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Abstract
In this paper, we present an existence criterion for multiple positive solutions of
nonlinear neutral delay partial difference equations. Such equations can be regarded
as a discrete analog of neutral delay partial differential equations. Our main result
relies on fixed point index theory. An example is constructed to show the applicability
of the obtained result.
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1 Introduction
Partial difference equations constitute an important and interesting area of research in
mathematics. For some classical results concerning the solvability of some classes of par-
tial difference equations, see [1]. The qualitative analysis of partial difference equations
has been studied later, especially in recent years; see [2, 3].

Many researchers recently investigated solvability and oscillation criteria for partial dif-
ference equations with two variables. For some solvability results, we refer the reader to a
series of papers [4–10] and the references therein, while some recent work on the oscilla-
tion and nonoscillation criteria for partial difference equations can be found in the articles
[11–18]. However, to the best of our knowledge, the topic of existence of multiple positive
solutions for partial difference equations has yet to be addressed.

The goal of this paper is to discuss the multiplicity of positive solutions of nonlinear
neutral partial difference equation with the aid of the fixed point index theory. Precisely,
we consider the following neutral partial difference equation:

�h
n�r

m(ym,n – cm,nym–k,n–l) + (–1)h+r+1Pm,nf (ym–σ ,n–τ ) = 0, (1.1)

where h, r ∈ N+, k, l,σ , τ ∈ N(0); {Pm,n}∞m=m0,
∞
n=n0 and {cm,n}∞m=m0,

∞
n=n0 are nonnegative se-

quences; f (x) is a real-valued continuous function of x.
Equation (1.1) can be considered as a discrete analog of neutral delay partial differential

equations. Such equations appear frequently in random walk problems, molecular orbit
structures, dynamical systems, economics, biology, population dynamics, and other fields.
Finite difference methods applied to partial differential equations also give rise to an equa-
tion of the form (1.1).
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The forward differences �m and �n are defined in the usual manner as

�mym,n = ym+1,n – ym,n and �nym,n = ym,n+1 – ym,n.

The higher order forward differences for positive integers r and h are given by

�r
mym,n = �m

(�r–1
m ym,n

)
, �0

mym,n = ym,n,

�h
nym,n = �n

(�h–1
n ym,n

)
, �0

nym,n = ym,n.

In the sequel, we denote by N = {0, 1, . . .} the set of integers and by N+ = {1, 2, . . .} the
set of positive integers; N(a) = {a, a + 1, . . .}, where a ∈ N, N(a, b) = {a, a + 1, . . . , b} with
a < b < ∞ and a, b ∈ N. Any one of these three sets will be denoted by N. For t ∈ R, we
define the usual factorial expression (t)(m) = t(t – 1) · · · (t – m + 1) with (t)0 = 1.

The space l∞m=m0,
∞
n=n0 is the set of double real sequences defined on the set of positive

integer pairs, where any individual double sequence is bounded with respect to the usual
supremum norm, that is,

‖y‖ = sup
m∈N(m0),n∈N(n0)

|ym,n| < ∞.

It is well known that l∞m=m0,
∞
n=n0 is a Banach space under the supremum norm.

Let

P =
{

y ∈ l∞m=m0,
∞
n=n0 | ym,n ≥ 0, m ∈ N(m0), n ∈ N(n0)

}
.

Then it is easy to see that P is a cone. We define a partial order ≤ in l∞m=m0,
∞
n=n0 as follows:

for any x, y ∈ l∞m=m0,
∞
n=n0 , x ≤ y ⇔ y – x ∈ P.

Definition 1 ([16]) A set � of double sequences in l∞m=m0,
∞
n=n0 is uniformly Cauchy (or

equi-Cauchy) if for every ε > 0, there exist positive integers m1 and n1 such that, for any
x = {xm,n} in �,

|xm,n – xm′ ,n′ | < ε

holds whenever (m, n) ∈ D′, (m′, n′) ∈ D′, where D′ = D′
1 ∪ D′

2 ∪ D′
3, D′

1 = {(m, n) |
m > m1, n > n1}, D′

2 = {(m, n) | m0 ≤ m ≤ m1, n > n1}, D′
3 = {(m, n) | m > m1, n0 ≤ n ≤ n1}.

Definition 2 ([19]) An operator A : D → E is called a k-set-contraction (k ≥ 0) if it is
continuous, bounded and

γ
(
A(S)

)
< kγ (S)

for any bounded set S ⊂ D, where γ (S) denotes the measure of noncompactness of S. A k-
set-contraction is called a strict set contraction if k < 1.



Zhou et al. Advances in Difference Equations  (2018) 2018:200 Page 3 of 12

Definition 3 Let K be a retract of a Banach space X, � ⊂ K an open set and f : � → K a
compact map such that f (x) = x on ∂�. If r : X → K is a retraction, then deg(I – fr, r–1(�), θ )
is defined, where deg denotes the Leray–Schauder degree, this number is called the fixed
point index of f over � with respect to K , i(f ,�, K) for short.

The fixed point index i(f ,�, K) has the following properties:
(i) Normalization: for every constant map f mapping � into �, i(f ,�, K) = 1.

(ii) Additivity: for every pair of disjoint open subsets �1, �2 of � such that f has no
fixed points on � \ (�1 ∪ �2),

i(f ,�, K) = i(A,�1, K) + i(f ,�2, K),

where i(f ,�n, K) = i(f |�n ,�n, K) for n = 1, 2.
(iii) Homotopy invariance: for every compact interval [a, b] ⊂R and every compact

map h : [a, b] × � → K such that h(λ, x) = x for (λ, x) ∈ [a, b] × ∂�, i(h(λ, ·),�, K) is
well defined and independent of λ ∈ [a, b].

Now we state some well-known lemmas which will be used in the next section.

Lemma 1 ([16] (Discrete Arzela–Ascoli’s theorem)) A bounded, uniformly Cauchy subset
� of l∞m=m0,

∞
n=n0 is relatively compact.

Lemma 2 ([19]) Let P be a cone in a real Banach space X and � be a nonempty bounded
open convex subset of P. Suppose that T : � → P is a strict set contraction operator and
T(�) ⊂ �, where � denotes the closure of � in P. Then the fixed point index i(T ,�, P) = 1.

2 Main result
Theorem 1 Assume that

(R1) there exists a constant c such that 0 ≤ cm,n ≤ c < 1, m ∈ N(m0), n ∈ N(n0);
(R2) for any m ∈ N(m0), n ∈ N(n0), Pm,n > 0, xf (x) > 0 (x = 0) with

lim
x→0+

f (x)
x

= 0, lim
x→+∞

f (x)
x

= 0;

(R3) for δ1 = max{k,σ }, δ2 = min{k,σ }, η1 = max{l, τ }, η2 = min{l, τ }, there exist positive
integers m1, n1 satisfying m1 – δ1 ∈ N(m0) and n1 – η1 ∈ N(n0) such that

0 < c0
�=

∞∑

i=m1

∞∑

j=n1

(i + r – 1)(r–1)(j + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,j < +∞;

(R4) there exist constants c1 and u0 > 0 such that f (x) ≥ c1u0 for x ≥ u0, and furthermore
there exist positive integers b1, b2 satisfying b1 > m1, b2 > n1 such that

c1c2 > 1,

where

c2
�=

b1+δ2∑

i=b1

b2+η2∑

j=b2

(i – b1 + r – 1)(r–1)(j – b2 + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,j > 0.
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Then Eq. (1.1) has at least two positive solutions x∗ and y∗ satisfying the relation:

inf
m∈N(a1,b1)
n∈N(a2,b2)

x∗
m,n < u0 < inf

m∈N(a1,b1)
n∈N(a2,b2)

y∗
m,n,

where a1 and a2 are positive integers with a1 ∈ [m1 –δ1, b1 –δ1), a2 ∈ [n1 –η1, b2 –η1).

Proof Set

D =
{

(m, n) | m ≥ m0, n ≥ n0
}

,

D1 =
{

(m, n) | m ≥ m1, n ≥ n1
}

,

D2 =
{

(m, n) | m0 ≤ m < m1, n ≥ n1
}

,

D3 =
{

(m, n) | m ≥ m1, n0 ≤ n < n1
}

,

D4 =
{

(m, n) | m0 ≤ m < m1, n0 ≤ n < n1
}

.

For any y ∈ P, define operators T1 and T2 as follows:

(T1y)m,n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

cm,nym–k,n–l, (m, n) ∈ D1;
(T1y)m1,n, (m, n) ∈ D2;
(T1y)m,n1 , (m, n) ∈ D3;
(T1y)m1,n1 , (m, n) ∈ D4;

(T2y)m,n =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑∞
i=m

∑∞
j=n

(i–m+r–1)(r–1)

(r–1)!
(j–n+h–1)(h–1)

(h–1)! Pi,jf (yi–σ ,j–τ ), (m, n) ∈ D1;
(T2y)m1,n, (m, n) ∈ D2;
(T2y)m,n1 , (m, n) ∈ D3;
(T2y)m1,n1 , (m, n) ∈ D4.

Fixing T = T1 + T2, one can observe that T : P → P. First we show that T is a strict set
contraction operator in P.

(i) T1 is a contraction operator on P.
For any x, y ∈ P, x = {xm,n}∞m=m0,

∞
n=n0 , y = {ym,n}∞m=m0,

∞
n=n0 , we have

(T1x)m,n = cm,nxm–k,n–l, m ∈ N(m1), n ∈ N(n1),

(T1y)m,n = cm,nym–k,n–l, m ∈ N(m1), n ∈ N(n1),

so that

‖T1x – T1y‖ = sup
(m,n)∈N(m0)×N(n0)

∣∣(T1x)m,n – (T1y)m,n
∣∣

= sup
(m,n)∈N(m0)×N(n0)

∣
∣(T1x)m,n – (T1y)m,n

∣
∣

= sup
(m,n)∈N(m0)×N(n0)

|cm,nxm–k,n–l – cm,nym–k,n–l|

= sup
(m,n)∈N(m0)×N(n0)

cm,n|xm–k,n–l – ym–k,n–l|
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< c sup
(m,n)∈N(m0)×N(n0)

|xm–k,n–l – ym–k,n–l|

= c‖x – y‖. (2.1)

From (R1), we know that c < 1, therefore T1 is a contraction operator.
(ii) T2 is completely continuous.
From (R3) and the continuity of f , it follows that T2 : P → P is continuous. Thus we

just need to establish that T2 is a compact operator in P. For any bounded subset Q ⊂ P,
without loss of generality, we may assume Q = {x ∈ P | ‖x‖ ≤ r′}. Now it suffices to show
that T2Q is relatively compact.

According to limx→+∞ f (x)
x = 0, we know that there exists an r′′ > 0 such that

0 < f (x) ≤ 1 – c
4c0

x, x ≥ r′′.

Thus

0 < f (x) ≤ 1 – c
4c0

x + M, x ∈ R+, (2.2)

where M = max0≤x≤r′′ f (x). Let

r = max

{
r′, r′′,

4c0M
1 – c

}
. (2.3)

Define [α,β] = {x ∈ P | α ≤ x ≤ β}, where α = (0, 0, . . .), β = (r, r, . . .). Obviously, Q ⊂
[α,β]. From (R1), (R3), (2.2) and (2.3), for any x ∈ [α,β], we have T2x ≥ α and, when
(m, n) ∈ N(m1) × N(n1),

(T2x)m,n =
∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,jf (xi–σ ,j–τ )

≤
∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,j

(
1 – c
4c0

xi–σ ,j–τ + M
)

≤
∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,j

(
1 – c
4c0

r + M
)

≤ 1 – c
4

r + c0M

≤ 1 – c
2

r

< r.

This means that T2x < β ; in particular, T2β < β . Hence, T2 : [α,β] → [α,β], which implies
that T2[α,β] is bounded.

Next we show that T2[α,β] is uniformly Cauchy. For any given ε > 0, by the condition
(R3), there exist sufficiently large positive integers m2 ∈ N(m1), n2 ∈ N(n1) such that

∞∑

i=m2

∞∑

j=n2

(i + r – 1)(r–1)(j + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,j <

ε

4

(
1 – c
4c0

r + M
)–1

. (2.4)
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By the condition (R3), we have

∞∑

i=m1

n2∑

j=n1

(i + r – 1)(r–1)(j + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,j < ∞.

Hence, there exists an m3 ≥ m2 such that

∞∑

i=m3

n2∑

j=n1

(i + r – 1)(r–1)(j + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,j <

ε

4

(
1 – c
4c0

r + M
)–1

. (2.5)

Similarly, there exists an n3 ≥ n2 such that

m2∑

i=m1

∞∑

j=n3

(i + r – 1)(r–1)(j + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,j <

ε

4

(
1 – c
4c0

r + M
)–1

. (2.6)

For any x = {xm,n} ∈ [α,β], when (m, n), (m′, n′) ∈ N(m2) × N(n2), from (2.4) we have

∣∣(T2x)m,n – (T2x)m′ ,n′
∣∣

≤ 1
(r – 1)!(h – 1)!

[ ∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)Pi,jf (xi–σ ,j–τ )

+
∞∑

i=m′

∞∑

j=n′

(
i – m′ + r – 1

)(r–1)(j – n′ + h – 1
)(h–1)Pi,jf (xi–σ ,j–τ )

]

≤ 1
(r – 1)!(h – 1)!

(
1 – c
4c0

r + M
)[ ∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)Pi,j

+
∞∑

i=m′

∞∑

j=n′

(
i – m′ + r – 1

)(r–1)(j – n′ + h – 1
)(h–1)Pi,j

]

≤ 2
(r – 1)!(h – 1)!

(
1 – c
4c0

r + M
) ∞∑

i=m2

∞∑

j=n2

(i + r – 1)(r–1)(j + h – 1)(h–1)Pi,j

< 2
(

1 – c
4c0

r + M
)

· ε

4

(
1 – c
4c0

r + M
)–1

< ε.

When (m, n), (m′, n′) ∈ {(m, n) | m ≥ m3, n1 ≤ n < n2}, from (2.4) and (2.5) we have

∣
∣(T2x)m,n – (T2x)m′ ,n′

∣
∣

=
1

(r – 1)!(h – 1)!

∣∣
∣∣∣

∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)Pi,jf (xi–σ ,j–τ )

–
∞∑

i=m′

∞∑

j=n′

(
i – m′ + r – 1

)(r–1)(j – n′ + h – 1
)(h–1)Pi,jf (xi–σ ,j–τ )

∣∣
∣∣∣

≤ 1
(r – 1)!(h – 1)!

[ ∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)Pi,jf (xi–σ ,j–τ )
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+
∞∑

i=m′

∞∑

j=n′

(
i – m′ + r – 1

)(r–1)(j – n′ + h – 1
)(h–1)Pi,jf (xi–σ ,j–τ )

]

≤ 2
(r – 1)!(h – 1)!

[ ∞∑

i=m3

∞∑

j=n1

(i – m3 + r – 1)(r–1)(j – n1 + h – 1)(h–1)Pi,jf (xi–σ ,j–τ )

]

≤ 2
(r – 1)!(h – 1)!

(
1 – c
4c0

r + M
)[ ∞∑

i=m3

∞∑

j=n2

(i + r – 1)(r–1)(j + h – 1)(h–1)Pi,j

+
∞∑

i=m3

n2∑

j=n1

(i + r – 1)(r–1)(j + h – 1)(h–1)Pi,j

]

< 4
(

1 – c
4c0

r + M
)

ε

4

(
1 – c
4c0

r + M
)–1

= ε.

Similarly, when (m, n), (m′, n′) ∈ {(m, n) | m1 ≤ m < m2, n ≥ n3}, from (2.4) and (2.6) we
have

∣∣(T2x)m,n – (T2x)m′ ,n′
∣∣ < ε.

Let D′ = D′
1 ∪ D′

2 ∪ D′
3, where D′

1 = {(m, n) | m ≥ m3, n ≥ n3}, D′
2 = {(m, n) | m ≥ m3,

n1 ≤ n < n3}, D′
3 = {(m, n) | m1 ≤ m < m3, n ≥ n3}.

Then, for any given ε, there exist positive integers (m3, n3) ∈ N(m2) × N(n2) such that,
for all x = {xm,n} ∈ [α,β],

∣
∣(T2x)m,n – (T2x)m′ ,n′

∣
∣ < ε

holds for all (m, n), (m′, n′) ∈ D′, which implies T2[α,β] is uniformly Cauchy.
Hence, T2[α,β] is relatively compact. Since Q ⊂ [α,β] is any bounded subset of P, T2Q is

relatively compact. Thus T2 is a compact operator in P. Hence T2 is completely continuous
in P. Then T = T1 + T2 : P → P is a strict set contraction operator.

Next, from condition (R2), there exist positive constants 0 < r1 < u0 < r2 such that

0 < f (x) ≤ 1 – c
4c0

x, for 0 < x ≤ r1, or x ≥ r2, (2.7)

and

0 < f (x) ≤ 1 – c
4c0

x + M, for x ∈ R+, (2.8)

where M = max0<x≤r2 f (x).
Set

r3 = max

{
r2,

4c0

1 – c
M

}
, �1 =

{
x ∈ P | ‖x‖ < r1

}
,

�2 =
{

x ∈ P | ‖x‖ < r3
}

, �3 =
{

x ∈ P | ‖x‖ < r3, inf
m∈N(a1,b1)
n∈N(a2,b2)

xm,n > u0

}
.
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Then �1, �2 and �3 are nonempty bounded open convex subsets of P such that

�1 ⊂ �2, �3 ⊂ �2, �1 ∩ �3 = Ø,

�1 =
{

x ∈ P | ‖x‖ ≤ r1
}

, �2 =
{

x ∈ P | ‖x‖ ≤ r3
}

,

�3 =
{

x ∈ P
∣∣ ‖x‖ ≤ r3, inf

m∈N(a1,b1)
n∈N(a2,b2)

xm,n ≥ u0

}
.

Let l = 1, 2, 3. For any x = {xm,n}, y = {ym,n} ∈ �l ⊂ P, from (2.1), we have

‖T1x – T1y‖ ≤ c‖x – y‖,

where c < 1, thus T1 : �l → P is a contraction operator.
Notice that any bounded subset D of �l is also a bounded subset of P. Thus it follows

from the above conclusion that T2D is relatively compact. Also T2 : �l → P is continuous.
In consequence, we deduce that T2 : �l → P is completely continuous. Thus, T = T1 + T2 :
�l → P (l = 1, 2, 3) is a strict set contraction operator.

Next we show that T(�) ⊂ �.
(i) For x ∈ �1, when (m, n) ∈ N(m1) × N(n1), we get

0 ≤ (Tx)m,n

≤ cxm–k,n–l +
∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,jf (xi–σ ,j–τ ).

From (2.7), we have

‖Tx‖ ≤ c‖x‖ +
∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,j

1 – c
4c0

‖x‖

< cr1 + c0
1 – c
4c0

r1

< r1.

Thus T(�1) ⊂ �1.
(ii) For x ∈ �2, from (2.8), we also have

‖Tx‖ ≤ c‖x‖ +
∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,j

(
1 – c
4c0

‖x‖ + M
)

< cr3 + c0

(
1 – c
4c0

r3 + M
)

≤ cr3 +
1 – c

4
r3 +

1 – c
4

r3

< r3.

Thus, T(�2) ⊂ �2.
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(iii) For any x ∈ �3, we have ‖Tx‖ < r3 and inf m∈N(a1,b1)
n∈N(a2,b2)

xm,n > u0. For any (m, n) ∈
N(a1, b1) × N(a2, b2), from condition (R4), we have

(Tx)m,n ≥
∞∑

i=m

∞∑

j=n

(i – m + r – 1)(r–1)(j – n + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,jf (xi–σ ,j–τ )

≥
∞∑

i=b1

∞∑

j=b2

(i – b1 + r – 1)(r–1)(j – b2 + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,jf (xi–σ ,j–τ )

≥
b1+δ2∑

i=b1

b2+η2∑

j=b2

(i – b1 + r – 1)(r–1)(j – b2 + h – 1)(h–1)

(r – 1)!(h – 1)!
Pi,jf (xi–σ ,j–τ )

≥ c2c1u0

> u0.

Thus, for any x ∈ �3, we have

inf
m∈N(a1,b1)
n∈N(a2,b2)

(Tx)m,n > u0.

Hence T(�3) ⊂ �3. From (i), (ii), (iii) and Lemma 2, we obtain

i(T ,�l, P) = 1, l = 1, 2, 3.

Hence

i
(
T ,�2/(�1 ∪ �3), P

)
= i(T ,�2, P) – i(T ,�1, P) – i(T ,�3, P) = –1.

Thus, T has fixed points x∗ and y∗ such that x∗ ∈ �2/(�1 ∪ �3), y∗ ∈ �3, and

inf
m∈N(a1,b1)
n∈N(a2,b2)

x∗
m,n < u0 < inf

m∈N(a1,b1)
n∈N(a2,b2)

y∗
m,n.

It is easy to prove that the fixed points of T are exactly the positive solutions of Eq. (1.1).
The proof is complete. �

Example 2.1 Consider a nonlinear partial difference equation given by

�2
m�3

n

(
xm,n –

1
4

xm–1,n–2

)
+

a15

30 ln 2
a–m–nx

1
2
m–2,n–3 ln (1 + xm–2,n–3) = 0, (2.9)

where (m, n) ∈ N(0) × N(0) and a > 1 is a constant.
Let us fix c = 1

2 so that cm,n = 1
4 < c < 1. Thus (R1) is satisfied. Also we have

δ1 = max{1, 2} = 2, δ2 = min{1, 2} = 1,

η1 = max{2, 3} = 3, η2 = min{2, 3} = 2,

Pm,n =
a15

30 ln 2
a–m–n > 0, f (x) = x

1
2 ln (1 + x).
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It is easy to see that xf (x) > 0 (x = 0) and

lim
x→0+

f (x)
x

= lim
x→0+

ln (1 + x)
x 1

2
= lim

x→0+

(ln (1 + x))′

(x 1
2 )′

= lim
x→0+

2x 1
2

1 + x
= 0,

lim
x→+∞

f (x)
x

= lim
x→+∞

ln (1 + x)
x 1

2
= lim

x→+∞
(ln (1 + x))′

(x 1
2 )′

= lim
x→+∞

2x 1
2

1 + x
= 0.

Thus, Eq. (2.9) satisfies the condition (R2).
Let m1 = 2, n1 = 3. Then we consider a series of positive terms

∞∑

i=2

∞∑

j=3

(i + 1)(1)(j + 2)(2)

1!2!
Pi,j =

a15

30 ln 2

∞∑

i=2

(i + 1)a–i
∞∑

j=3

(j + 2)(j + 1)
2

a–j.

Setting

∞∑

i=2

ui =
∞∑

i=2

(i + 1)a–i, (2.10)

∞∑

j=3

vj =
∞∑

j=3

(j + 1)(j + 2)
2

a–j, (2.11)

we get

lim
i→∞

ui+1

ui
= lim

i→∞
(i + 2)a–i–1

(i + 1)a–i = lim
i→∞

i + 2
a(i + 1)

=
1
a

< 1,

lim
j→∞

vj+1

vj
= lim

j→∞
(j + 2)(j + 3)

2aj+1
2aj

(j + 1)(j + 2)
= lim

j→∞
j + 3

a(j + 1)
=

1
a

< 1.

According to the D’Alembert comparison test, the series of positive terms (2.10) and (2.11)
are convergent and consequently, we get

0 < c0
�=

∞∑

i=2

∞∑

j=3

(i + 1)(1)(j + 2)(2)

1!2!
Pi,j < +∞.

Thus the condition (R3) is satisfied.
Next, we check that the condition (R4) holds true. Letting u0 = 1, c1 = ln 2, N(a1, b1) =

N(2, 5) = {2, 3, 4, 5}, N(a2, b2) = N(3, 7) = {3, 4, 5, 6, 7}, we have

f (x) = x
1
2 ln (1 + x) ≥ ln 2 = c1u0, for x ≥ u0,

and

c2 =
b1+δ2∑

i=b1

b2+η2∑

j=b2

(i – b1 + 1)(1)(j – b2 + 2)(2)

1!2!
Pi,j

=
5+1∑

i=5

7+2∑

j=7

(i – 5 + 1)(1)(j – 7 + 2)(2)

1!2!
a15

30 ln 2
a–i–j
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=
a15

30 ln 2

6∑

i=5

(i – 4)a–i
9∑

j=7

(j – 5)(j – 6)
2

a–j

=
a15

30 ln 2
(
a–5 + 2a–6)(a–7 + 3a–8 + 6a–9)

>
a15

30 ln 2
30a–15

=
1

ln 2
.

Clearly c1c2 > 1, which shows that the condition (R4) is satisfied. Consequently, the con-
clusion of Theorem 1 is applied and hence Eq. (2.9) has at least two positive solutions x∗

and y∗ such that

inf
m∈N(2,5)
n∈N(3,7)

x∗
m,n < 1 < inf

m∈N(2,5)
n∈N(3,7)

y∗
m,n.

3 Conclusions
In the past years, the qualitative theory of partial difference equations has been developed
by means of different tools such as comparison principle, Schauder type fixed point the-
orem, Banach’s contraction principle, method of upper and lower solutions, the method
of positive operators, etc. However, the issue of existence of multiple positive solutions
for neutral delay partial difference equations has yet to be addressed. Here we have in-
vestigated this topic with the aid of the fixed point index theory and obtained a criterion
ensuring the existence of multiple positive solutions to Eq. (1.1). Thus the present work
opens a new avenue in the field of partial difference equations and contributes significantly
to the existing literature on the subject.
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