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Abstract
In this paper, we investigate oscillatory and asymptotic properties for a class of
fractional order dynamic equations on time scales, where the fractional derivative is
defined in the sense of the conformable fractional derivative. Based on the properties
of conformable fractional differential and integral, some new oscillatory and
asymptotic criteria are established. Applications of the established results show that
they can be used to research oscillation for fractional order equations in various time
scales such as fractional order differential equations, fractional order difference
equations, and so on.
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1 Introduction
In the last few decades, research into oscillation of various equations, including differential
equations, difference equations, has been a hot topic in the literature, and much effort has
been put in to establish new oscillatory criteria for these equations so far (for example,
see [1–12] and the references therein). In [13], Hilger initiated the theory of time scale
trying to treat continuous and discrete analysis in a consistent way. Since then, the theory
of time scale has received a lot of attention in recent years, and various investigations have
been done by many authors [14–28]. Among these investigations, some authors have taken
research in oscillation of dynamic equations on time scales (see [29–46] and the references
therein). In these investigations for oscillation of dynamic equations on time scales, we
notice that most of the results are concerned with dynamic equations involving derivatives
of integer order, while none attention has been paid to the research into oscillation of
fractional order dynamic equations on time scales so far in the literature.

A time scale is an arbitrary nonempty closed subset of real numbers. T denotes an ar-
bitrary time scale. On T we define the forward and backward jump operators σ ∈ (T,T)
and ρ ∈ (T,T) such that σ (t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}.

A point t ∈ T is said to be left-dense if ρ(t) = t and t �= infT, right-dense if σ (t) = t and
t �= supT, left-scattered if ρ(t) < t, and right-scattered if σ (t) > t. The set Tκ is defined to be
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T if T does not have a left-scattered maximum, otherwise it is T without the left-scattered
maximum.

A function f ∈ (T,R) is called rd-continuous if it is continuous at right-dense points and
if the left-sided limits exist at left-dense points, while f is called regressive if 1+μ(t)f (t) �= 0,
where μ(t) = σ (t) – t. Crd denotes the set of rd-continuous functions, while R denotes the
set of all regressive and rd-continuous functions, and R+ = {f |f ∈ R, 1 + μ(t)f (t) > 0,∀t ∈
T}.

Definition 1.1 For some t ∈ T
κ , and a function f ∈ (T,R), the delta derivative of f at t

is denoted by f �(t) (provided it exists) with the property such that for every ε > 0 there
exists a neighborhood U of t satisfying

∣
∣f

(

σ (t)
)

– f (s) – f �(t)
(

σ (t) – s
)∣
∣ ≤ ε

∣
∣σ (t) – s

∣
∣ for all s ∈ U.

Note that if T = R, then f �(t) becomes the usual derivative f ′(t), while f �(t) = f (t + 1) –
f (t) if T = Z, which represents the forward difference.

Definition 1.2 For p ∈R, the exponentialfunction is defined by

ep(t, s) = exp

(∫ t

s
ξμ(τ )

(

p(τ )
)

�τ

)

for s, t ∈ T.

If T = R, then

ep(t, s) = exp

(∫ t

s
p(τ ) dτ

)

for s, t ∈ R.

If T = Z, then

ep(t, s) =
t–1
∏

τ=s

[

1 + p(τ )
]

for s, t ∈ Z, s < t.

According to [47, Theorem 5.2], if p ∈R+, then ep(t, s) > 0 for ∀s, t ∈ T.
Recently, Benkhettou et al. developed a conformable fractional calculus theory on ar-

bitrary time scales [48], and established the basic tools for fractional differentiation and
fractional integration on time scales.

Definition 1.3 ([48, Definition 1]) For t ∈ T
κ , α ∈ (0, 1], and a function f ∈ (T,R), the

fractional derivative of α order for f at t is denoted by f (α)(t) (provided it exists) with the
property such that for every ε > 0 there exists a neighborhood U of t satisfying

∣
∣
[

f
(

σ (t)
)

– f (s)
]

t1–α – f (α)(t)
(

σ (t) – s
)∣
∣ ≤ ε

∣
∣σ (t) – s

∣
∣ for all s ∈ U.

Definition 1.4 ([48, Definition 28]) If F (α)(t) = f (t), t ∈ T
κ , then F is called an α-order

antiderivative of f , and the Cauchy α-fractional integral of f is defined by

∫ b

a
f (t)�αt =

∫ b

a
f (t)tα–1�t = F(b) – F(a), where a, b ∈ T.
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Theorem 1.5 ([48, Theorem 4]) For t ∈ T
κ , α ∈ (0, 1], and a function f ∈ (T,R), the fol-

lowing conclusions hold:
(i) If f is conformal fractional differentiable of order α at t > 0, then f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is conformable fractional
differentiable of order α at t with f (α)(t) = f (σ (t))–f (t)

σ (t)–t t1–α = f (σ (t))–f (t)
μ(t) t1–α .

(iii) If t is right-dense, then f is conformable fractional differentiable of order α at t if,
and only if, the limit lims→t

f (s)–f (t)
s–t t1–α exists as a finite number. In this case,

f (α)(t) = lims→t
f (s)–f (t)

s–t t1–α .
(iv) If f is fractional differentiable of order α at t, then f (σ (t)) = f (t) + μ(t)t1–αf (α)(t).

Corollary 1.6 According to the definition of the conformable fractional differentiable of
order α, it holds that f (α)(t) = t1–αf �(t), where f �(t) is the usual � derivative in the case
α = 1. Furthermore, if f (α)(t) > 0 (< 0) for t > 0, then f is increasing (decreasing) for t > 0.

Theorem 1.7 Let p̃(t) = tα–1p(t), α ∈ (0, 1]. If p̃ ∈ R, and fix t0 ∈ T, then the exponential
function ẽp(t, t0) is the unique solution of the following initial value problem:

⎧

⎨

⎩

y(α)(t) = p(t)y(t),

y(t0) = 1.

Proof By [47, Theorem 5.1], if p ∈R, and fix t0 ∈ T, then the exponential function ep(t, t0)
is the unique solution of the following initial value problem:

⎧

⎨

⎩

y�(t) = p(t)y(t),

y(t0) = 1.

So, according to Corollary 1.6, one has

(

ẽp(t, t0)
)(α) = t1–α

(

ẽp(t, t0)
)� = t1–αp̃(t)ẽp(t, t0) = p(t)ẽp(t, t0),

which confirms the proof. �

Theorem 1.8 ([48, Theorem 15]) Assume that f , g ∈ (T,R) are conformable fractional dif-
ferentiable of order α. Then

(i) (f + g)(α)(t) = f (α)(t) + g(α)(t).
(ii) (fg)(α)(t) = f (α)(t)g(t) + f (σ (t))g(α)(t) = f (α)(t)g(σ (t)) + f (t)g(α)(t).

(iii) ( 1
f )(α)(t) = – f (α)(t)

f (t)f (σ (t)) .

(iv) ( f
g )(α)(t) = f (α)(t)g(t)–f (t)g(α)(t)

g(t)g(σ (t)) .

Theorem 1.9 Let α ∈ (0, 1], f , g be two rd-continuous functions. Then

∫ b

a
f (α)(t)g(t)�αt =

[

f (t)g(t)
]b

a –
∫ b

a
f
(

σ (t)
)

g(α)(t)�αt.

The proof of Theorem 1.9 can be reached by fulfilling α-fractional integral for the first
equality in Theorem 1.8(ii).



Feng and Meng Advances in Difference Equations  (2018) 2018:193 Page 4 of 20

For more details about the calculus of time scales, we refer to [49].
In this paper, we investigate oscillatory and asymptotic behavior of solutions of the fol-

lowing fractional order dynamic equation on time scales:

(

a(t)
([

r(t)x(α)(t)
](α))γ )(α) + p(t)

([

r(t)x(α)(t)
](α))γ + q(t)f

(

x(t)
)

= 0, t ∈ T0, (1.1)

where T is an arbitrary time scale, T0 = [t0,∞) ∩ T, a, r, p, q ∈ Crd(T0,R+), f ∈ C(R,R)
satisfying xf (x) > 0, f (x)

xγ ≥ L > 0 for x �= 0, and γ ≥ 1 is a quotient of two odd positive
integers.

A solution of Eq. (1.1) is said to be oscillatory if it is neither eventually positive nor
eventually negative; otherwise it is nonoscillatory. Equation (1.1) is said to be oscillatory
in case all its solutions are oscillatory.

We will establish some new criteria of oscillatory and asymptotic behavior for Eq. (1.1)
based on the properties of conformable fractional differential and integral together with a
generalized Riccati transformation technique in Sect. 2, and present some applications for
the established results in Sect. 3. Some conclusions are presented in Sect. 4. Throughout
this paper,R denotes the set of real numbers and R+ = (0,∞), while Z denotes the set of in-

tegers. p̃(t) = tα–1p(t), ti ∈ T, [ti,∞)T = [ti,∞)∩T, i = 0, 1, . . . , 5. ϑ1(t, a) =
∫ t

a

[e
– p̃

a
(s,t0)]

1
γ

a
1
γ (s)

�αs,
ϑ2(t, a) =

∫ t
a

ϑ1(s,a)
r(s) �αs.

2 Main results
Lemma 2.1 Suppose – p̃

a ∈R+, and assume that

∫ ∞

t0

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

�αs = ∞, (2.1)

∫ ∞

t0

1
r(s)

�αs = ∞, (2.2)

and Eq. (1.1) has an eventually positive solution x. Then the following conclusions hold.
(i) There exists a sufficiently large T∗

1 ∈ T such that

(
a(t)([r(t)x(α)(t)](α))γ

e– p̃
a

(t, t0)

)(α)

< 0,
[

r(t)x(α)(t)
](α) > 0 on

[

T∗
1 ,∞)

T
.

(ii) If we assume that

lim
t→∞ sup

∫ t

t0

[
1

r(ξ )

∫ ∞

ξ

(e– p̃
a

(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(σ (s), t0)

�αs
) 1

γ

�ατ

]

�αξ

= ∞, (2.3)

then either there exists a sufficiently large T∗
2 ∈ T such that x(α)(t) > 0 on [T∗

2 ,∞)T or
limt→∞ x(t) = 0.

Proof of (i) According to – p̃
a ∈ R+, one has e– p̃

a
(t, t0) > 0. Since x is eventually a positive

solution of (1.1), there exists a sufficiently large t1 such that x(t) > 0 on [t1,∞)T, and for
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t ∈ [t1,∞)T, by use of Theorem 1.8(iv) and Theorem 1.7, one can deduce that

(
a(t)([r(t)x(α)(t)](α))γ

e– p̃
a

(t, t0)

)(α)

=
e– p̃

a
(t, t0)(a(t)([r(t)x(α)(t)](α))γ )(α) – (e– p̃

a
(t, t0))(α)a(t)([r(t)x(α)(t)](α))γ

e– p̃
a

(t, t0)e– p̃
a

(σ (t), t0)

=
(a(t)([r(t)x(α)(t)](α))γ )(α) + p(t)([r(t)x(α)(t)](α))γ

e– p̃
a

(σ (t), t0)
=

–q(t)f (x(t))
e– p̃

a
(σ (t), t0)

< 0. (2.4)

So by Corollary 1.6 one can see that a(t)([r(t)x(α)(t)](α))γ
e

– p̃
a

(t,t0) is decreasing on [t1,∞)T, and consid-

ering a(t) > 0, e– p̃
a

(t, t0) > 0, one can deduce that [r(t)x(α)(t)](α) is eventually of one sign.
Now we claim [r(t)x(α)(t)](α) > 0 on [t2,∞)T. Otherwise, assume there exists sufficiently

large t3 > t2 such that [r(t)x(α)(t)](α) < 0 on [t3,∞)T. Then by Corollary 1.6 one can see
r(t)x(α)(t) is strictly decreasing, and due to Definition 1.4 it holds that

r(t)x(α)(t) – r(t3)x(α)(t3) =
∫ t

t3

[e– p̃
a

(s, t0)a(s)]
1
γ [r(s)x(α)(s)](α)

[e– p̃
a

(s, t0)a(s)]
1
γ

�αs

≤ a
1
γ (t3)[r(t3)x(α)(t3)](α)

[e– p̃
a

(t3, t0)]
1
γ

∫ t

t3

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

�αs. (2.5)

From (2.1) one can see that limt→∞ r(t)x(α)(t) = –∞, and thus there exists a sufficiently
large t4 ∈ [t3,∞)T such that r(t)x(α)(t) < 0 on [t4,∞)T. Furthermore,

x(t) – x(t4) =
∫ t

t4

r(s)x(α)(s)
r(s)

�αs ≤ r(t4)x(α)(t4)
∫ t

t4

1
r(s)

�αs.

Using (2.2) one has limt→∞ x(t) = –∞, which leads to a contradiction. So it holds that
[r(t)x(α)(t)](α) > 0 on [t2,∞)T, and the proof is complete after setting T∗

1 = t2. �

Proof of (ii) According to (i), one can obtain that x(α)(t) is eventually of one sign. So there
exists a sufficiently large t5 > t4 such that either x(α)(t) > 0 or x(α)(t) < 0 on [t5,∞)T, where
t4 is defined as in Lemma 2.1.

If x(α)(t) < 0, considering x(t) is an eventually positive solution of Eq. (1.1), one can obtain
that limt→∞ x(t) = β1 ≥ 0 and limt→∞ r(t)x(α)(t) = β2 ≤ 0.

We claim β1 = 0. Otherwise, if we assume β1 > 0, then x(t) ≥ β1 on [t5,∞)T, and for
t ∈ [t5,∞)∩T, fulfilling α-fractional integral for (2.4) from t to ∞, considering f (x)

xγ ≥ L > 0,
we get that

–
a(t)([r(t)x(α)(t)](α))γ

e– p̃
a

(t, t0)
= – lim

t→∞
a(t)([r(t)x(α)(t)](α))γ

e– p̃
a

(t, t0)
+

∫ ∞

t

–q(s)f (x(s))
e– p̃

a
(σ (s), t0)

�αs

≤ – lim
t→∞

a(t)([r(t)x(α)(t)](α))γ

e– p̃
a

(t, t0)
+

∫ ∞

t

–Lq(s)xγ (s)
e– p̃

a
(σ (s), t0)

�αs

≤ –L
∫ ∞

t

q(s)xγ (s)
e– p̃

a
(σ (s), t0)

�αs ≤ –Lβ
γ
1

∫ ∞

t

q(s)
e– p̃

a
(σ (s), t0)

�αs,
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which means

–
[

r(t)x(α)(t)
](α) ≤ –

{

Lβ
γ
1

[e– p̃
a

(t, t0)

a(t)

∫ ∞

t

q(s)
e– p̃

a
(σ (s), t0)

�αs
]} 1

γ

. (2.6)

Substituting t with τ in (2.6), fulfilling α-fractional integral for (2.6) with respect to τ from
t to ∞ yields

r(t)x(α)(t) = lim
t→∞ r(t)x(α)(t) – β1L

1
γ

∫ ∞

t

(e– p̃
a

(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(σ (s), t0)

�αs
) 1

γ

�ατ

= β2 – β1L
1
γ

∫ ∞

t

(e– p̃
a

(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(σ (s), t0)

�αs
) 1

γ

�ατ

≤ –β1L
1
γ

∫ ∞

t

(e– p̃
a

(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(σ (s), t0)

�αs
) 1

γ

�ατ ,

which implies

x(α)(t) ≤ –β1L
1
γ

1
r(t)

∫ ∞

t

(e– p̃
a

(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(σ (s), t0)

�αs
) 1

γ

�ατ . (2.7)

Substituting t with ξ in (2.7), fulfilling α-fractional integral for (2.7) with respect to ξ from
t5 to t yields

x(t) – x(t5)

≤ –β1L
1
γ

∫ t

t5

[
1

r(ξ )

∫ ∞

ξ

(e– p̃
a

(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(σ (s), t0)

�αs
) 1

γ

�ατ

]

�αξ . (2.8)

By (2.8) and (2.3) one can deduce that limt→∞ x(t) = –∞, which leads to a contradiction.
So we have β1 = 0, and the proof is complete. �

Lemma 2.2 If – p̃
a ∈R+, and x is a positive solution of Eq. (1.1) such that

[

r(t)x(α)(t)
](α) > 0, x(α)(t) > 0 on

[

T∗
3 ,∞)

T
,

where T∗
3 ∈ T is sufficiently large, then for t ∈ [T∗

3 ,∞)T it holds that

x(α)(t) ≥ ϑ1(t, T∗
3 )

r(t)

{
a

1
γ (t)[r(t)x(α)(t)](α)

[e– p̃
a

(t, t0)]
1
γ

}

and

x(t) ≥ ϑ2
(

t, T∗
3
)
{

a
1
γ (t)[r(t)x(α)(t)](α)

[e– p̃
a

(t, t0)]
1
γ

}

.
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Proof Take T∗
3 > max(T∗

1 , T∗
2 ), where T∗

1 , T∗
2 are defined as in Lemma 2.1. By Lemma 2.1

one can see that a(t)([r(t)x(α)(t)](α))γ
e

– p̃
a

(t,t0) is decreasing on [T∗
3 ,∞). Then

r(t)x(α)(t) ≥ r(t)x(α)(t) – r
(

T∗
3
)

x(α)(T∗
3
)

=
∫ t

T∗
3

[e– p̃
a

(s, t0)a(s)]
1
γ [r(s)x(α)(s)](α)

[e– p̃
a

(s, t0)a(s)]
1
γ

�αs

≥ a
1
γ (t)[r(t)x(α)(t)](α)

[e– p̃
a

(t, t0)]
1
γ

∫ t

T∗
3

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

�αs = ϑ1
(

t, T∗
3
)a

1
γ (t)[r(t)x(α)(t)](α)

[e– p̃
a

(t, t0)]
1
γ

,

and

x(α)(t) ≥ ϑ1(t, T∗
3 )

r(t)

{
a

1
γ (t)[r(t)x(α)(t)](α)

[e– p̃
a

(t, t0)]
1
γ

}

.

Furthermore,

x(t) ≥ x(t) – x
(

T∗
3
)

=
∫ t

T∗
3

x(α)(s)�αs ≥
∫ t

T∗
3

ϑ1(s, T∗
3 )

r(s)

{
a

1
γ (s)[r(s)x(α)(s)](α)

[e– p̃
a

(s, t0)]
1
γ

}

�αs

≥
{

a
1
γ (t)[r(t)x(α)(t)](α)

[e– p̃
a

(t, t0)]
1
γ

}∫ t

T∗
3

ϑ1(s, T∗
3 )

r(s)
�αs = ϑ2

(

t, T∗
3
)
{

a
1
γ (t)[r(t)x(α)(t)](α)

[e– p̃
a

(t, t0)]
1
γ

}

.

The proof is complete. �

Lemma 2.3 ([50, Theorem 41]) Assume that X and Y are nonnegative real numbers. Then

λXY λ–1 – Xλ ≤ (λ – 1)Y λ for all λ > 1.

Theorem 2.4 Suppose – p̃
a ∈ R+, and assume that (2.1)–(2.3) hold, and for all sufficiently

large T ,

lim
t→∞ sup

{∫ t

T

{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (t)

[

a(s)η(s)
](α) +

ς (s)ϑ1(s, T)[a(σ (s))η(σ (s))]1+ 1
γ

r(s)

–
[

r(s)ς (α)(s) + (γ + 1)ς (s)ϑ1(s, T)[a(σ (s))η(σ (s))]
1
γ

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

�αs
}

= ∞, (2.9)

where ς , η are two given nonnegative functions on T with ς (t) > 0. Then every solution of
Eq. (1.1) is oscillatory or tends to zero.

Proof Assume that (1.1) has a nonoscillatory solution x(t) on T0. Without loss of gen-
erality, we may assume x(t) > 0 on [t1,∞)T, where t1 is sufficiently large. According to
Lemma 2.1, there exists sufficiently large t2 such that [r(t)x(α)(t)](α) > 0 on [t2,∞)T, and
either x(α)(t) > 0 on [t2,∞)T or limt→∞ x(t) = 0.
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Now we assume x(α)(t) > 0 on [t2,∞)T. Define a generalized Riccati function:

ω(t) = ς (t)a(t)
[

([r(t)x(α)(t)](α))γ

xγ (t)e– p̃
a

(t, t0)
+ η(t)

]

.

Then, for t ∈ [t2,∞)T, by Theorems 1.7–1.8 one has

ω(α)(t) =
ς (t)
xγ (t)

{
a(t)([r(t)x(α)(t)](α))γ

e– p̃
a

(t, t0)

}(α)

+
[

ς (t)
xγ (t)

](α) a(σ (t))([r(σ (t))x(α)(σ (t))](α))γ

e– p̃
a

(σ (t), t0)

+ ς (t)
[

a(t)η(t)
](α) + ς (α)(t)a

(

σ (t)
)

η
(

σ (t)
)

=
ς (t)
xγ (t)

{e– p̃
a

(t, t0)(a(t)([r(t)x(α)(t)](α))γ )(α) – (e– p̃
a

(t, t0))(α)a(t)([r(t)x(α)(t)](α))γ

e– p̃
a

(t, t0)e– p̃
a

(σ (t), t0)

}

+
[

xγ (t)ς (α)(t) – (xγ (t))(α)ς (t)
xγ (t)xγ (σ (t))

]
a(σ (t))([r(σ (t))x(α)(σ (t))](α))γ

e– p̃
a

(σ (t), t0)

+ ς (t)
[

a(t)η(t)
](α) + ς (α)(t)a

(

σ (t)
)

η
(

σ (t)
)

=
ς (t)
xγ (t)

[
(a(t)([r(t)x(α)(t)](α))γ )(α) + p(t)([r(t)x(α)(t)](α))γ

e– p̃
a

(σ (t), t0)

]

+
ς (α)(t)
ς (σ (t))

ω
(

σ (t)
)

–
[

ς (t)(xγ (t))(α)

xγ (t)

]
a(σ (t))([r(σ (t))x(α)(σ (t))](α))γ

xγ (σ (t))e– p̃
a

(σ (t), t0)
+ ς (t)

[

a(t)η(t)
](α)

= –
ς (t)
xγ (t)

[
q(t)f (x(t))

e– p̃
a

(σ (t), t0)

]

+
ς (α)(t)
ς (σ (t))

ω
(

σ (t)
)

–
[

ς (t)(xγ (t))(α)

xγ (t)

]
a(σ (t))([r(σ (t))x(α)(σ (t))](α))γ

xγ (σ (t))e– p̃
a

(σ (t), t0)
+ ς (t)

[

a(t)η(t)
](α)

≤ –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+

ς (α)(t)
ς (σ (t))

ω
(

σ (t)
)

–
[

ς (t)(xγ (t))(α)

xγ (t)

]
a(σ (t))([r(σ (t))x(α)(σ (t))](α))γ

xγ (σ (t))e– p̃
a

(σ (t), t0)
+ ς (t)

[

a(t)η(t)
](α).

By [49, Theorems 1.87 and 1.93], we have (xγ (t))� ≥ γ xγ –1(t)x�(t). So by Corollary 1.6 it
holds that (xγ (t))(α) = t1–α(xγ (t))� ≥ t1–αγ xγ –1(t)x�(t) = γ xγ –1(t)x(α)(t), which implies

ω(α)(t) ≤ –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+

ς (α)(t)
ς (σ (t))

ω
(

σ (t)
)

– ς (t)
[

γ xγ –1(t)x(α)(t)
xγ (t)

]
a(σ (t))([r(σ (t))x(α)(σ (t))](α))γ

xγ (σ (t))e– p̃
a

(σ (t), t0)
+ ς (t)

[

a(t)η(t)
](α)

≤ –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+

ς (α)(t)
ς (σ (t))

ω
(

σ (t)
)

–
[

γ ς (t)
x(σ (t))

]{
ϑ1(t, t2)

r(t)

[
a

1
γ (t)[r(t)x(α)(t)](α)

[e– p̃
a

(t, t0)]
1
γ

]}
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× a(σ (t))([r(σ (t))x(α)(σ (t))](α))γ

xγ (σ (t))e– p̃
a

(σ (t), t0)
+ ς (t)

[

a(t)η(t)
](α)

≤ –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+

ς (α)(t)
ς (σ (t))

ω
(

σ (t)
)

– γ
ς (t)ϑ1(t, t2)

r(t)

[
ω(σ (t))
ς (σ (t))

– a
(

σ (t)
)

η
(

σ (t)
)
]1+ 1

γ

+ ς (t)
[

a(t)η(t)
](α), (2.10)

where Lemma 2.2 has been used in the last two steps.
On the other hand, by use of the following inequality (see [51, Eq. (2.17)]):

(u – v)1+ 1
γ ≥ u1+ 1

γ +
1
γ

v1+ 1
γ –

(

1 +
1
γ

)

v
1
γ u,

where u, v are constants and γ ≥ 1 is a quotient of two odd positive integers, one can
obtain that

[
ω(σ (t))
ς (σ (t))

– a
(

σ (t)
)

η
(

σ (t)
)
]1+ 1

γ

≥ ω
1+ 1

γ (σ (t))

ς
1+ 1

γ (σ (t))
+

1
γ

[

a
(

σ (t)
)

η
(

σ (t)
)]1+ 1

γ

–
(

1 +
1
γ

)
[a(σ (t))η(σ (t))]

1
γ ω(σ (t))

ς (σ (t))
. (2.11)

So, by a combination of (2.10) and (2.11), one can deduce that

ω(α)(t) ≤ –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+ ς (t)

[

a(t)η(t)
](α)

–
ς (t)ϑ1(t, t2)[a(σ (t))η(σ (t))]1+ 1

γ

r(t)

+
r(t)ς (α)(t) + (γ + 1)ς (t)ϑ1(t, t2)[a(σ (t))η(σ (t))]

1
γ

r(t)ς (σ (t))
ω

(

σ (t)
)

– γ
ς (t)ϑ1(t, t2)

r(t)
ω

1+ 1
γ (σ (t))

ς
1+ 1

γ (σ (t))
. (2.12)

Setting

λ = 1 +
1
γ

, Xλ = γ
ς (t)ϑ1(t, t2)

r(t)
ω

1+ 1
γ (σ (t))

ς
1+ 1

γ (σ (t))
,

Y λ–1 = γ
1

γ +1

[
r(t)ς (α)(t) + (γ + 1)ς (t)ϑ1(t, t2)[a(σ (t))η(σ (t))]

1
γ

(γ + 1)r
1

γ +1 (t)ς
γ

γ +1 (t)ϑ
γ

γ +1
1 (t, t2)

]

,
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an application of Lemma 2.3 to (2.12) yields that

ω(α)(t) ≤ –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+ ς (t)

[

a(t)η(t)
](α) –

ς (t)ϑ1(t, t2)[a(σ (t))η(σ (t))]1+ 1
γ

r(t)

+
[

r(t)ς (α)(t) + (γ + 1)ς (t)ϑ1(t, t2)[a(σ (t))η(σ (t))]
1
γ

(γ + 1)r
1

γ +1 (t)ς
γ

γ +1 (t)ϑ
γ

γ +1
1 (t, t2)

]γ +1

. (2.13)

Substituting t with s in (2.13), fulfilling α-fractional integral for (2.13) with respect to s
from t2 to t yields

∫ t

t2

{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (t)

[

a(s)η(s)
](α) +

ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]1+ 1
γ

r(s)

–
[

r(s)ς (α)(s) + (γ + 1)ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]
1
γ

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, t2)

]γ +1}

�αs

≤ ω(t2) – ω(t) ≤ ω(t2) < ∞,

which contradicts (2.9). The proof is complete. �

Theorem 2.5 If – p̃
a ∈ R+, (2.1)–(2.3) hold, and for all sufficiently large T ,

lim
t→∞ sup

{∫ t

T

{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (s)

[

a(s)η(s)
](α)

+
γ ς (s)ϑ1(s, T)ϑγ –1

2 (σ (s), T)a2(σ (s))η2(σ (s))
r(s)

–
[r(s)ς (α)(s) + 2γ ς (s)ϑ1(s, T)ϑγ –1

2 (σ (s), T)a(σ (s))η(σ (s))]2

4γ r(s)ς (s)ϑ1(s, T)ϑγ –1
2 (σ (s), T)

}

�αs
}

= ∞, (2.14)

where ς , η are defined as in Theorem 2.4. Then every solution of Eq. (1.1) is oscillatory or
tends to zero.

Proof Assume that (1.1) has a nonoscillatory solution x on T0. Similar to Theorem 2.4, we
may assume x(t) > 0 on [t1,∞)T, where t1 is sufficiently large. By Lemma 2.1, there exists
sufficiently large t2 such that [r(t)x(α)(t)](α) > 0 on [t2,∞)T, and either x(α)(t) > 0 on [t2,∞)T
or limt→∞ x(t) = 0.

Now we assume x(α)(t) > 0 on [t2,∞)T. Let ω(t) be defined as in Theorem 2.4. By
Lemma 2.2, one has the following observation:

x(α)(t)
x(t)

≥ ϑ1(t, t2)
r(t)

{
a

1
γ (t)[r(t)x(α)(t)](α)

[e– p̃
a

(t, t0)]
1
γ

}
1

x(σ (t))

=
ϑ1(t, t2)

r(t)

{
a

1
γ (t)[r(t)x(α)(t)](α)

[e– p̃
a

(t, t0)]
1
γ xγ (σ (t))

}

xγ –1(σ (t)
)
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≥ ϑ1(t, t2)
r(t)

{
a

1
γ (σ (t))[r(σ (t))x(α)(σ (t))](α)

[e– p̃
a

(σ (t), t0)]
1
γ xγ (σ (t))

}

xγ –1(σ (t)
)

≥ ϑ1(t, t2)
r(t)

{
a

1
γ (σ (t))[r(σ (t))x(α)(σ (t))](α)

[e– p̃
a

(σ (t), t0)]
1
γ xγ (σ (t))

}

× ϑ
γ –1
2

(

σ (t), t2
)
{

a
1
γ (σ (t))[r(σ (t))x(α)(σ (t))](α)

[e– p̃
a

(σ (t), t0)]
1
γ

}γ –1

=
ϑ1(t, t2)ϑγ –1

2 (σ (t), t2)
r(t)

{
a(σ (t))([r(σ (t))x(α)(σ (t))](α))γ

e– p̃
a

(σ (t), t0)xγ (σ (t))

}

. (2.15)

Using (2.15) in (2.10) one can deduce that

ω(α)(t) ≤ –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+

ς (α)(t)
ς (σ (t))

ω
(

σ (t)
)

– ς (t)
[

γ x(α)(t)
x(t)

]
a(σ (t))[(r(σ (t))x(α)(σ (t)))(α)]γ

xγ (σ (t))e– p̃
a

(σ (t), t0)
+ ς (t)

[

a(t)η(t)
](α)

≤ –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+

ς (α)(t)
ς (σ (t))

ω
(

σ (t)
)

– γ ς (t)
ϑ1(t, t2)ϑγ –1

2 (σ (t), t2)
r(t)

{
a(σ (t))([r(σ (t))x(α)(σ (t))](α))γ

e– p̃
a

(σ (t), t0)xγ (σ (t))

}2

+ ς (t)
[

a(t)η(t)
](α)

= –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+

ς (α)(t)
ς (σ (t))

ω
(

σ (t)
)

–
γ ς (t)ϑ1(t, t2)ϑγ –1

2 (σ (t), t2)
r(t)

[
ω(σ (t))
ς (σ (t))

– a
(

σ (t)
)

η
(

σ (t)
)
]2

+ ς (t)
[

a(t)η(t)
](α)

= –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+ ς (t)

[

a(t)η(t)
](α)

–
γ ς (t)ϑ1(t, t2)ϑγ –1

2 (σ (t), t2)a2(σ (t))η2(σ (t))
r(t)

+
[

r(t)ς (α)(t) + 2γ ς (t)ϑ1(t, t2)ϑγ –1
2 (σ (t), t2)a(σ (t))η(σ (t))

r(t)ς (σ (t))

]

ω
(

σ (t)
)

–
γ ς (t)ϑ1(t, t2)ϑγ –1

2 (σ (t), t2)
r(t)ς2(σ (t))

ω2(σ (t)
)

≤ –L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
+ ς (t)

[

a(t)η(t)
](α)

–
γ ς (t)ϑ1(t, t2)ϑγ –1

2 (σ (t), t2)a2(σ (t))η2(σ (t))
r(t)

+
[r(t)ς (α)(t) + 2γ ς (t)ϑ1(t, t2)ϑγ –1

2 (σ (t), t2)a(σ (t))η(σ (t))]2

4γ r(t)ς (t)ϑ1(t, t2)ϑγ –1
2 (σ (t), t2)

. (2.16)
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Substituting t with s in (2.16), fulfilling α-fractional integral for (2.16) with respect to s
from t2 to t one can get that

∫ t

t2

{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (s)

[

a(s)η(s)
](α) +

γ ς (s)ϑ1(s, t2)ϑγ –1
2 (σ (s), t2)a2(σ (s))η2(σ (s))

r(s)

–
[r(s)ς (α)(s) + 2γ ς (s)ϑ1(s, t2)ϑγ –1

2 (σ (s), t2)a(σ (s))η(σ (s))]2

4γ r(s)ς (s)ϑ1(s, t2)ϑγ –1
2 (σ (s), t2)

}

�αs

≤ ω(t2) – ω(t) ≤ ω(t2) < ∞,

which contradicts (2.14). The proof is complete. �

Theorem 2.6 Suppose – p̃
a ∈R+, (2.1)–(2.3) hold, and define D = {(t, s)|t ≥ s ≥ t0}. If there

exists a function H ∈ Crd(D,R) such that

H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for t > s ≥ t0, (2.17)

and H has a nonpositive continuous α-partial fractional derivative H (α)
s (t, s) with respect

to the second variable, and furthermore, for all sufficiently large T ,

lim
t→∞ sup

1
H(t, t0)

{∫ t

t0

H(t, s)
{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (t)

[

a(s)η(s)
](α)

+
ς (s)ϑ1(s, T)[a(σ (s))η(σ (s))]1+ 1

γ

r(s)

–
[

r(s)ς (α)(s) + (γ + 1)ς (s)ϑ1(s, T)[a(σ (s))η(σ (s))]
1
γ

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

�αs
}

= ∞, (2.18)

where ς , η are defined as in Theorem 2.4. Then every solution of Eq. (1.1) is oscillatory or
tends to zero.

Proof Assume that (1.1) has a nonoscillatory solution x on T0. Without loss of generality,
we may assume x(t) > 0 on [t1,∞)T, where t1 is sufficiently large. According to Lemma 2.1,
there exists sufficiently large t2 such that [r(t)x(α)(t)](α) > 0 on [t2,∞)T, and either x(α)(t) > 0
on [t2,∞)T or limt→∞ x(t) = 0. Now we assume x(α)(t) > 0 on [t2,∞)T. Let ω(t) be defined
as in Theorem 2.4. By (2.13) we have

L
q(t)ς (t)

e– p̃
a

(σ (t), t0)
– ς (t)

[

a(t)η(t)
](α) +

ς (t)ϑ1(t, t2)[a(σ (t))η(σ (t))]1+ 1
γ

r(t)

–
[

r(t)ς (α)(t) + (γ + 1)ς (t)ϑ1(t, t2)[a(σ (t))η(σ (t))]
1
γ

(γ + 1)r
1

γ +1 (t)ς
γ

γ +1 (t)ϑ
γ

γ +1
1 (t, t2)

]γ +1

≤ –ω(α)(t). (2.19)

Substituting t with s in (2.19), multiplying both sides by H(t, s) and then fulfilling α-
fractional integral with respect to s from t2 to t, together with the use of Theorem 1.9,
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yields that

∫ t

t2

H(t, s)
{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (t)

[

a(s)η(s)
](α) +

ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]1+ 1
γ

r(s)

–
[

r(s)ς (α)(s) + (γ + 1)ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]
1
γ

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, t2)

]γ +1}

�αs

≤ –
∫ t

t2

H(t, s)ω(α)(s)�αs = H(t, t2)ω(t2) +
∫ t

t2

H (α)
s (t, s)ω

(

σ (s)
)

�αs

≤ H(t, t2)ω(t2) ≤ H(t, t0)ω(t2).

So

∫ t

t0

H(t, s)
{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (t)

[

a(s)η(s)
](α) +

ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]1+ 1
γ

r(s)

–
[

r(s)ς (α)(s) + (γ + 1)ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]
1
γ

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, t2)

]γ +1}

�αs

=
∫ t2

t0

H(t, s)
{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (t)

[

a(s)η(s)
](α) +

ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]1+ 1
γ

r(s)

–
[

r(s)ς (α)(s) + (γ + 1)ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]
1
γ

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, t2)

]γ +1}

�αs

+
∫ t

t2

H(t, s)
{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (t)

[

a(s)η(s)
](α) +

ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]1+ 1
γ

r(s)

–
[

r(s)ς (α)(s) + (γ + 1)ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]
1
γ

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, t2)

]γ +1}

�αs

≤ H(t, t0)ω(t2) + H(t, t0)
∫ t2

t0

∣
∣
∣
∣
L

q(s)ς (s)
e– p̃

a
(σ (s), t0)

– ς (t)
[

a(s)η(s)
](α)

+
ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]1+ 1

γ

r(s)

–
[

r(s)ς (α)(s) + (γ + 1)ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]
1
γ

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, t2)

]γ +1∣
∣
∣
∣
�αs.

So

lim
t→∞ sup

1
H(t, t0)

{∫ t

t0

H(t, s)
{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (t)

[

a(s)η(s)
](α)

+
ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]1+ 1

γ

r(s)

–
[

r(s)ς (α)(s) + (γ + 1)ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]
1
γ

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, t2)

]γ +1}

�αs
}
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≤ ω(t2) +
∫ t2

t0

∣
∣
∣
∣
L

q(s)ς (s)
e– p̃

a
(σ (s), t0)

– ς (t)
[

a(s)η(s)
](α) +

ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]1+ 1
γ

r(s)

–
[

r(s)ς (α)(s) + (γ + 1)ς (s)ϑ1(s, t2)[a(σ (s))η(σ (s))]
1
γ

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, t2)

]γ +1∣
∣
∣
∣
�αs < ∞,

which contradicts (2.18). So the proof is complete. �

Based on (2.16) and the deduction process in Theorem 2.6, one can easily prove the
following theorem.

Theorem 2.7 Suppose – p̃
a ∈R+, and (2.1)–(2.3) hold. Let H be defined as in Theorem 2.6,

and for all sufficiently large T ,

lim
t→∞ sup

1
H(t, t0)

{∫ t

t0

H(t, s)
{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
– ς (s)

[

a(s)η(s)
](α)

+
γ ς (s)ϑ1(s, T)ϑγ –1

2 (σ (s), T)a2(σ (s))η2(σ (s))
r(s)

–
[r(s)ς (α)(s) + 2γ ς (s)ϑ1(s, T)ϑγ –1

2 (σ (s), T)a(σ (s))η(σ (s))]2

4γ r(s)ς (s)ϑ1(s, T)ϑγ –1
2 (σ (s), T)

}

�αs
}

= ∞, (2.20)

where ς , η are defined as in Theorem 2.4. Then every solution of Eq. (1.1) is oscillatory or
tends to zero.

Remark 2.8 If we set α = 1, then the established results above reduce to the case of dy-
namic equations on time scales of integer order derivative, and the latter is an extension
of [51, Theorems 2.1, 2.4] except that the latter is related to time delay.

Remark 2.9 In Theorems 2.4–2.7, if we take T for some special time scales, such as T = R,
T = Z, T = qZ, we can obtain corresponding oscillation criteria for fractional differential
equations, fractional difference equations, fractional q-difference equations and so on.

3 Applications
In this section, we will present some applications for the established results above.

Example 1 We consider the following fractional order differential equation with damping
term:

{

t
γ
2
[(

t– 1
2 x( 1

2 )(t)
)( 1

2 )]γ }( 1
2 ) +

1
tγ +1.5

[(

t– 1
2 x( 1

2 )(t)
)( 1

2 )]γ +
1

tγ +0.5 xγ (t)
[

ex(t) + 1
]

= 0, t ∈ [2,∞), (3.1)

where γ ≥ 1 is a quotient of two odd positive integers.
Related to (1.1), one has T = R, α = 1

2 , a(t) = t
γ
2 , p(t) = 1

tγ +1.5 , p̃(t) = tα–1p(t) = 1
tγ +2 , q(t) =

1
tγ +0.5 , f (x) = xγ [ex + 1], r(t) = t– 1

2 , t0 = 2. So f (x)
xγ ≥ 1 = L, μ(t) = σ (t) – t = 0, which implies
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– p̃
a ∈R+. Then e– p̃

a
(t, t0) = e– p̃

a
(t, 2) = exp(–

∫ t
2

p̃(s)
a(s) ds). Furthermore,

1 > exp

(

–
∫ t

2

p̃(s)
a(s)

ds
)

≥ 1 –
∫ t

2

p̃(s)
a(s)

ds = 1 –
∫ t

2

1

s
3γ
2 +2

ds

≥ 1 –
∫ t

2

1

s
3γ
2 +1

ds = 1 +
2

3γ

[

t– 3
2 γ – 2– 3

2 γ
]

>
1
3

.

Now we check the conditions (2.1)–(2.3). To this end, one has the following observa-
tions:

∫ ∞

t0

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

�αs =
∫ ∞

t0

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

sα–1�s

=
∫ ∞

t0

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

sα–1 ds >
1

3
1
γ

∫ ∞

2

1
s

ds = ∞,

and
∫ ∞

t0

1
r(s)

�αs =
∫ ∞

t0

1
r(s)

sα–1�s =
∫ ∞

t0

1
r(s)

sα–1 ds =
∫ ∞

t0

1 ds = ∞.

Furthermore,

∫ ∞

t0

[
1

r(ξ )

∫ ∞

ξ

(e– p̃
a

(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(σ (s), t0)

�αs
) 1

γ

�ατ

]

�αξ

=
∫ ∞

t0

ξα–1
[

1
r(ξ )

∫ ∞

ξ

τ α–1
(e– p̃

a
(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(σ (s), t0)

sα–1�s
) 1

γ

�τ

]

�ξ

=
∫ ∞

t0

ξα–1
[

1
r(ξ )

∫ ∞

ξ

τ α–1
(e– p̃

a
(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(s, t0)

sα–1 ds
) 1

γ

dτ

]

dξ

=
∫ ∞

2

[∫ ∞

ξ

τ– 1
2

(e– p̃
a

(τ , 2)

τ
γ
2

∫ ∞

τ

1
sγ +1e– p̃

a
(s, 2)

ds
) 1

γ

dτ

]

dξ

>
1

3
1
γ

∫ ∞

2

[∫ ∞

ξ

τ– 1
2

(
1

τ
γ
2

∫ ∞

τ

1
sγ +1 ds

) 1
γ

dτ

]

dξ

=
1

(3γ )
1
γ

∫ ∞

2

[∫ ∞

ξ

1
τ 2 dτ

]

dξ =
1

(3γ )
1
γ

∫ ∞

2

1
ξ

dξ = ∞.

So (2.1)–(2.3) all hold. On the other hand, for a sufficiently large T , when t → ∞, one has

ϑ1(t, T) =
∫ t

T

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

�αs =
∫ t

T

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

sα–1�s

=
∫ t

T

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

sα–1 ds >
1

3
1
γ

∫ t

T

1
s

ds → ∞.
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So there exists a sufficiently large T∗ > T such that ϑ1(t, T) > 1 for t ∈ [T∗,∞). Taking
ς (t) = tγ , η(t) = 0 in (2.9), one can obtain that

lim
t→∞ sup

{∫ t

T

{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
–

[
r(s)ς (α)(s)

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

�αs
}

= lim
t→∞ sup

{∫ t

T

{

L
q(s)ς (s)
e– p̃

a
(s, t0)

–
[

r(s)ς�(s)s1–α

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

sα–1�s
}

= lim
t→∞ sup

{∫ t

T

{

L
q(s)ς (s)
e– p̃

a
(s, t0)

–
[

r(s)ς ′(s)s1–α

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

sα–1 ds
}

= lim
t→∞ sup

{∫ T∗

T

{
q(s)ς (s)
e– p̃

a
(s, t0)

–
[

r(s)ς ′(s)s1–α

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

sα–1 ds

+
∫ t

T∗

{
q(s)ς (s)
e– p̃

a
(s, t0)

–
[

r(s)ς ′(s)s1–α

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

sα–1 ds
}

> lim
t→∞ sup

{∫ T∗

T

{
q(s)ς (s)
e– p̃

a
(s, t0)

–
[

r(s)ς ′(s)s1–α

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

sα–1 ds

+
∫ t

T∗

[

1 –
(

γ

γ + 1

)γ +1]1
s

ds
}

→ ∞ (t → ∞).

So (2.9) also holds, and by Theorem 2.4 one can deduce that every solution of Eq. (3.1) is
oscillatory or tends to zero.

Example 2 Consider the following fractional order difference equation:

�( 1
2 ){t

γ
2
[

�( 1
2 )(t– 1

2 �( 1
2 )x(t)

)]γ }

+
1

tγ +1.5

[

�( 1
2 )(t– 1

2 �( 1
2 )x(t)

)]γ +
M

tγ +0.5 xγ (t)

= 0, t ∈ [2,∞)Z, (3.2)

where �( 1
2 ) denotes the fractional difference operator of order 1

2 , M > 0 is a constant, and
γ ≥ 1 is a quotient of two odd positive integers.

Related to (1.1), one has T = Z, α = 1
2 , a(t) = t

γ
2 , p(t) = 1

tγ +1.5 , p̃(t) = tα–1p(t) = 1
tγ +2 , q(t) =

1
tγ +0.5 , f (x) = Mxγ , r(t) = t– 1

2 , t0 = 2. So f (x)
xγ ≥ M = L, μ(t) = σ (t) – t = 1, and

1 – μ(t)
p̃(t)
a(t)

= 1 –
1

t
3γ
2 +1

≥ 1 –
1
2

> 0,

which means – p̃
a ∈R+. So by [52, Lemma 2] one can obtain

e– p̃
a

(t, t0) = e– p̃
a

(t, 2) ≥ 1 –
∫ t

2

p̃(s)
a(s)

�s = 1 –
∫ t

2

1

s
3γ
2 +2

�s ≥ 1 –
∫ t

2

1

s
3γ
2 +1

�s

= 1 –
t–1
∑

s=2

1

s
3γ
2 +1

≥ 1 –
∫ t–1

1

1

s
3γ
2 +1

ds = 1 +
2

3γ

[

(t – 1)– 3γ
2 – 1

]

>
1
3

,
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and

e– p̃
a

(t, t0) ≤ exp

(

–
∫ t

2

p̃(s)
a(s)

�s
)

< 1.

Then we have

∫ ∞

t0

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

�αs =
∫ ∞

t0

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

sα–1�s =
∞

∑

s=t0

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

sα–1

=
∞

∑

s=2

[e– p̃
a

(s, 2)]
1
γ

a
1
γ (s)

sα–1 =
∞

∑

s=2

[e– p̃
a

(s, 2)]
1
γ

s
>

1

3
1
γ

∞
∑

s=2

1
s

= ∞,

and

∫ ∞

t0

1
r(s)

�αs =
∫ ∞

t0

1
r(s)

sα–1�s =
∞

∑

s=t0

1
r(s)

sα–1 =
∞

∑

s=2

1 = ∞.

Furthermore,

∫ ∞

t0

[
1

r(ξ )

∫ ∞

ξ

(e– p̃
a

(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(σ (s), t0)

�αs
) 1

γ

�ατ

]

�αξ

=
∫ ∞

t0

ξα–1
[

1
r(ξ )

∫ ∞

ξ

τ α–1
(e– p̃

a
(τ , t0)

a(τ )

∫ ∞

τ

q(s)
e– p̃

a
(σ (s), t0)

sα–1�s
) 1

γ

�τ

]

�ξ

=
∞

∑

ξ=t0

[

ξα–1

r(ξ )

∞
∑

τ=ξ

τ α–1

(e– p̃
a

(τ , t0)

a(τ )

∞
∑

s=τ

q(s)sα–1

e– p̃
a

(s + 1, t0)

) 1
γ
]

=
∞

∑

ξ=2

[

ξα–1

r(ξ )

∞
∑

τ=ξ

τ α–1

(e– p̃
a

(τ , 2)

a(τ )

∞
∑

s=τ

q(s)sα–1

e– p̃
a

(s + 1, 2)

) 1
γ
]

>
1

3
1
γ

∞
∑

ξ=2

[ ∞
∑

τ=ξ

τ α–1

(

1
τ

γ
2

∞
∑

s=τ

1
sγ +1

) 1
γ
]

≥ 1

3
1
γ

∞
∑

ξ=2

[ ∞
∑

τ=ξ

τ α–1
(

1
τ

γ
2

∫ ∞

τ

1
sγ +1 ds

) 1
γ

]

=
1

(3γ )
1
γ

∞
∑

ξ=2

[ ∞
∑

τ=ξ

1
τ 2

]

>
1

(3γ )
1
γ

∞
∑

ξ=2

∞
∑

τ=ξ

1
τ (τ + 1)

=
1

(3γ )
1
γ

∞
∑

ξ=2

1
ξ

= ∞.

On the other hand, for sufficiently large T > 1, when t → ∞, one has

ϑ1(t, T) =
∫ t

T

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

�αs =
∫ t

T

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

sα–1�s

=
t–1
∑

s=T

[e– p̃
a

(s, t0)]
1
γ

a
1
γ (s)

sα–1 >
1

3
1
γ

t–1
∑

s=T

1
s

→ ∞.



Feng and Meng Advances in Difference Equations  (2018) 2018:193 Page 18 of 20

So there exists T∗ > T such that ϑ1(s, T) > 1 for t ∈ [T∗,∞)Z. Setting ς (t) = tγ , η(t) = 0 in
(2.9), by use of the inequality (t + 1)γ – tγ ≤ γ (t + 1)γ –1 < γ 2γ –1tγ –1, t ≥ T∗, we obtain

lim
t→∞ sup

{∫ t

T

{

L
q(s)ς (s)

e– p̃
a

(σ (s), t0)
–

[
r(s)ς (α)(s)

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

�αs
}

= lim
t→∞ sup

{∫ t

T

{

L
q(s)ς (s)
e– p̃

a
(s, t0)

–
[

r(s)ς�(s)s1–α

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

sα–1�s
}

= lim
t→∞ sup

{ t–1
∑

s=T

{

M
q(s)ς (s)

e– p̃
a

(s + 1, t0)
–

[
r(s)(ς (s + 1) – ς (s))s1–α

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

sα–1

}

= lim
t→∞ sup

{ T∗
∑

s=T

{

M
q(s)ς (s)

e– p̃
a

(s + 1, t0)
–

[
r(s)(ς (s + 1) – ς (s))s1–α

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

sα–1

+
t–1
∑

s=T∗

{

M
q(s)ς (s)

e– p̃
a

(s + 1, t0)
–

[
r(s)(ς (s + 1) – ς (s))s1–α

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

sα–1

}

> lim
t→∞ sup

{ T∗
∑

s=T

{

M
q(s)ς (s)

e– p̃
a

(s + 1, t0)
–

[
r(s)(ς (s + 1) – ς (s))s1–α

(γ + 1)r
1

γ +1 (s)ς
γ

γ +1 (s)ϑ
γ

γ +1
1 (s, T)

]γ +1}

sα–1

+
t–1
∑

s=T∗

[

M –
(

γ

γ + 1

)γ +1

2γ 2–1
]

1
s

}

→ ∞ (t → ∞),

provided that M > ( γ

γ +1 )γ +12γ 2–1. So (2.1)–(2.3) and (2.9) all hold, and by Theorem 2.4 one
can obtain that every solution of Eq. (3.2) is oscillatory or tends to zero under the condition
M > ( γ

γ +1 )γ +12γ 2–1.

4 Conclusions
Based on the properties of conformable fractional calculus, we have established some new
oscillatory and asymptotic criteria for a class of fractional order dynamic equation on time
scales, which extend the oscillation results for corresponding dynamic equations on time
scales involving integer order derivative. For illustrating the validity of the present results,
some examples have been proposed. We note that this approach can be applied to research
oscillatory and asymptotic properties of other types of fractional order dynamic equation
on time scales.
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