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Abstract
In this paper, we give some results on entire functions that share one value with their
difference operators. In particular, we prove the following result, which can be
regarded as a difference analogue of a result of J.P. Wang and H.X. Yi (J. Math. Anal.
Appl. 277:155–163, 2003): Let f (z) be a non-constant entire function such that
ρ2(f ) < 1, a( �= 0) be a finite constant, and n andm be positive integers satisfying
m > n > 1. If

f (z) = a��cf (z) = a, f (z) = a → �m
c f (z) =�n

c f (z) = a,

then �n
c f (z)≡ �m

c f (z). Two related results are proved and an example is provided.
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1 Introduction and main results
Throughout this paper, a meromorphic function always means meromorphic in the whole
complex plane, and c always means a non-zero constant. For any non-constant meromor-
phic function f (z), we use the basic notations of the Nevanlinna theory (see [11, 21, 22]).
Especially, denote the characteristic function of f (z), the proximity function of f (z), and
the counting function of poles of f (z) by T(r, f (z)), m(r, f (z)), and N(r, f (z)), respectively.
And we define the order and hyper-order of growth of f (z) by

ρ(f ) := lim sup
r→∞

log T(r, f )
log r

and ρ2(f ) := lim sup
r→∞

log log T(r, f )
log r

,

respectively.
Let S(r, f ) denote any quantity that satisfies S(r, f ) = o(T(r, f (z))) as r → ∞ possibly out-

side of an exceptional set of finite logarithmic measure. A meromorphic function h(z) is
said to be a small function of f (z) if T(r, h(z)) = S(r, f ).

For two meromorphic functions f (z) and g(z), and a finite constant a, let zk (k = 1, 2, . . .)
be zeros of f (z) – a, τ (k) be the multiplicity of the zero zk , and we write f (z) = a ⇒ g(z) = a,
provided that zk (k = 1, 2, . . .) are also zeros of g(z) – a (ignoring multiplicities); and f (z) =
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a → g(z) = a, provided that zk (k = 1, 2, . . .) are also zeros of g(z) – a with multiplicity at
least τ (k). Then we say that f (z) and g(z) share a IM if f (z) = a ⇔ g(z) = a. Similarly, we
say that f (z) and g(z) share a CM if f (z) = a � g(z) = a.

Furthermore, for a meromorphic function f (z), its shift is defined by f (z + c), and its
difference operators are defined by

�cf (z) = f (z + c) – f (z) and �n
c f (z) = �n–1

c
(
�cf (z)

)
, n ∈N, n ≥ 2.

The uniqueness theory of meromorphic functions is an important part of Nevanlinna
theory. The classical results in the uniqueness theory of meromorphic functions are the
five-value theorem and four-value theorem due to Nevanlinna [18]. He proved that if two
meromorphic functions f (z), g(z) share five distinct values in the extended complex plane
IM, then f (z) ≡ g(z), and similarly, if two meromorphic functions f (z), g(z) share four dis-
tinct values in the extended complex plane CM, then f (z) = T(g(z)), where T is a Mobius
transformation. In the past ninety years, many analysts have been devoted to improving
the Nevanlinna’s results mentioned above by reducing the number of shared values. It is
well known that the assumption 4 CM in the four-value theorem has been improved to
2 CM + 2 IM by Gundersen [6] and cannot be improved to 4 IM [5], while 1 CM + 3 IM
remains an open problem.

To reduce the number of shared values quickly, many authors began to consider the
case that f (z) and g(z) have some special relationship. One of successful attempts in this
direction was created by Rubel and Yang [19]. In 1977, they proved that: for a non-constant
entire function f (z), if f (z) and f ′(z) share two distinct finite values a, b CM, then f (z) ≡
f ′(z). Then many authors began to investigate the uniqueness of meromorphic functions
sharing values with their derivatives (see e.g. [10, 13, 20, 24]) Here we recall two results
relative to our main results in this paper. The first is the following result proved by Jank,
Mues, and Volkmann in 1986.

Theorem A ([10]) Let f (z) be a non-constant entire function, let a �= 0 be a finite constant.
If f (z) and f ′(z) share the value a IM, and if f ′′(z) = a whenever f (z) = a, then f (z) ≡ f ′(z).

The second is the following result, an improvement of Theorem A by considering higher
order derivatives, proved by Wang and Yi in 2003.

Theorem B ([20]) Let f (z) be a non-constant entire function, let a(�= 0) be a finite constant,
and n and m be positive integers satisfying m > n. If f (z) and f ′(z) share the value a CM,
and if f (m)(z) = f (n)(z) = a whenever f (z) = a, then

f (z) = Aeλz + a –
a
λ

,

where A(�= 0) and λ are constants satisfying λn–1 = 1 and λm–1 = 1.

Recently, lots of papers (including [1–4, 7–9, 12, 14, 15, 17, 23]) have focused on dif-
ference analogues of Nevanlinna theory and uniqueness of meromorphic functions and
their shifts or their difference operators. Many classical results of the uniqueness theory
have been extended to the difference field. For instance, Heittokangas et al. [9] consid-
ered the uniqueness problems on the meromorphic functions sharing values with their
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shifts and proved some original results corresponding to Nevanlinna’s five-value theorem
and four-value theorem; Chen and Yi [3], Li and Gao [14], and Liu and Yang [16] studied
uniqueness of entire functions sharing values with their difference operators and proved
some meaningful results.

In this paper, we consider the following question: what happens if we replace the deriva-
tives of non-constant entire function f (z) with its difference operators in Theorem A and
Theorem B? Then we prove three results as follows, including Theorem 1.2, which can be
regarded as a difference analogue of Theorem B to some extent.

Theorem 1.1 Let f (z) be a non-constant entire function such that ρ2(f ) < 1, a(�= 0) be a
finite constant, and m be a positive integer. If

m
(

r,
1

f (z) – a

)
= S(r, f ) (1.1)

and if

f (z) = a ��cf (z) = a, f (z) = a → �m
c f (z) = a,

then

�m–1
c f (z) = f (z) – a +

a
ϕ

, (1.2)

where ϕ is a constant satisfying ϕm–1 = 1.

Theorem 1.2 Let f (z) be a non-constant entire function such that ρ2(f ) < 1, a(�= 0) be a
finite constant, and n and m be positive integers satisfying m > n > 1. If

f (z) = a ��cf (z) = a, f (z) = a → �m
c f (z) = �n

c f (z) = a,

then �n
c f (z) ≡ �m

c f (z).

Example Let f (z) = e 1
4 ( π

2 i+ln 2)z – 1 + i, then �2f ≡ �5
2f ≡ �9

2f = ie 1
4 ( π

2 i+ln 2)z. Here f (z) =
i � �2f = i and f (z) = i → �5

2f = �9
2f = i, but f (z) �≡ �2f ≡ �5

2f ≡ �9
2f . This example

shows that the conclusion �n
c f ≡ �m

c f in Theorem 1.2 cannot be extended to f (z) ≡ �cf
in general.

Remark
(i) In the above example, we find that

�4
2f ≡ �8

2f = e
1
4 ( π

2 i+ln 2)z = f (z) – i + 1 = f (z) – a +
a
i

,

where i4 = i8 = 1. This shows that the conclusion of Theorem 1.1 also holds here.
However, m(r, 1/(f (z) – i)) �= S(r, f ). We conjecture that Theorem 1.1 is still valid
even if condition (1.1) is changed by a less restrictive one. In view of this, we give
Theorem 1.3 in the following.
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(ii) In the above example, we also find that �2f ≡ �5
2f ≡ �9

2f . We wonder whether
�n

c f ≡ �m
c f in Theorem 1.2 can be extended to �n

c f ≡ �m
c f ≡ �cf or not.

Theorem 1.3 Let f (z) be a non-constant entire function such that ρ2(f ) < 1, a(�= 0) be a
finite constant, and m be a positive integer. If

f (z) = a ��cf (z) = a, f (z) = a → �m
c f (z) = a,

and if

N
(

r,
1

f (z) – a

)
�= S(r, f ) and N

(
r,

f (z) – a
�m

c f (z) – a

)
= S(r, f ), (1.3)

then

�m
c f (z) = �cf (z). (1.4)

Furthermore,

�cf (z) = eh(z)f (z) + a
(
1 – eh(z)),

where h(z) is an entire function satisfying T(r, eh(z)) < T(r, f (z)) + S(r, f ).

Remark Check proofs of Theorems 1.1, 1.2, and 1.3, and one can find that the conclusions
also hold for the non-constant meromorphic function f (z) such that N(r, f ) = S(r, f ).

2 Proof of Theorem 1.1
Lemma 2.1 ([12]) Let f (z) be a transcendental meromorphic solution of finite order ρ of a
difference equation of the form

U(z, f )P(z, f ) = Q(z, f ),

where U(z, f ), P(z, f ), Q(z, f ) are difference polynomials such that the total degree
deg U(z, f ) = n in f(z) and its shifts, and deg Q(z, f ) ≤ n. If all coefficients in the difference
equation are small functions of f (z) and U(z, f ) contains exactly one term of maximal total
degree, then for any ε > 0,

m
(
r, P(z, f )

)
= O

(
rρ–1+ε

)
+ S(r, f ),

possible outside of an exceptional set of finite logarithmic measure.

Lemma 2.2 Let c ∈C, n ∈ N, a0 ∈ C \ {0}, and let h(z) be an entire function of finite order.
Let L(z, h) be a difference polynomial such that the total degree deg L(z, h) ≤ n in h(z) and
its shifts and all coefficients of L(z, h) are small functions of h(z). If

a0h
(
z + (n + 1)c

) · h(z + nc) · · ·h(z + c) + L(z, h) ≡ 0,

then h(z) is a constant.
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Proof. If h(z) is transcendental, we rewrite the above equation as

(
a0h

(
z + (n + 1)

) · h(z + nc) · · ·h(z + 2c)
) · h(z + c) ≡ –L(z, h).

Then it follows from Lemma 2.1 that

T
(
r, h(z)

)
= T

(
r, h(z + c)

)
+ S(r, h) = m

(
r, h(z + c)

)
+ S(r, h) = S(r, h),

a contradiction. If h(z) is a non-constant polynomial with degree p ≥ 1, looking at the
degrees of both sides of the equation above, we can get another contradiction p(n+1) ≤ pn.
Thus, h(z) must be a constant.

Lemma 2.3 ([7]) Let c ∈ C, n ∈ N, and let f (z) be a meromorphic function of finite order.
Then, for any small periodic function a(z) with period c, with respect to f (z),

m
(

r,
�n

c f
f – a

)
= S(r, f ),

where the exceptional set associated with S(r, f ) is of at most finite logarithmic measure.

Remark By the recent results of Halburd, Korhonen, and Tohge [8], we can easily find that
Lemmas 2.1–2.3 still hold for the meromorphic functions with hyper-order less than one.

Proof of Theorem 1.1 Set

ϕ(z) =
�cf (z) – a

f (z) – a
. (2.1)

Since f (z) and �cf (z) share a CM, we can see that ϕ(z) is an entire function. From (1.1),
(2.1), and Lemma 2.3, we deduce that

T
(
r,ϕ(z)

)
= m

(
r,ϕ(z)

)

≤ m
(

r,
�cf (z)
f (z) – a

)
+ m

(
r,

a
f (z) – a

)
= S(r, f ). (2.2)

Rewrite �cf (z) as

�cf (z) = ϕ(z)f (z) + a
(
1 – ϕ(z)

)
= u1(z)f (z) + v1(z), (2.3)

where u1(z) = ϕ(z) and v1(z) = a(1 – ϕ(z)). Then, by (2.3), we have

�2
c f (z) = u1(z + c)�cf (z) + �cu1(z)f (z) + �cv1(z)

=
(
u1(z + c)u1(z) + �cu1(z)

)
f (z) +

(
u1(z + c)v1(z) + �cv1(z)

)

= u2(z)f (z) + v2(z),

where u2(z) = u1(z + c)u1(z) + �cu1(z) and v2(z) = u1(z + c)v1(z) + �cv1(z). So we deduce
that, for j = 1, 2, . . . ,

�j
cf (z) = uj(z)f (z) + vj(z)
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and

�j+1
c f (z) = uj(z + c)�cf (z) + �cuj(z)f (z) + �cvj(z)

= uj+1(z)f (z) + vj+1(z), (2.4)

where

uj+1(z) = uj(z + c)u1(z) + �cuj(z), (2.5)

vj+1(z) = uj(z + c)v1(z) + �cvj(z). (2.6)

Note that u1(z) = ϕ(z) and v1(z) = a(1 – ϕ(z)). Using (2.5) and (2.6) repeatedly, one can see
that, for j = 1, 2, . . . ,

uj+1(z) = ϕ(z + jc) · · ·ϕ(z + c)ϕ(z) + Uj
(
z,ϕ(z)

)
, (2.7)

vj+1(z) = –aϕ(z + jc) · · ·ϕ(z + c)ϕ(z) + Vj
(
z,ϕ(z)

)
, (2.8)

where Uj(z,ϕ(z)) and Vj(z,ϕ(z)) are difference polynomials such that the total degree
deg Uj(z,ϕ(z)) ≤ j and deg Vj(z,ϕ(z)) ≤ j in ϕ(z) and its shifts, and all coefficients in
Uj(z,ϕ(z)) and Vj(z,ϕ(z)) are constants. Clearly, both uj+1(z) and vj+1(z) contain exactly
one term of maximal total degree.

In the following, we will prove that, for j = 1, 2, . . . ,

auj+1(z) + vj+1(z) = aϕ(z + jc) · ϕ(
z + (j – 1)c

) · · ·ϕ(z + c) + Wj–1
(
z,ϕ(z)

)
, (2.9)

where Wj–1(z,ϕ(z)) is a difference polynomial such that deg Wj–1(z,ϕ(z)) ≤ j – 1 in ϕ(z) and
its shifts, and all coefficients in Wj–1(z,ϕ(z)) are constants.

Firstly, since u1(z) = ϕ(z) and v1(z) = a(1 – ϕ(z)), for j = 1, we have

au2(z) + v2(z) = au1(z + c)u1(z) + a�cu1(z) + u1(z + c)v1(z) + �cv1(z)

= u1(z + c)
(
au1(z) + v1(z)

)
+ �c

(
au1(z) + v1(z)

)
= aϕ(z + c).

Secondly, we suppose that the following equation holds:

auj(z) + vj(z) = aϕ
(
z + (j – 1)c

) · ϕ(
z + (j – 2)c

) · · ·ϕ(z + c) + Wj–2
(
z,ϕ(z)

)
.

Note that auj(z) + vj(z) is a difference polynomial in ϕ(z) and its shifts and the total degree
deg(auj(z) + vj(z)) = j – 1, and so �c(auj(z) + vj(z)) is also a difference polynomial with
deg(�c(auj(z) + vj(z))) ≤ j – 1. Hence, by (2.5), (2.6) and the equation above, we can deduce
that

auj+1(z) + vj+1(z) = auj(z + c)u1(z) + a�cuj(z) + ui(z + c)v1(z) + �cvj(z)

= uj(z + c)
(
au1(z) + v1(z)

)
+ �c

(
auj(z) + vj(z)

)

= auj(z + c) + �c
(
auj(z) + vj(z)

)

= aϕ(z + jc) · ϕ(
z + (j – 1)c

) · · ·ϕ(z + c) + Wj–1
(
z,ϕ(z)

)
.

To sum up, (2.9) holds for j = 1, 2, . . . .
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On the other hand, it follows from (2.2) and (2.7) that for j = 1, 2, . . . ,

T
(
r, uj+1(z)

) ≤ T
(
r,ϕ(z + jc)

)
+ · · · + T

(
r,ϕ(z)

)
+ T

(
r, Uj

(
z,ϕ(z)

))
= S(r, f ).

Similarly,

T
(
r, vj+1(z)

)
= S(r, f ).

From hypothesis (1.1), we can see that

N
(

r,
1

f (z) – a

)
= T

(
r, f (z)

)
– m

(
r,

1
f (z) – a

)
+ O(1)

= T
(
r, f (z)

)
+ S(r, f ), (2.10)

which implies that f (z) – a must have zeros. Let zk (k = 1, 2, . . .) be zeros of f (z) – a, and
let τ (k) be the multiplicity of the zero zk . Since f (z) = a → �m

c f (z) = a, we see that zk

(k = 1, 2, . . .) are zeros of �m
c f (z) – a with multiplicity at least τ (k). It follows from this and

(2.4) that, for j = m – 1,

�m
c f (z) = um(z)f (z) + vm(z), (2.11)

and then

a = aum(zk) + vm(zk).

Now we will prove that

a ≡ aum(z) + vm(z). (2.12)

Otherwise, aum(z) + vm(z) – a �≡ 0. From (2.11), we have

aum(z) + vm(z) – a =
(
�m

c f (z) – a
)

– um(z)
(
f (z) – a

)
.

By the reasoning as above, we deduce that zk (k = 1, 2, . . .) are zeros of (�m
c f (z) – a) –

um(z)(f (z) – a), that is, zeros of aum(z) + vm(z) – a with multiplicity at least τ (k). It fol-
lows from this and the fact that um(z) and vm(z) are small functions of f (z) that

N
(

r,
1

f (z) – a

)
≤ N

(
r,

1
aum(z) + vm(z) – a

)

≤ T
(

r,
1

aum(z) + vm(z) – a

)
= S(r, f ), (2.13)

which contradicts (2.10). Thus a ≡ aum(z) + vm(z).
Note that a �= 0. By combining (2.9) for j = m – 1 and (2.12), we have

aϕ
(
z + (m – 1)c

) · ϕ(
z + (m – 2)c

) · · ·ϕ(z + c) + Wm–2
(
z,ϕ(z)

) ≡ a.
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Then, by Lemma 2.2 and the above equation, we can immediately deduce that ϕ(z) must
be a constant. For j = 1, 2, . . . , by (2.5)–(2.8), we obtain that

uj+1 = ϕj+1, and vj+1 = aϕj(1 – ϕ). (2.14)

For j = m – 1, substituting (2.14) into (2.12) yields

ϕm–1 ≡ 1. (2.15)

For j = m – 2, combining (2.4), (2.14), and (2.15), we have

�m–1
c f (z) = um–1(z)f (z) + vm–1(z) = ϕm–1f (z) + aϕm–2(1 – ϕ)

= f (z) + a · 1
ϕ

(1 – ϕ) = f (z) – a +
a
ϕ

. (2.16)

This completes the proof of Theorem 1.1. �

3 Proof of Theorem 1.2
Now assume, to the contrary, that �n

c f (z) �≡ �m
c f (z). Set

α(z) =
�n

c f (z) – �cf (z)
f (z) – a

, (3.1)

β(z) =
�m

c f (z) – �cf (z)
f (z) – a

. (3.2)

Then α(z) �≡ β(z). Let zk (k = 1, 2, . . .) be zeros of f (z) – a, and let τ (k) be the multiplicity
of the zero zk . According to the assumption f (z) = a � �cf (z) = a, f (z) = a → �m

c f (z) =
�n

c f (z) = a, we know that zk (k = 1, 2, . . .) are zeros of �n
c f (z) – �cf (z) and �m

c f (z) – �cf (z)
with multiplicity at least τ (k), and thus α(z) and β(z) are entire functions. Then, by Lemma
2.3, we have

T
(
r,α(z)

)
= m

(
r,α(z)

) ≤ m
(

r,
�n

c f (z)
f (z) – a

)
+ m

(
�cf (z)
f (z) – a

)
= S(r, f ).

Similarly,

T
(
r,β(z)

)
= S(r, f ).

If α(z) �≡ 0, it follows from (3.1) and Lemma 2.3 that

T
(
r, f (z)

)
= m

(
r, f (z)

)
= m

(
r,

�n
c f (z) – �cf (z)

α(z)
+ a

)

≤ m
(
r,�n

c f (z) – �cf (z)
)

+ S(r, f )

≤ m
(

r,
�n

c f (z)
�cf (z)

– 1
)

+ m
(
r,�cf (z)

)
+ S(r, f )

= T
(
r,�cf (z)

)
+ S(r, f ) + S

(
r,�cf (z)

)
,
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where we have used the fact that �cf (z) �≡ 0 because of the assumption �n
c f (z) �≡ �m

c f (z).
On the other hand, we can easily see that

T
(
r,�cf (z)

)
= m

(
r,�cf (z)

) ≤ m
(

r,
�cf (z)

f (z)

)
+ m

(
r, f (z)

)
+ S(r, f )

≤ T
(
r, f (z)

)
+ S(r, f ).

Combining the above two equations, we have

T
(
r,�cf (z)

)
= T

(
r, f (z)

)
+ S(r, f ), (3.3)

and S(r,�cf (z)) = S(r, f ).
By (3.1) and (3.2), we get

�cf (z) =
α�m

c f (z) – β�n
c f (z)

α – β
.

Noting that m > n > 1 and a �= 0, and using the above equation and Lemma 2.3, we have

m
(

r,
1

�cf (z) – a

)
≤ m

(
r, 1 –

�cf (z)
�cf (z) – a

)
+ O(1)

≤ m
(

r,
�cf (z)

�cf (z) – a

)
+ O(1)

= m
(

r,
α�m

c f (z) – β�n
c f (z)

(α – β)(�cf (z) – a)

)
+ O(1)

≤ m
(

r,
�m

c f (z)
�cf (z) – a

)
+ m

(
r,

�n
c f (z)

�cf (z) – a

)
+ O(1)

= S(r, f ). (3.4)

Since f (z) and �cf (z) share a CM, by (3.3) and (3.4), we see that

m
(

r,
1

f (z) – a

)
= T

(
r,

1
f (z) – a

)
– N

(
r,

1
f (z) – a

)

= T
(
r, f (z)

)
– N

(
r,

1
�cf (z) – a

)
+ O(1)

= T
(
r,�cf (z)

)
– N

(
r,

1
�cf (z) – a

)
+ S(r, f )

= m
(

r,
1

�cf (z) – a

)
+ S(r, f ) = S(r, f ). (3.5)

Applying Theorem 1.1, we deduce that there exists a constant ϕ1 satisfying ϕn–1
1 = 1 and

�n–1
c f (z) = f (z) – a +

a
ϕ1

.

This leads to �n
c f (z) ≡ �cf (z), which contradicts the fact α(z) �≡ 0.
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Now α(z) ≡ 0, and we have β(z) �≡ 0 since α(z) �≡ β(z). Using the similar reasoning as
above, we can also get �m

c f (z) ≡ �cf (z), which contradicts the fact β(z) �≡ 0. Therefore,
we prove that �n

c f (z) ≡ �m
c f (z).

4 Proof of Theorem 1.3
Set

ϕ(z) =
�cf (z) – a

f (z) – a
, ψ(z) =

�m
c f (z) – a
f (z) – a

. (4.1)

Since f (z) and �cf (z) share a CM, and �m
c f (z) = a whenever f (z) = a, we can see that ϕ(z)

and ψ(z) are entire functions and ϕ(z) has no zeros. Let

η(z) = ϕ(z) – ψ(z) =
�cf (z) – �m

c f (z)
f (z) – a

. (4.2)

Then we see from (4.2) and Lemma 2.3 that

T
(
r,η(z)

)
= m

(
r,η(z)

)
= S(r, f ). (4.3)

If η(z) ≡ 0, then �m
c f (z) ≡ �cf (z). If η(z) �≡ 0, it is obvious that

ϕ(z)
η(z)

–
ψ(z)
η(z)

= 1,

and N(r,η(z)) = 0 and N(r, 1/η(z)) = S(r, f ) from (4.3). Noticing that ϕ(z) has no zeros and
poles, by using the second main (see, e.g., Corollary 2.5.4 in [11]) and (1.3), we have

T
(

r,
ϕ(z)
η(z)

)
≤ N

(
r,

ϕ(z)
η(z)

)
+ N

(
r,

η(z)
ϕ(z)

)
+ N

(
r,

1
ϕ(z)/η(z) – 1

)
+ S

(
r,

ϕ(z)
η(z)

)

= N
(

r,
ϕ(z)
η(z)

)
+ N

(
r,

η(z)
ϕ(z)

)
+ N

(
r,

η(z)
ψ(z)

)
+ S

(
r,

ϕ(z)
η(z)

)

≤ N
(

r,
1

η(z)

)
+ N

(
r,ϕ(z)

)
+ N

(
r,

1
ϕ(z)

)
+ 2N

(
r,η(z)

)

+ N
(

r,
1

ψ(z)

)
+ S(r, f )

≤ N
(

r,
f (z) – a

�m
c f (z) – a

)
+ S(r, f ) = S(r, f ). (4.4)

Thus, by (4.3) and (4.4), we see that T(r,ϕ(z)) = S(r, f ). Then, using the method similar
to the proof of Theorem 1.1, we can get (2.3)–(2.16) except (2.10). In fact, since (2.10) is
to ensure that f (z) – a has zeros and it contradicts (2.13), it can be replaced by the first
condition in (1.3). Then we can get a contradiction when η(z) �≡ 0. So �m

c f (z) = �cf (z).
Furthermore, since ϕ(z) in (4.1) is an entire function and has no zeros, it can be expressed

as an exponential function eh(z), which h(z) is an entire function. Then (4.1) yields

�cf (z) = eh(z)f (z) + a
(
1 – eh(z)).
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And we see from (1.3), (4.1), and Lemma 2.3 that

T
(
r, eh(z)) = m

(
r, eh(z)) = m

(
r,

�cf (z) – a
f (z) – a

)

≤ m
(

r,
�cf (z)
f (z) – a

)
+ m

(
r,

1
f (z) – a

)
+ O(1)

≤ m
(

r,
1

f (z) – a

)
+ S(r, f )

= T
(
r, f (z)

)
– N

(
r,

1
f (z) – a

)
+ S(r, f )

< T
(
r, f (z)

)
+ S(r, f ).

Thus we complete the proof of Theorem 1.3.
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