)

]
. (32)

Substituting (32) into (31), we have

ζ̇n(t) = –σnζn(t) + � ∗Tϑn
(
en(t)

)
+ εn

(
en(t)

)

– dn(t) –
1
2
ζn(t)�̂ϑT

n
(
en(t)

)
ϑn

(
en(t)

)
– ζn–1(t) – b(t). (33)

The adaptation law can be given as

˙̂
� =

n∑

k=1

(
γ

2
ζ 2

k

)
ϑT

k
(
ek(t)

)
ϑk

(
ek(t)

)
– σ0�̂, (34)

where γ and σ0 are design positive constants.

3.3 Stability analysis
Theorem 1 Consider SFCSs (4) and (5). If the virtual signal is given as (22) and (23), the
control law is chosen as (32), the adaptive law is given as (34), then all signals are uniformly
bounded, and the synchronization error remains in an arbitrarily small region of zero.

Proof Let

V (t) =
1
2

n∑

k=1

ζ 2
k (t) +

1
2γ

�̃2. (35)

By differentiating V along (20),(27), and (33), we can gain

V̇ (t) =
n∑

k=1

ζk(t)ζ̇k(t) –
1
γ

�̃
˙̂
�

= –
n∑

k=1

σkζ
2
k (t) +

n∑

k=1

ζk(t)� ∗Tϑk
(
ek(t)

)
+

n∑

k=1

ζk(t)εk
(
ek(t)

)

–
n∑

k=1

ζk(t)dk(t) –
1
2

n∑

k=1

ζ 2
k (t)�̂ϑT

k
(
ek(t)

)
ϑk

(
ek(t)

)

– ζn(t)b(t) –
1
γ

�̃
˙̂
�. (36)
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By applying the following inequalities:

ζk(t)� ∗T (t)ϑk
(
ek(t)

) ≤ 1
2
ζ 2

k (t)� ∗T� ∗ϑT
k
(
ek(t)

)
ϑk

(
ek(t)

)
+

1
2

≤ 1
2
ζ 2

k (t)�ϑT
k
(
ek(t)

)
ϑk

(
ek(t)

)
+

1
2

, (37)

ζk(t)εk
(
ek(t)

) ≤ 1
2
ζ 2

k (t) +
1
2
ε∗2

k , (38)

ζk(t)dk(t) ≤ 1
2
ζ 2

k (t) +
1
2

d∗2
k , (39)

ζn(t)b(t) ≤ 1
2
ζ 2

n (t) +
1
2

b2, (40)

thus

V̇ (t) = –
n∑

k=1

(σk – 1)ζ 2
k (t) +

1
2
ζ 2

n (t) +
1
2

n∑

k=1

ζ 2
k (t)�̃ϑT

k
(
ek(t)

)
ϑk

(
ek(t)

)

+ �1 –
1
γ

�̃ ˙̂�, (41)

where �1 = n
2 + 1

2
∑n

k=1 ε∗2
k + 1

2
∑n

k=1 d∗2
k + 1

2 b2.
Substituting (34) into (41) , then

V̇ (t) ≤ –
n∑

k=1

(σk – 1)ζ 2
k (t) +

1
2
ζ 2

n (t) + �1 +
σ0

γ
�̃�̂. (42)

Note that

σ0

γ
�̃�̂ =

σ0

γ
�̃(� – �̃) ≤ –

σ0

2γ
�̃2 +

σ0

2γ
�2. (43)

Then (42) can be rearranged as

V̇ (t) ≤ –
n∑

k=1

(σk – 1)ζ 2
k (t) +

1
2
ζ 2

n (t) + �1 –
σ0

2γ
�̃2 +

σ0

2γ
�2

≤ –
n∑

k=1

(
σk –

3
2

)
ζ 2

k (t) + �2 –
σ0

2γ
�̃2

≤ –cV (t) + �2, (44)

where �2 = σ0
2γ

�2 + �1, c = min{2σk – 3,σ0}.
From (44), we have

V (t) ≤
(

V (t0) –
�2

c

)
e–c(t–t0) +

�2

c
. (45)

Thus, according to (45), all signals are uniformly bounded and the synchronization error
will remain in a small neighborhood of zero. �
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4 Simulation studies
There are two examples included in this section.

4.1 Example A
Let Duffing’s system [14] be the master system:

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1(t) = y2(t),

ẏ2(t) = y1(t) – y3
1(t) – 0.15y2(t) + 0.3 cos(t),

x(t) = y1(t),

(46)

with initial conditions [y1(0), y2(0)] = [2, –1]. The chaotic behavior of system (46) can be
seen in Fig. 3.

The slave system is given as:

⎧
⎪⎪⎨

⎪⎪⎩

˙̂y1(t) = ŷ2(t) + d1(t),
˙̂y2(t) = ŷ1(t) – ŷ3

1(t) – 0.15ŷ2(t) + 0.3 cos(t) + u(t) + d2(t),

x̂(t) = ŷ1(t),

(47)

with initial conditions [̂y1(0), ŷ2(0)] = [–2, 2]. In the dead-zone model, let m+ = m– = 2,
z+ = z– = 2. The structure of the dead zone is given in Fig. 4.

There are two NNs used in the simulation. The input of the first NN is e1(t). We give
five functions distributed on interval [–5, 5]. The second one uses e1(t) and e2(t) as its
input. For each input, the functions are defined the same as above. The parameters are
β2 = β3 = 1.2, σ1 = σ2 = σ3 = 1, γ = 10, σ0 = 0.1. The initial conditions are given as ξ2(0) =
δ2(0) = ξ3(0) = δ3(0) = 0.

Figures 5 and 6 show the results. Figure 5 gives the CS performance. It is shown that
the output of the slave system tracks the output of the master system in a very short time.

Figure 3 Chaotic behavior of system (46)
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Figure 4 Structure of the dead-zone model

Figure 5 Synchronization performance

Time response of the control input, the dead zone, as well as the parameter of the NNs are
given in Fig. 6.

4.2 Example B
Let Chua–Hartley’s system be a master system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẏ1(t) = y2(t) + 10
7 (y1(t) – y3

1(t)),

ẏ2(t) = 10y1(t) – y2(t) + y3(t),

ẏ3(t) = – 100
7 y2(t),

x(t) = y1(t),

(48)

with initial conditions [y1(0), y2(0), y3(0)] = [–2, –1, 1]. The dynamical behavior of system
(48) is given in Fig. 7.
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Figure 6 Simulation results in (a) u(t), (b) μ(t), (c) ‖�1(t)‖, and (d) ‖�2(t)‖

Figure 7 Chaotic behavior of (48)
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Figure 8 Synchronization error

Figure 9 Control inputs

The slave system is given as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

˙̂y1(t) = ŷ2(t) + 10
7 (ŷ1(t) – ŷ3

1(t)) + d1(t),
˙̂y2(t) = 10ŷ1(t) – ŷ2(t) + ŷ3(t) + d2(t),

ẏ3(t) = – 100
7 ŷ2(t) + u(t) + d3(t)

x̂(t) = ŷ1(t),

(49)

with initial conditions [ŷ1(0), ŷ2(0), ŷ3(0)] = [2, 2, –3]. In the dead-zone model m+ = m– = 2,
z+ = z– = 2. The control parameters are given as β2 = β3 = β4 = 1.2, σ1 = σ2 = σ3 = σ4 = 1,
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Figure 10 NN parameters

γ = 10, σ0 = 0.2. The initial conditions are given as ξ2(0) = δ2(0) = ξ3(0) = δ3(0) = ξ4(0) =
δ4(0) = 0.

There are three NNs included in the simulation. The first NN uses e1(t), the second NN
uses e1(t) and e2(t), while the third NN uses e1(t), e2(t), and e3(t) as their inputs, respec-
tively. Let β2 = β3 = β4 = 1.2, σ1 = σ2 = σ3 = σ4 = 1, γ = 10, σ0 = 0.1. Our results are depicted
in Figs. 8, 9, and 10, from which we can conclude that good synchronization performance
has been achieved.

5 Conclusions
This paper provides a NN synchronization approach for SFCS with dead-zone input. It
has been shown that the DSC approach has good ability to solve the “explosion of terms”
problem in the backstepping control design.

Two simulation examples are given to confirm the proposed methods. How to extend
the proposed control method to MIMO nonlinear systems is one of my future research
directions.
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