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Abstract
In this paper, we prove the following result: Let f be a nonconstant meromorphic
function of finite order, p be a nonconstant polynomial, and c be a nonzero constant. If
f , �cf , and �n

c f (n≥ 2) share ∞ and p CM, then f ≡ �cf . Our result provides a
difference analogue of the result of Chang and Fang in 2004 (Complex Var. Theory
Appl. 49(12):871–895, 2004).
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1 Introduction and main results
In this paper, we use the base notations of the Nevanlinna theory of meromorphic func-
tions which are defined as follows [9, 18, 19].

Let f be a meromorphic function. Throughout this paper, a meromorphic function al-
ways means meromorphic in the whole complex plane.

Definition 1

m(r, f ) =
1

2π

∫ 2π

0
log+∣∣f (reiθ )∣∣dθ .

m(r, f ) is the average of the positive logarithm of |f (z)| on the circle |z| = r.

Definition 2

N(r, f ) =
∫ r

0

n(t, f ) – n(0, f )
t

dt + n(0, f ) log r,

N(r, f ) =
∫ r

0

n(t, f ) – n(0, f )
t

dt + n(0, f ) log r,

where n(t, f ) (n(t, f )) denotes the number of poles of f in the disc |z| ≤ t, multiples poles
are counted according to their multiplicities (ignore multiplicity). n(0, f ) (n(0, f )) denotes
the multiplicity of poles of f at the origin (ignore multiplicity).

N(r, f ) is called the counting function of poles of f , and N(r, f ) is called the reduced
counting function of poles of f .

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1645-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1645-4&domain=pdf
http://orcid.org/0000-0002-1413-6174
mailto:mlfang@scau.edu.cn


Deng et al. Advances in Difference Equations  (2018) 2018:194 Page 2 of 15

Definition 3

T(r, f ) = m(r, f ) + N(r, f ).

T(r, f ) is called the characteristic function of f . It plays a cardinal role in the whole theory
of meromorphic functions.

Definition 4 Let f be a meromorphic function. The order of growth of f is defined as
follows:

ρ(f ) = lim
r→∞

log+ T(r, f )
log r

.

If ρ(f ) < ∞, then we say that f is a meromorphic function of finite order.

Definition 5 Let a, f be two meromorphic functions. If T(r, a) = S(r, f ), where S(r, f ) =
o(T(r, f )), as r → ∞ outside of a possible exceptional set of finite logarithmic measure.
Then we say that a is a small function of f . And we use S(f ) to denote the family of all
small functions with respect to f .

Definition 6 Let f and g be two meromorphic functions, and p be a polynomial. We say
that f and g share p CM, provided that f (z) – p(z) and g(z) – p(z) have the same zeros
counting multiplicity. And if f and g have the same poles counting multiplicity, then we say
that f and g share ∞ CM.

In this paper, we also use some known properties of the characteristic function T(r, f )
as follows [9, 18, 19].

Property 1 Let fj (j = 1, 2, . . . , q) be q meromorphic functions in |z| < R and 0 < r < R. Then

T

(
r,

q∏
j=1

T(r, fj)

)
≤

q∑
j=1

T(r, fj), T

(
r,

q∑
j=1

fj

)
≤

q∑
j=1

T(r, fj) + log q

hold for 1 ≤ r < R.

Property 2 Suppose that f is meromorphic in |z| < R (R ≤ ∞) and a is any complex num-
ber. Then, for 0 < r < R, we have

T
(

r,
1

f – a

)
= T(r, f ) + O(1).

Property 2 is the first fundamental theorem.

Property 3 Suppose that f is a nonconstant meromorphic function and a1, a2, . . . , an are
n ≥ 3 distinct values in the extended complex plane. Then

(n – 2)T(r, f ) <
n∑

j=1

N
(

r,
1

f – aj

)
+ S(r, f ).
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Property 3 is the second fundamental theorem. For more properties about T(r, f ), please
see [9, 18, 19].

For a meromorphic function f (z), we define its shift by fc(z) = f (z + c) and its difference
operators by

�cf (z) = f (z + c) – f (z), �n
c f (z) = �n–1

c
(
�cf (z)

)
.
(
�cf (z)

)
.

In [10] the following result was proved.

Theorem 1 Let f be a nonconstant meromorphic function, and a be a nonzero finite com-
plex number. If f , f ′, and f ′′ share a CM, then f ≡ f ′.

In 2001, Li and Yang [12] considered the case when f , f ′, and f (n) share one value.

Theorem 2 Let f be an entire function, a be a finite nonzero constant, and n ≥ 2 be a
positive integer. If f , f ′, and f (n) share a CM, then f assumes the form

f (z) = bewz –
a(1 – w)

w
, (1.1)

where b, w are two nonzero constants satisfying wn–1 = 1.

Remark 1 It is easy to see that the functions in (1.1) really share value a, since when b �= 0
and wn–1 = 1, from f (j)(z) = a, j = 0, 1, n, it follows that bwewz = a for each j = 0, 1, n. So, the
functions f (j) – a, j = 0, 1, n, have the same zeros counting multiplicity.

In 2004, Chang and Fang [1] considered the case when f , f ′, and f (n) share a small func-
tion.

Theorem 3 Let f be an entire function, a be a nonzero small function of f , and n ≥ 2 be a
positive integer. If f , f ′, and f (n) share a CM, then f ≡ f ′.

Recently, value distribution in difference analogue of meromorphic functions has be-
come a subject of some interest, see, e.g., [2–8, 11].

In 2012 and 2014, Chen et al. [2, 3] considered difference analogue of Theorem 1 and
Theorem 2, and established the following result.

Theorem 4 Let f be a nonconstant entire function of finite order, and a ( �≡ 0) ∈ S(f ) be a
periodic entire function with period c. If f , �cf , and �n

c f (n ≥ 2) share a CM, then �cf ≡
�n

c f .

For other related results, the reader is referred to the references due to Latreuch, El Farissi,
Belaïdi [11], El Farissi, Latreuch, Asiri [5], El Farissi, Latreuch, Belaïdi and Asiri [6].

Remark 2 There are examples in [3] which show that the conclusion �cf ≡ �n
c f in Theo-

rem 4 cannot be replaced by f ≡ �cf , and the condition a(z) �≡ 0 is necessary.
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By Theorems 3 and 4, it is natural to ask: Can we provide a difference analogue of The-
orem 3? Or, can we delete the condition that ‘a(z) is a periodic entire function with period
c’ in Theorem 4?

In this paper, we study the problem and prove the following result.

Theorem 5 Let f be a nonconstant meromorphic function of finite order, and p be a non-
constant polynomial. If f , �cf , and �n

c f (n ≥ 2) share p and ∞ CM, then f ≡ �cf .

If f is an entire function, then f , �cf , and �n
c f have no poles, obviously f , �cf and �n

c f
share ∞ CM. By Theorem 5, we consequently get the following result.

Corollary 1 Let f be a nonconstant entire function of finite order, and n ≥ 2 be a positive
integer. If f , �cf , and �n

c f share z CM, then f ≡ �cf .

Example 1 Let A, a, b, c be four finite nonzero complex numbers satisfying a �= b,
n (≥ 2) ∈N satisfying [eAc – 1]n–1 = 1, eAc – 1 = a

a–b , and g(z) be a periodic entire func-
tion with period c, and let f (z) = g(z)eAz + b. By simple calculation, we obtain

�n
c f (z) = �cf (z) =

[
eAc – 1

]
f (z) + a

[
1 – eAc + 1

]
.

It is easy to see that f , �cf , and �n
c f (n ≥ 2) share a CM, and f �= �cf when eAc �= 2. This

example shows that ‘p(z) cannot be a constant’ in Theorem 5.

Example 2 Let A, b, c be three nonzero finite complex numbers satisfying eAc = 1, and
f (z) = eAz + b, p(z) = b. It is easy to see that f , �cf , and �n

c f share p(z) CM. But �cf ≡ 0 �≡ f .
This example also shows that ‘p(z) cannot be a constant’ in Theorem 5.

Example 3 Let A, c be two nonzero finite complex numbers satisfying eAc = 2 and f (z) =
eAz cot( πz

c ). By simple calculation, we obtain

f (z) = �cf = �n
c f = eAz cot

(
πz
c

)
.

Obviously, for any polynomial p, f , �cf , and �n
c f share p and ∞ CM. This example satisfies

Theorem 5.

In Examples 1 and 2, we have �cf ≡ tf + a(1 – t) and f (z) = eAz+B + a, respectively, when
f , �cf , and �n

c f (n ≥ 2) share a nonzero constant a CM. Hence we posed the following
problem.

Problem 1 Assume that f is a nonconstant entire function of finite order, a is a nonzero
constant, and that f , �cf , and �n

c f (n ≥ 2) share a CM. Whether or not, one of the following
two cases occurs:

(1) �cf ≡ tf + a(1 – t), where t is a constant satisfying tn–1 = 1,
(2) f (z) = eAz+B + a, where A ( �= 0), B are two constants satisfying eAc = 1.
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2 Some lemmas
Lemma 1 ([4, 7]) Let f be a meromorphic function of finite order, and c be a nonzero com-
plex constant. Then

T
(
r, f (z + c)

)
= T(r, f ) + S(r, f ).

Lemma 2 ([7, 8]) Let c ∈ C, k be a positive integer, and f be a meromorphic function of
finite order. Then

m
(

r,
�k

c f (z)
f (z)

)
= S(r, f ).

Lemma 3 ([18, 19]) Let n ≥ 2 be a positive integer. Suppose that fi(z) (i = 1, 2, . . . , n) are
meromorphic functions and gi(z) (i = 1, 2, . . . , n) are entire functions satisfying

(i)
∑n

i=1 fi(z)egi(z) ≡ 0,
(ii) the orders of fi are less than those of egk –gl for 1 ≤ i ≤ n, 1 ≤ k < l ≤ n.

Then fi(z) ≡ 0 (i = 1, 2, . . . , n).

The following lemma is well known.

Lemma 4 Let the function f satisfy the following difference equation:

f (w + 1) = α(w)f (w) + β(w)

in the complex plane.
Then the following formula holds:

f (w + k) = f (w)
k–1∏
j=0

α(w + j) +
k–1∑
l=0

β(w + l)
k–1∏

j=l+1

α(w + j) (2.1)

for every w ∈C and k ∈ N
+.

Formula (2.1) has many applications. For example, many solvable difference equations
are essentially solved by using it (see [15–17]), and by using such obtained formulas the
behavior of their solution can be studied (see, for example, recent papers [13, 14]; see also
many related references therein). As another simple application, by using a linear change
of variables, the following corollary is obtained:

Corollary 2 Let the function f satisfy the following difference equation:

f (w + c) = α(w)f (w) + β(w)

in the complex plane.
Then the following formula holds:

f (w + kc) = f (w)
k–1∏
j=0

α(w + jc) +
k–1∑
l=0

β(w + lc)
k–1∏

j=l+1

α(w + jc)

for every w ∈C and k ∈ N
+.
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From the ideas of Chang and Fang [1] and Chen and Li [3], we prove the following
lemma.

Lemma 5 Let f be a nonconstant meromorphic function of finite order, p ( �≡ 0) be a poly-
nomial, and n ≥ 2 be an integer. Suppose that

�n
c f (z) – p(z)
f (z) – p(z)

= eα(z),
�cf (z) – p(z)

f (z) – p(z)
= eβ(z), (2.2)

where α and β are two polynomials, and that

T
(
r, eα

)
+ T

(
r, eβ

)
= S(r, f ). (2.3)

Then �cf ≡ tf + b(1 – t), where t, b are constants satisfying tn–1 = 1 and b �= 0. Moreover, if
t �= 1, then p(z) ≡ b.

Proof Firstly, we prove that f cannot be a rational function. Otherwise, suppose that f (z) =
P(z)/Q(z), where P(z) and Q(z) are two co-prime polynomials. It follows from (2.2) that f (z)
and �cf (z) share ∞ CM. We claim that Q(z) is a constant. Otherwise, suppose that there
exists z0 such that Q(z0 + c) = 0. Since f (z) and �cf (z) share ∞ CM, and

�cf (z) =
P(z + c)
Q(z + c)

–
P(z)
Q(z)

=
P(z + c)Q(z) – P(z)Q(z + c)

Q(z)Q(z + c)
. (2.4)

We deduce that all zeros of Q(z + c) must be the zeros of Q(z). Otherwise, suppose that
there exists z1 such that Q(z1 + c) = 0 but Q(z1) �= 0, then it follows from (2.4) that z1 + c is
a pole of �cf but not the pole of f , which contradicts with f (z) and �cf (z) share ∞ CM.
Then we get

Q(z0 + c) = 0 ⇒ Q(z0) = 0 ⇒ Q(z0 – c) = 0 ⇒ ·· · ⇒ Q(z0 – lc) = 0.

This implies that Q(z) has infinitely many zeros, which is a contradiction. Thus, the claim
is proved.

Then f is a nonconstant polynomial, suppose that

f (z) = akzk + ak–1zk–1 + · · · + a1z + a0, p(z) = bmzm + · · · + b1z + b0.

Then we get �cf (z) = f (z+c)– f (z), and obviously, deg�n
c f (z) ≤ deg�cf (z) < deg f (z). Then

it follows from (2.2) that α(z), β(z) are constants, and we let eα(z) = a, eβ(z) = b. So we have

�n
c f (z) – p(z) = a

(
f (z) – p(z)

)
, �cf (z) – p(z) = b

(
f (z) – p(z)

)
.

Then we get deg f = k ≤ deg p = m since deg�n
c f (z) ≤ deg�cf (z) < deg f (z). If k < m, then

we get a = b = 1. This implies f ≡ �cf (z) ≡ �n
c f , which contradicts with deg�cf (z) <

deg f (z). If k = m then we get a = b = bk/(ak – bk), �cf (z) ≡ �n
c f , and hence f (z) is a con-

stant, which is a contradiction.
Hence, f is a transcendental meromorphic function. Thus T(r, p) = S(r, f ).
Next, we consider two cases.
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Case 1. β(z) is a nonconstant polynomial. It follows from the second equation in (2.2)
that �cf (z) = eβ(z)(f (z) – p(z)) + p(z), and that

f (z + c) = a1(z)f (z) + b1(z),

where a1(z) = eβ(z) + 1, b1(z) = p(z)[1 – eβ(z)].
By Corollary 2, it is easy to get, for any k ∈N

+,

f (z + kc) = ak(z)f (z) + bk(z), (2.5)

where

ak(z) =
k–1∏
j=0

(
eβ(z+jc) + 1

)
, bk(z) =

k–1∑
l=0

b1(z + lc)
k–1∏

j=l+1

a1(z + jc). (2.6)

It follows from (2.5) and (2.6) that

�n
c f (z) =

n∑
i=0

(–1)n–iCi
nf (z + ic)

=
n∑

i=0

(–1)n–iCi
n
[
ai(z)f (z) + bi(z)

]

=

[
(–1)n +

n∑
i=1

(–1)n–iCi
n

i–1∏
j=0

(
eβ(z+jc) + 1

)]
f (z) +

n∑
i=0

(–1)n–iCi
nbi(z),

= μn(z)f (z) + νn(z), (2.7)

where

μn(z) =
n–1∏
j=0

eβ(z+jc) +
n–1∑
t=0

λn–1,t

n–1∏
j=0,j �=t

eβ(z+jc) + · · · +
n–1∑
t=0

λ1,teβ(z+tc),

νn(z) =
n∑

i=0

(–1)n–iCi
nbi(z).

(2.8)

In particular, λ1,t = (–1)n–1–tCt
n–1, which implies

n–1∑
t=0

λ1,teβ(z+tc) = �n–1
c eβ(z). (2.9)

By (2.3), (2.8), and Lemma 1, it is easy to get

T(r,μn) + T(r,νn) = S(r, f ). (2.10)

Since β(z) is a nonconstant polynomial, we have that

β(z) = lmzm + lm–1zm–1 + · · · + l0,
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where li (0 ≤ i ≤ m) are constants satisfying lm �= 0 and m ≥ 1. Obviously, for any j ∈
{0, 1, . . . , n – 1}, we have

β(z + jc) = lmzm + (lm–1 + mlmjc)zm–1 + · · · +
m∑

t=0

lt(jc)t . (2.11)

From (2.8) and (2.11), we get

μn(z) = enlmzm+Pn,0(z) + λn–1,0e(n–1)lmzm+Pn–1,0(z) + · · · + λn–1,n–1e(n–1)lmzm+Pn–1,n–1(z)

+ · · · + λ1,0elmzm+P1,0(z) + · · · + λ1,n–1elmzm+P1,n–1(z), (2.12)

where Pi,j(z) are polynomials with degree less than m for i ∈ {1, 2, . . . , n}, j ∈ {0, 1, . . . ,
Ci

n – 1}.
It follows from the first equation in (2.2) that

�n
c f (z) – eα(z)f (z) = p(z)

(
1 – eα(z)). (2.13)

From (2.7) and (2.13), we have

(
μn(z) – eα(z))f (z) = p(z)

(
1 – eα(z)) – νn(z). (2.14)

From (2.3), (2.10) and since T(r, p) = S(r, f ), we have that

T(r, p) + T
(
r, eα

)
+ T

(
r, eβ

)
+ T(r,μn) + T(r,νn) = S(r, f ). (2.15)

If μn(z) – eα(z) �≡ 0, by (2.14), (2.15), Property 1, and Property 2, we obtain

T(r, f ) = T
(

r,
p(z)(1 – eα(z)) – νn(z)

μn(z) – eα(z)

)
= S(r, f ),

which is a contradiction.
Hence μn(z) – eα(z) ≡ 0. Combining this with (2.12), we get

ePn,0(z)enlmzm
+

(
λn–1,0ePn–1,0(z) + · · · + λn–1,n–1ePn–1,n–1(z))e(n–1)lmzm

+ · · · +
(
λ1,0eP1,0(z) + · · · + λ1,n–1eP1,n–1(z))elmzm

– eα(z) ≡ 0. (2.16)

Next, we consider three subcases.
Case 1.1. degα(z) > m. Then, for any 1 ≤ i ≤ n, 1 ≤ k < j ≤ n, we have

ρ
(
eα(z)–ilmzm)

= ρ
(
eα(z)) = degα(z) > m, ρ

(
ejlmzm–klmzm)

= m.

Since Pi,j(z) are polynomials with degree less than m for i ∈ {1, 2, . . . , n}, j ∈ {0, 1, . . . , Ci
n –1},

then for i = 1, 2, . . . , n – 1,

ρ

(Ci
n–1∑
j=0

λi,jePi,j(z)

)
≤ m – 1, ρ

(
ePn,0(z)) ≤ m – 1.

By (2.16) and using Lemma 3, we obtain ePn,0 ≡ 0, which is a contradiction.
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Case 1.2. degα(z) < m. Then, for any 1 ≤ i ≤ n, 1 ≤ k < j ≤ n, we have

ρ
(
eα(z)–ilmzm)

= ρ
(
e–ilmzm)

= m, ρ
(
ejlmzm–klmzm)

= m.

Since Pi,j(z) are polynomials with degree less than m for i ∈ {1, 2, . . . , n}, j ∈ {0, 1, . . . , Ci
n –1},

then for i = 1, 2, . . . , n – 1,

ρ

(Ci
n–1∑
j=0

λi,jePi,j(z)

)
≤ m – 1, ρ

(
ePn,0(z)) ≤ m – 1.

By (2.16) and using Lemma 3, we obtain ePn,0 ≡ 0, which is a contradiction.
Case 1.3. degα(z) = m. Set α(z) = dzm + α∗(z), where d �= 0 and degα∗(z) < m. Rewrite

(2.16) as

ePn,0(z)enlmzm
+

(
λn–1,0ePn–1,0(z) + · · · + λn–1,n–1ePn–1,n–1(z))e(n–1)lmzm

+ · · · +
(
λ1,0eP1,0(z) + · · · + λ1,n–1eP1,n–1(z))elmzm

– eα∗(z)edzm ≡ 0. (2.17)

If d �= jlm, for any j = 1, 2, . . . , n, we have

ρ
(
edzm–jlmzm)

= ρ
(
e(d–jlm)zm)

= m, ρ
(
eα∗(z)) < m.

Combining this with (2.17), by using Lemma 3, we get a contradiction.
If d = jlm, for some j = 1, 2, . . . , n – 1, without loss of generality, we assume that j = 1, then

(2.17) can be rewritten as

ePn,0(z)enlmzm
+

(
λn–1,0ePn–1,0(z) + · · · + λn–1,n–1ePn–1,n–1(z))e(n–1)lmzm

+ · · · +
(
λ1,0eP1,0(z) + · · · + λ1,n–1eP1,n–1(z) – eα∗(z))elmzm ≡ 0.

And then, by using the same argument as above, we get a contradiction.
Hence, d = nlm. Rewrite (2.17) as

(
ePn,0(z) – eα∗(z))enlmzm

+
(
λn–1,0ePn–1,0(z) + · · · + λn–1,n–1ePn–1,n–1(z))e(n–1)lmzm

+ · · · +
(
λ1,0eP1,0(z) + · · · + λ1,n–1eP1,n–1(z))elmzm ≡ 0.

Using the same argument as in Case 1.1 and using Lemma 3, we obtain

λ1,0eP1,0(z) + · · · + λ1,n–1eP1,n–1(z) ≡ 0. (2.18)

Then, by (2.9) and (2.18), we get

n–1∑
t=0

λ1,teβ(z+tc) = �n–1
c eβ(z) =

n–1∑
t=0

(–1)n–1–tCt
n–1eβ(z+tc) ≡ 0. (2.19)

If m ≥ 2, then for any t = 0, 1, . . . , n – 1, we have

β(z + tc) = lmzm + (lm–1 + mlmtc)zm–1 + qt(z), (2.20)

where qt(z) are polynomials with deg qt(z) < m – 1.
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From (2.19) with (2.20), we get

eqn–1(z)elmzm+(lm–1+mlm(n–1)c)zm–1
– (n – 1)eqn–2(z)elmzm+(lm–1+mlm(n–2)c)zm–1

+ · · · + (–1)n–1eq0(z)elmzm+(lm–1+mlmc)zm–1 ≡ 0.

Using the same argument as Case 1.1, we obtain a contradiction.
Hence m = 1. Thus β(z) = l1z + l0, where l1 �= 0. Then, for any n ≥ 1, we deduce that

�n–1
c eβ(z) =

(
el1c – 1

)n–1eβ(z).

Hence, it follows from (2.19) that (el1c – 1)n–1 ≡ 0, which yields el1c = 1. Then, for any
t ∈N

+, we have

eβ(z+tc) = el1z+tl1c+l0 = el1z+l0
(
el1c)t = eβ(z). (2.21)

By the second equation in (2.2) and (2.21), we get

�cf (z) = eβ(z)f (z) + p(z)
(
1 – eβ(z)) = eβ(z)f (z) +

(
1 – eβ(z))b1(z),

�2
c f (z) = eβ(z)�cf (z) + �cp(z)

(
1 – eβ(z))

= eβ(z)[eβ(z)f (z) + p(z)
(
1 – eβ(z))] + �cp(z)

(
1 – eβ(z))

= e2β(z)f (z) +
(
1 – eβ(z))[p(z)eβ(z) + �cp(z)

]

= e2β(z)f (z) +
(
1 – eβ(z))b2(z).

By mathematical induction, it is easy to get, for any integer t ≥ 2,

�t
cf (z) = etβ(z)f (z) +

(
1 – eβ(z))bt(z),

where b1(z) = p(z), bt(z) = p(z)e(t–1)β(z) + �cbt–1 =
∑t–1

i=0 e(t–1–i)β(z)�i
cp(z).

Hence,

�n
c f (z) = enβ(z)f (z) +

(
1 – eβ(z))bn(z), (2.22)

where bn(z) =
∑n–1

i=0 e(n–1–i)β(z)�i
cp(z).

From the first equation in (2.2) and (2.22), we have

(
eα(z) – enβ(z))f (z) =

(
1 – eβ(z))bn(z) – p(z)

(
1 – eα(z)). (2.23)

If eα(z) – enβ(z) �≡ 0, then by (2.15), (2.23), Property 1, and Property 2, we have

T(r, f ) = T
(

r,
(1 – eβ(z))bn(z) – p(z)(1 – eα(z))

eα(z) – enβ(z)

)
= S(r, f ),

which is a contradiction.
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Hence eα(z) – enβ(z) ≡ 0. It follows from (2.22) and (2.23) that

(
1 – eβ(z))bn(z) =

(
1 – eβ(z))

( n–1∑
i=0

e(n–1–i)β(z)�i
cp(z)

)

=
n–1∑
i=0

e(n–1–i)β(z)�i
cp(z) –

n–1∑
i=0

e(n–i)β(z)�i
cp(z)

= –p(z)enβ(z) +
n–2∑
i=0

e(n–1–i)β(z)(�i
cp(z) – �i+1

c p(z)
)

+ �n–1
c p(z)

≡ p(z)
(
1 – eα(z)).

That is,

n–2∑
i=0

e(n–1–i)β(z)(�i
cp(z) – �i+1

c p(z)
)

+ �n–1
c p(z) – p(z) ≡ 0. (2.24)

If p(z) is a constant, as �i
cp(z) = 0 for any i ∈N

+. It follows from (2.24) that

p(z)e(n–1)β(z) – p(z) ≡ 0.

Hence, e(n–1)β(z) ≡ 1, which is a contradiction.
If p(z) is a nonconstant polynomial, then p(z) –�i

cp(z) �≡ 0 for any i ∈N
+. It follows from

(2.24) that

e(n–1)β(z)(p(z) – �cp(z)
) ≡ –

n–2∑
i=1

e(n–1–i)β(z)(�i
cp(z) – �i+1

c p(z)
)

– �n–1
c p(z) + p(z).

Thus we have

(n – 1)T
(
r, eβ

)
= T

(
r, e(n–1)β(z)(p(z) – �cp(z)

))
+ S

(
r, eβ

)

= T

(
r, –

n–2∑
i=1

e(n–1–i)β(z)(�i
cp(z) – �i+1

c p(z)
)

– �n–1
c p(z) + p(z)

)

+ S
(
r, eβ

)

≤ (n – 2)T
(
r, eβ

)
+ S

(
r, eβ

)
,

a contradiction.
Case 2. β(z) = β ∈C is a constant. By the second equation in (2.2), we get

�cf (z) = eβ f (z) + p(z)
(
1 – eβ

)
,

�2
c f (z) = eβ�cf (z) + �cp(z)

(
1 – eβ

)
= eβ�cf (z) +

(
1 – eβ

)
b2(z).

By mathematical induction, it is easy to get, for any integer t ≥ 2,

�t
cf (z) = e(t–1)β�cf (z) +

(
1 – eβ

)
bt(z),

where b2(z) = �cp(z), bt(z) = �cp(z)e(t–1)β + �cbt–1 =
∑t–1

i=1 �i
cp(z)e(t–1–i)β .
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Hence,

�n
c f (z) = e(n–1)β�cf (z) +

(
1 – eβ

)
bn(z), (2.25)

where bn(z) =
∑n–1

i=1 �i
cp(z)e(n–1–i)β .

Using the same argument as the above, it is easy to get eα = enβ . Then it follows from
(2.2) and eα = enβ that

�n
c f (z) = e(n–1)β�cf (z) +

(
1 – e(n–1)β)

p(z). (2.26)

If �cf (z) �≡ �n
c f (z), it follows from (2.26) that e(n–1)β �= 1. Combining (2.25) and (2.26),

we have

(
1 – eβ

) n–1∑
i=1

�i
cp(z)e(n–1–i)β =

(
1 – eβ

)
bn(z) =

(
1 – e(n–1)β)

p(z). (2.27)

If p(z) is a constant, then the left-hand side of equation (2.27) is equal to 0, and hence
p(z) ≡ 0, which is a contradiction.

If p(z) is a nonconstant polynomial, let d = deg p(z) ≥ 1, then the left-hand side of equa-
tion (2.27) is a polynomial with degree less than d, but the right-hand side of the equation
is a polynomial with degree d, which is a contradiction.

Hence �cf (z) ≡ �n
c f (z), and e(n–1)β = 1.

If eβ �= 1 and p(z) is a nonconstant polynomial, then it follows from (2.25)–(2.26) that
bn(z) ≡ 0. Thus

n–1∑
i=1

�i
cp(z)e(n–1–i)β ≡ 0. (2.28)

Let p(z) = amzm + am–1zm–1 + · · · + a0. It follows that deg�i
cp(z) = m – i if m ≥ i. If m ≥ 2,

then the left-hand side of (2.28) is a polynomial with degree m – 1 ≥ 1, which is a contra-
diction.

Hence m = 1, that is, p(z) = a1z + a0. Thus �cp(z) = a1c �= 0. It follows from (2.28) that
a1ce(n–2)β = 0, which is a contradiction.

From the above discussion, we obtain that if eβ �= 1, then p(z) (≡ b) is a nonzero constant,
hence

�cf (z) = eβ f (z) + p(z)
(
1 – eβ

)
= eβ f (z) + b

(
1 – eβ

)
= tf (z) + b(1 – t),

where t = eβ satisfying tn–1 = 1.
Thus, Lemma 5 is proved. �

Lemma 6 (Hadamard’s factorization theorem [18]) Let f be an entire function of finite
order ρ(f ) with zeros {z1, z2, . . .} ⊂C\{0} and a k-fold zero at the origin. Then

f (z) = zkα(z)eβ(z),

where α is the canonical product of f formed with the non-null zeros of f , and β is a poly-
nomial of degree ≤ ρ(f ).
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3 Proof of Theorem 5

Proof Since the order of f is finite, and f , �cf , �n
c f share ∞ and p(z) CM, obviously

(�n
c f (z) – p(z))/(f (z) – p(z)) and (�cf (z) – p(z))/(f (z) – p(z)) have no zeros and poles. By

Lemmas 1 and 6, we have

�n
c f (z) – p(z)
f (z) – p(z)

= eα(z),
�cf (z) – p(z)

f (z) – p(z)
= eβ(z), (3.1)

where α(z) and β(z) are two polynomials with degree ≤ ρ(f ).
Using the same discussion as in Lemma 5, we deduce that f cannot be a rational function.

Hence, f is a transcendental meromorphic function, and T(r, p) = S(r, f ).
Set F(z) := f (z) – p(z), then T(r, f ) = T(r, F) + S(r, f ) and T(r, p) = S(r, F).
Obviously, we have

f (z) = F(z) + p(z), �cf (z) = �cF(z) + �cp(z), �n
c f (z) = �n

c F(z) + �n
c p(z).

Rewrite (3.1) as

�n
c F(z) + �n

c p(z) – p(z)
F(z)

= eα(z),
�cF(z) + �cp(z) – p(z)

F(z)
= eβ(z). (3.2)

Since p(z) is a nonconstant polynomial, it follows that �n
c p(z) – p(z) �≡ 0 and �cp(z) –

p(z) �≡ 0. Set

φ(z) :=
(p(z) – �n

c p(z))�cF(z) – (p(z) – �cp(z))�n
c F(z)

F(z)
. (3.3)

Next, we consider two cases.
Case 1. φ(z) �≡ 0. Then, by T(r, p) = S(r, F), Lemma 1, and Lemma 2, we get

m(r,φ) = S(r, F). (3.4)

By (3.2)–(3.3), we can rewrite φ(z) as

φ(z) =
(
p(z) – �n

c p(z)
)
eβ(z) –

(
p(z) – �cp(z)

)
eα(z). (3.5)

Since p(z) is a polynomial, we deduce that N(r,φ) = S(r, F). Hence, we get

T(r,φ) = m(r,φ) + N(r,φ) = S(r, F). (3.6)

Since φ(z) �≡ 0, by (3.5) we have

(
p(z) – �n

c p(z)
) eβ(z)

φ(z)
= 1 +

(
p(z) – �cp(z)

) eα(z)

φ(z)
. (3.7)
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Then by (3.6), (3.7), T(r, p) = S(r, F), Property 2, and Property 3, we have

T
(

r,
(
p – �n

c p
)eβ

φ

)
≤ N

(
r,

(
p – �n

c p
)eβ

φ

)
+ N

(
r,

φ

(p – �n
c p)eβ

)

+ N
(

r,
1

(p – �n
c p)(eβ/φ) – 1

)
+ S

(
r,

(
p – �n

c p
)eβ

φ

)

= N
(

r,
(
p – �n

c p
)eβ

φ

)
+ N

(
r,

φ

(p – �n
c p)eβ

)

+ N
(

r,
φ

(p – �cp)eα

)
+ S

(
r,

(
p – �n

c p
)eβ

φ

)

≤ S(r, F) + S
(

r,
(
p – �n

c p
)eβ

φ

)
.

Hence by (3.6), Property 1, and the previous inequality, we get

T
(
r, eβ

)
= S(r, F). (3.8)

Thus by (3.5)–(3.8), we have

T
(
r, eα

)
= T

(
r,

(p – �n
c p)eβ – φ

p – �cp

)
= S(r, F). (3.9)

Hence, by Lemma 5 and since p(z) is a nonconstant polynomial, we obtain f ≡ �cf .
Case 2. φ(z) ≡ 0. That is,

(
p(z) – �n

c p(z)
)
�cF(z) =

(
p(z) – �cp(z)

)
�n

c F(z). (3.10)

By simple calculation, we can rewrite (3.10) as follows:

(
p(z) – �n

c p(z)
)(

�cf (z) – p(z)
)

=
(
p(z) – �cp(z)

)(
�n

c f (z) – p(z)
)
. (3.11)

From (3.1) and (3.11), we get

�n
c f (z) – p(z)

�cf (z) – p(z)
= eα(z)–β(z) =

p(z) – �n
c p(z)

p(z) – �cp(z)
. (3.12)

Since p(z) is a polynomial, it follows from (3.12) that eα(z)–β(z) is a constant. Suppose that
eα(z)–β(z) = A, then we get p(z) – �n

c p(z) = A(p(z) – �cp(z)). It follows that A = 1 and p(z) is
a constant, which is a contradiction.

This completes the proof of Theorem 5. �
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16. Stević, S., Diblík, J., Iričanin, B., Šmarda, Z.: On the difference equation xn = xn–k/(b + cnxn–1 · · · xn–k ). Abstr. Appl. Anal.

2012, Article ID 409237 (2012)
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