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Abstract
Recently, several problems in mathematics, physics, and engineering have been
modeled via distributed-order fractional diffusion equations. In this paper, a new class
of time distributed-order and space fractional diffusion equations with variable
coefficients on bounded domains and Dirichlet boundary conditions is considered.
By performing numerical integration we transform the time distributed-order
fractional diffusion equations into multiterm time-space fractional diffusion
equations. An implicit difference scheme for the multiterm time-space fractional
diffusion equations is proposed along with a discussion about the unconditional
stability and convergence. Then, the fast Krylov subspace methods with suitable
circulant preconditioners are developed to solve the resultant linear system in light of
their Toeplitz-like structures. The aforementioned methods are proved to acquire the
capability to reduce the memory storage of the proposed implicit difference scheme
fromO(M2) toO(M) and the computational cost fromO(M3) toO(M logM) during
iteration procedures, whereM is the number of grid nodes. Finally, numerical
experiments are employed to support the theoretical findings and show the
efficiency of the proposed methods.
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1 Introduction
In the past few decades, the fractional calculus has attracted considerable attention and
interest due to its extensive applications in modeling practical scientific problems, such as
heat-transfer engineering [1], anomalous relaxation models [2], solid mechanics [3], vis-
coelastic materials [4], continuum and statistical mechanics [5], mathematical physics [6],
control system [7], chaos [8, 9], finance [10], electromagnetics [11, 12], and image process-
ing [13]. Based on different problems, a variety of fractional diffusion equations (FDEs)
need to be solved, in which the time-fractional anomalous FDE is always an important
concern of many mathematicians; refer, e.g., to [14–16] and references therein.
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However, some complex physical processes [17, 18] that lack temporal scaling over
the whole time domain cannot be described by the time-fractional anomalous FDEs
with a constant-order temporal derivative. Such processes can be modeled via the time
distributed-order FDEs. The idea of distributed-order FDE was first proposed by Ca-
puto (see [19] and references therein). Chechkin et al. [20] presented diffusion-like equa-
tions with time and space fractional derivatives of distributed order for the kinetic de-
scription of anomalous diffusion and relaxation phenomena, and showed that the time
distributed-order FDE can describe the accelerating superdiffusion and retarding subdif-
fusion. Boundary value problems for the generalized time-FDE of distributed order over
an open bounded domain were considered by Luchko [21]. Furthermore, Meerschaert et
al. [22] gave explicit strong solutions and stochastic analogues to time distributed-order
FDE on bounded domains, with Dirichlet boundary conditions. By employing the tech-
niques of the Fourier and Laplace transforms, a fundamental solution to the Cauchy prob-
lem for the distributed-order time-fractional diffusion-wave equation in the transform do-
main was obtained by Gorenflo et al. [23]. Jiang et al. [24] derived the analytical solutions of
multiterm time-space Caputo–Riesz fractional advection diffusion equations with Dirich-
let nonhomogeneous boundary conditions. For more general distributed-order FDEs, the
analytical solutions are not easily acquired. Therefore, numerical methods are worth con-
sidering to solve the distributed-order FDEs.

In a more general sense, the first step is to approximate the distributed integral with a
finite sum based on a simple quadrature rule when solving distributed-order FDEs via nu-
merical methods. Thus the distributed-order FDE is converted into a multiterm FDE [25],
and we have to efficiently solve the approximated multiterm FDE. To our knowledge, only a
few articles have considered such problem. Liu et al. [26] discussed some computationally
effective numerical methods for simulating the multiterm time-fractional wave-diffusion
equations and extended such numerical techniques to other kinds of multiterm fractional
time-space models with fractional Laplacian operator. Morgado et al. [27] studied a nu-
merical approximation for the time distributed-order FDE concerning the stability and
convergence; they [28] also presented an implicit difference scheme for numerical approx-
imation of the distributed-order time fractional reaction–diffusion equation with nonlin-
ear source term. An implicit difference scheme for the time distributed-order and Riesz
space FDE on bounded domains with Dirichlet boundary conditions was constructed by
Ye et al. [29]. Mashayekhi et al. [30] introduced a new numerical method for solving the
distributed-order FDEs, which is based upon hybrid functions approximation. Hu et al.
[31] provided an implicit numerical method of a new time distributed-order and two-sided
space fractional advection–dispersion equation and proved the uniqueness, stability, and
convergence of the method. A numerical method of distributed-order FDEs of a general
form was investigated by Katsikadelis [25], where the trapezoidal rule was employed to ap-
proximate the distributed integral, and the analog equation method was applied to solve
the resultant multiterm FDE. However, the stability and convergence were only shown in
the experimental examples, and there was no rigorous theoretical proof.

There should be significant interest in developing numerical schemes for solving
distributed-order FDEs. However, the current studies in this area are still relatively lim-
ited, especially for the time distributed-order and space FDEs; refer to [29, 31, 32]. More-
over, most of these numerical methods have no complete theoretical analysis for both
convergence and stability; see, for example, [25, 26, 33]. These motivate us to consider
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in particular a fast and stable numerical approach for solving the following new class of
time distributed-order and space FDEs (TDFDEs) with variable coefficients and initial
boundary conditions:

Dω(α)
t u(x, t) = d+(x, t)RLDβ

0,xu(x, t) + d–(x, t)RLDβ

x,Lu(x, t) + f (x, t),

0 < x < L, 0 < t ≤ T , (1.1)

u(0, t) = 0, u(L, t) = 0, 0 ≤ t ≤ T , (1.2)

u(x, 0) = ψ(x), 0 ≤ x ≤ L, (1.3)

where α ∈ [0, 1], β ∈ (1, 2), x ∈ [0, L], t ∈ [0, T], and f (x, t), d±(x, t), and ψ(x) are given
functions. Here f (x, t) is the source term, and diffusion coefficient functions d±(x, t)
are nonnegative, that is, d±(x, t) ≥ 0. Specifically, the time fractional derivative Dω(α)

t of
distributed-order is denoted by [21]

Dω(α)
t u(x, t) =

∫ 1

0
ω(α)C

0 Dα
t u(x, t) dα

with the left-handed Caputo fractional derivative C
0 Dα

t defined as [34, 35]

C
0 Dα

t u(x, t) =

⎧⎨
⎩

1
�(1–α)

∫ t
0 (t – ξ )–α ∂u

∂ξ
(x, ξ ) dξ , 0 ≤ α < 1,

ut(x, t), α = 1,

and a continuous nonnegative weight function ω(α) on the interval [0, 1] such that∫ 1
0 ω(α) dα = c0 > 0. Moreover, RLDβ

0,x and RLDβ

x,L are the the left- and right-handed
Riemann–Liouville fractional derivatives of order β ∈ (1, 2) [36, 37] defined respectively
as

RLDβ
0,xu(x, t) =

1
�(2 – β)

∂2

∂x2

∫ x

0

u(ξ , t)
(x – ξ )β–1 dξ

and

RLDβ

x,Lu(x, t) =
1

�(2 – β)
∂2

∂x2

∫ L

x

u(ξ , t)
(ξ – x)β–1 dξ ,

where �(·) denotes the gamma function.
Since the fractional differential operator is nonlocal [38, 39], a naive discretization of the

FDE leads to traditional approaches [40] of solving FDEs, which tend to generate dense
systems, whose solution with Gaussian elimination costs O(M3) arithmetic operations
and requires a storage of order O(M2). Wang and Wang [41] found that the coefficient
matrix had a Toeplitz structure in the linear system, which was generated by the dis-
cretization introduced in [42]. More precisely, this coefficient matrix can be expressed
as a sum of diagonal-multiply-Toeplitz matrices. This implied that the storage require-
ment was O(M) instead of O(M2), and the complexity of the matrix–vector multiplica-
tion by the fast Fourier transform (FFT) [43] required only O(M log M) operations. With
this advantage, Wang and Wang [44] employed the conjugate gradient normal residual
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(CGNR) method to solve the discretized linear systems in O(M log2 M) arithmetic oper-
ations. The convergence of the CGNR method can be fast when the diffusion coefficients
are very small, that is, discretized systems are well-conditioned [44]. Nevertheless, if the
diffusion coefficient functions are not small, the resultant systems become ill-conditioned,
and hence the CGNR method converges very slowly.

To overtake this shortcoming and get a faster convergence, some Krylov subspace meth-
ods with circulant preconditioners have been studied and extended. Lei and Sun [45] de-
veloped the preconditioned CGNR (PCGNR) method with a circulant preconditioner, an
extension of the Strang circulant preconditioner [46], to solve the discretized Toeplitz-
like linear systems of the FDE. Pan et al. [47] introduced approximate inverse precondi-
tioners for such systems and proved that the spectra of the preconditioned matrices are
clustered around one. Thus Krylov subspace methods with the proposed preconditioner
converge very fast. Donatelli et al. [48] proposed two tridiagonal structure-reserving pre-
conditioners with CGNR and generalized minimal residual (GMRES) methods for solving
the resultant Toeplitz-like linear systems. Using the short-memory principle [49] to gen-
erate a sequence of approximations for the inverse of the discretization matrix with a low
computational effort, Bertaccini et al. [50] solved the mixed classical and fractional partial
differential equations effectively by preconditioned Krylov iterative methods. Our recent
work [51] showed that the preconditioned conjugate gradient squared (PCGS) method
with suitable circulant preconditioners can efficiently solve the resultant Toeplitz-like lin-
ear systems.

In this paper, we focus on deriving a fast implicit difference scheme for solving the new
problem (1.1)–(1.3). We first transform TDFDEs into multiterm time-space FDEs by ap-
plying numerical integration. Then we present an implicit difference scheme with uncon-
ditional stability and convergence that is first-order accurate in space and (1 + σ

2 )-order
accurate in time. We prove these properties of the proposed scheme both theoretically
and numerically. On the other hand, we show that the discretizations of TDFDEs lead to
a nonsymmetric Toeplitz-like system of linear equations. The linear system can be solved
efficiently by using Krylov subspace methods with suitable circulant preconditioners [52–
54]. It can greatly reduce the memory and computational costs; the memory requirement
and computational complexity are only O(M) and O(M log M) in each iteration step, re-
spectively. Meanwhile, it is meaningful to investigate the performance of some other pre-
conditioned Krylov subspace solvers, such as the preconditioned biconjugate gradient
stabilized (PBiCGSTAB) method [55], the preconditioned biconjugate residual stabilized
(PBiCRSTAB) method [56], and the preconditioned GPBiCOR(m,
) (PGPBiCOR(m,
))
method [57].

The rest of this paper is organized as follows. In Sect. 2, we present an implicit difference
scheme for the TDFDEs. The uniqueness, unconditional stability, and convergence of the
implicit difference scheme are analyzed in Sect. 3. In Sect. 4, we show that the resultant
linear system has nonsymmetric Toeplitz matrices and design fast solution techniques
based on preconditioned Krylov subspace methods to solve problem (1.1)–(1.3). In Sect. 5,
we present numerical experiments to show the effectiveness of the numerical method.
Concluding remarks are given in Sect. 6.

2 An implicit difference scheme for TDFDEs
In this section, we present an implicit difference method for discretizing the TDFDEs
defined by (1.1)–(1.3). The distributed integral term of TDFDEs is discretized by us-



Jian et al. Advances in Difference Equations  (2018) 2018:205 Page 5 of 24

ing numerical integration, and we show that the discretizations lead to multiterm time-
space FDEs. Then we propose an implicit difference scheme with the shifted Grünwald–
Letnikov formulae approximation to solve the mutiterm time-space FDEs.

For simplicity, but without loss of the generality, we first divide the integral interval [0, 1]
into q-subintervals with 0 = ξ0 < ξ1 < ξ2 < · · · < ξq = 1 and take �ξs = ξs – ξs–1 = 1

q = σ (q ∈
N ), αs = ξs–1+ξs

2 = 2s–1
2q (s = 1, 2, . . . , q). The following lemma gives a complete description of

the discretization in the integral term.

Lemma 2.1 (The compound midpoint quadrature rule [29]) Let z(α) ∈ C2[0, 1], �α =
1/q = σ (q ∈ N). Then we have

∫ 1

0
z(α) dα =

q∑
s=1

z
(

2s – 1
2q

)
1
q

+ O
(
σ 2).

Considering the left side of formula (1.1), let z(α) = ω(α)C
0 Dα

t u(x, t) and suppose that
ω(α) ∈ C2[0, 1] and C

0 Dα
t u(x, t) ∈ C2[0, 1]. Using Lemma 2.1, we obtain

Dω(α)
t u(x, t) =

q∑
s=1

ds
(C

0 Dαs
t u(x, t)

)
+ O

(
σ 2), (2.1)

where ds = ω(αs)�ξs. Thus problem (1.1)–(1.3) is now transformed into the following mul-
titerm time-space FDEs:

q∑
s=1

ds
(C

0 Dαs
t u(x, t)

)
= d+(x, t)RLDβ

0,xu(x, t) + d–(x, t)RLDβ

x,Lu(x, t) + f (x, t),

0 < x < L, 0 < t ≤ T , (2.2)

u(0, t) = 0, u(L, t) = 0, 0 ≤ t ≤ T , (2.3)

u(x, 0) = ψ(x), 0 ≤ x ≤ L. (2.4)

Next, we solve the multiterm time-space FDEs. We discretize the domain [0, L] × [0, T]
with xi = ih, i = 0, 1, 2, . . . , M, and tk = kτ , k = 0, 1, 2, . . . , N , where h = L

M and τ = T
N are the

sizes of spatial grid and time step, respectively.
The following two lemmas will be further useful in the discretizations of the multiterm

time-space FDEs.

Lemma 2.2 ([58]) Let 0 < α < 1, and let u be absolutely continuous in t on [0, T] with
∂2u/∂t2 ∈ C([0, L] × [0, tk]). Then

C
0 Dα

t u(x, tk) =
1
μ

[
u(x, tk) –

k–1∑
j=1

(
aα

k–j–1 – aα
k–j
)
u(x, tj) – aα

k–1u(x, t0)

]
+ O

(
τ 2–α

)
,

where aα
k = (k + 1)1–α – k1–α , μ = τα�(2 – α), 0 ≤ tk ≤ T .

Lemma 2.3 ([59]) For 1 < β < 2, suppose that u ∈ L1(R) ∩ Cβ+1(R). Then the shifted
Grünwald–Letnikov formulae approximate the left and right Riemann–Liouville deriva-
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tives as follows:

RLDβ
0,xu(xi, t) =

1
hβ

i+1∑
j=0

g(β)
j u(xi–j+1, t) + O(h),

RLDβ

x,Lu(xi, t) =
1

hβ

M–i+1∑
j=0

g(β)
j u(xi+j–1, t) + O(h),

where g(β)
j is the alternating fractional binomial coefficient given as

⎧⎨
⎩

g(β)
0 = 1,

g(β)
j = (–1)j

j! β(β – 1) · · · (β – j + 1), j = 1, 2, . . . .

Define the grid function Uk
i = u(xi, tk) as the exact solution of the equations (1.1)–(1.3),

f k
i = f (xi, tk), dk

+,i = d+(xi, tk), dk
–,i = d–(xi, tk). Considering (2.2) at (xi, tk+1), by Lemma 2.2

the Caputo time-fractional derivative for αs ∈ (0, 1) can be approximated by

C
0 Dαs

t Uk+1
i =

1
μs

[
Uk+1

i –
k∑

j=1

(
aαs

k–j – aαs
k–j+1

)
Uj

i – aαs
k U0

i

]
+ O

(
τ 2–αs

)
, (2.5)

where

aαs
k = (k + 1)1–αs – k1–αs , μs = ταs�(2 – αs), s = 1, 2, . . . , q.

By Lemma 2.3 the left and right Riemann–Liouville derivatives of order β ∈ (1, 2) can
be approximated by adopting the shifted Grünwald–Letnikov formula as follows:

RLDβ
0,xUk+1

i =
1

hβ

i+1∑
j=0

g(β)
j Uk+1

i–j+1 + O(h), (2.6)

RLDβ

x,LUk+1
i =

1
hβ

M–i+1∑
j=0

g(β)
j Uk+1

i+j–1 + O(h). (2.7)

Applying formulae (2.5)–(2.7) to equation (2.2), by (2.1) we obtain

q∑
s=1

ds

μs

[
Uk+1

i –
k∑

j=1

(
aαs

k–j – aαs
k–j+1

)
Uj

i – aαs
k U0

i

]

=
dk+1

+,i

hβ

i+1∑
j=0

g(β)
j Uk+1

i–j+1 +
dk+1

–,i

hβ

M–i+1∑
j=0

g(β)
j Uk+1

i+j–1

+ f k+1
i + pk+1

i , 1 ≤ i ≤ M – 1, 0 ≤ k ≤ N – 1, (2.8)

where there exists a positive constant κ1 such that

∣∣pk+1
i
∣∣ =
∣∣O(h + τ 1+σ /2 + σ 2)∣∣≤ κ1

(
h + τ 1+ σ

2 + σ 2). (2.9)
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Let uk
i be a numerical approximation to Uk

i . By omitting the local truncation error term
pk+1

i in (2.8) and considering the discretization of the initial and boundary conditions
(1.2)–(1.3) we obtain the following implicit difference scheme for TDFDEs (1.1)–(1.3):

q∑
s=1

ds

μs

[
uk+1

i –
k∑

j=1

(
aαs

k–j – aαs
k–j+1

)
uj

i – aαs
k u0

i

]

=
dk+1

+,i

hβ

i+1∑
j=0

g(β)
j uk+1

i–j+1 +
dk+1

–,i

hβ

M–i+1∑
j=0

g(β)
j uk+1

i+j–1

+ f k+1
i , 1 ≤ i ≤ M – 1, 0 ≤ k ≤ N – 1, (2.10)

uk
0 = uk

M = 0, 0 ≤ k ≤ N , (2.11)

u0
i = ψ0

i = ψ(xi), 0 ≤ i ≤ M. (2.12)

For convenience of the following theoretical analysis, we define

v =
h–β∑q

r=1(dr/μr)
, v̄ =

1∑q
r=1(dr/μr)

, vs =
ds

μs
∑q

r=1(dr/μr)
. (2.13)

Thus, we rewrite the difference scheme (2.10)–(2.12) as follows:

uk+1
i – v

[
dk+1

+,i

i+1∑
j=0

g(β)
j uk+1

i–j+1 + dk+1
–,i

M–i+1∑
j=0

g(β)
j uk+1

i+j–1

]

=
k∑

j=1

[ q∑
s=1

vs
(
aαs

k–j – aαs
k–j+1

)]
uj

i +
q∑

s=1

vsaαs
k u0

i + v̄f k+1
i ,

i = 1, 2, . . . , M – 1, k = 0, 1, . . . , N – 1, (2.14)

uk
0 = uk

M = 0, 0 ≤ k ≤ N , (2.15)

u0
i = ψ0

i = ψ(xi), 0 ≤ i ≤ M. (2.16)

Let uk = (uk
1, uk

2, . . . , uk
M–1)T , f k = (f k

1 , f k
2 , . . . , f k

M–1)T , and let I be the identity matrix
of appropriate size. Then the numerical scheme (2.14) can be written in matrix form as
follows:

(
I – vAk+1)uk+1 =

k∑
j=1

ck,juj + bku0 + v̄f k+1, k = 0, 1, 2, . . . , N – 1, (2.17)

where

Ak+1 = Dk+1
+ Gβ + Dk+1

– GT
β , ck,j =

q∑
s=1

vs
(
aαs

k–j – aαs
k–j+1

)
, bk =

q∑
s=1

vsaαs
k ,
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with Dk+1± = diag(dk+1±,1 , . . . , dk+1
±,M–1) and

Gβ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g(β)
1 g(β)

0 0 · · · 0 0
g(β)

2 g(β)
1 g(β)

0 · · · 0 0
g(β)

3 g(β)
2 g(β)

1 · · · 0 0
...

...
...

. . .
...

...
g(β)

M–2 g(β)
M–3 g(β)

M–4 · · · g(β)
1 g(β)

0

g(β)
M–1 g(β)

M–2 g(β)
M–3 · · · g(β)

2 g(β)
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is obvious that Gβ is a Toeplitz matrix (see [46]). Furthermore, the linear system (2.17)
can be written as

Mk+1uk+1 = bk , k = 0, 1, 2, . . . , N – 1, (2.18)

where

Mk+1 = I – vAk+1 = I – v
(
Dk+1

+ Gβ + Dk+1
– GT

β

)

and

bk =
k∑

j=1

ck,juj + bku0 + v̄f k+1.

3 Solvability, stability, and convergence results
In this section, we analyze the unique solvability, unconditional stability, and conver-
gence of the implicit difference scheme (2.14)–(2.16). Meanwhile, the difference scheme
is proved to converge with the first-order in space and the (1 + σ

2 )-order in time.
Before proving the most important result of this section on the solvability, stability, and

convergence properties, we first need to recall the following useful proposition.

Proposition 3.1 ([60]) Let 1 < β < 2 and g(β)
j be defined as in Lemma 2.3. Then we have

⎧⎪⎪⎨
⎪⎪⎩

g(β)
0 = 1, g(β)

1 = –β < 0, g(β)
2 > g(β)

3 > · · · > 0,∑∞
j=0 g(β)

j = 0,
∑m

j=0 g(β)
j < 0, m ≥ 1,

g(β)
j = (1 – β+1

j )g(β)
j–1, j = 1, 2, 3, . . . .

The starting point of our analysis is the following theoretical result.

Theorem 3.2 The difference scheme (2.14)–(2.16) for the TDFDEs is uniquely solvable.
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Proof Let mk+1
ij be the (i, j) entry of the Mk+1 in (2.18). Since v > 0 and d±(x, t) ≥ 0, by

Proposition 3.1 we get

mk+1
ii –

M–1∑
j=1,j �=i

∣∣mk+1
ij
∣∣ =
[
1 – v

(
dk+1

+,i + dk+1
–,i
)
g(β)

1
]

– v

[
dk+1

+,i

i∑
j=0,j �=1

g(β)
j + dk+1

–,i

M–i∑
j=0,j �=1

g(β)
j

]

≥ [1 – v
(
dk+1

+,i + dk+1
–,i
)
g(β)

1
]

– v
(
dk+1

+,i + dk+1
–,i
) ∞∑

j=0,j �=1

g(β)
j

= 1 – v
(
dk+1

+,i + dk+1
–,i
) ∞∑

j=0

g(β)
j = 1 > 0.

This implies that the coefficient matrix Mk+1 is a strictly diagonally dominant M-matrix
(see [41]), and therefore it is nonsingular, so the difference scheme (2.14)–(2.16) is uniquely
solvable. �

The unique solvability of the implicit difference scheme (2.14)–(2.16) has been estab-
lished, and now we further show its stability.

Theorem 3.3 The difference scheme (2.14)–(2.16) for the TDFDEs is unconditionally sta-
ble, where 1 < β < 2.

Proof Assume that the initial errors are ε0
i (i = 0, 1, . . . , M – 1), let ψ̄0

i = ψ0
i + ε0

i , and let uk
i

and ūk
i be the numerical solutions of scheme (2.14) corresponding to the initial data ψ0

i

and ψ̄0
i (i = 1, 2, . . . , M – 1), respectively. Then εk

i = uk
i – ūk

i satisfies

ε1
i – v

[
d1

+,i

i+1∑
j=0

g(β)
j ε1

i–j+1 + d1
–,i

M–i+1∑
j=0

g(β)
j ε1

i+j–1

]

=
q∑

s=1

vsaαs
0 ε0

i = ε0
i ,

εk+1
i – v

[
dk+1

+,i

i+1∑
j=0

g(β)
j εk+1

i–j+1 + dk+1
–,i

M–i+1∑
j=0

g(β)
j εk+1

i+j–1

]

=
k∑

j=1

[ q∑
s=1

vs
(
aαs

k–j – aαs
k–j+1

)]
ε

j
i +

q∑
s=1

vsaαs
k ε0

i , k = 1, . . . , N – 1.

Denote Ek = [εk
1 , εk

2 , . . . , εk
M–1]T . The theorem will be proved if we show that

∥∥Ek+1∥∥∞ ≤ ∥∥E0∥∥∞, k = 0, 1, 2, . . . .

To this end, we will use the mathematical induction.



Jian et al. Advances in Difference Equations  (2018) 2018:205 Page 10 of 24

For k = 0, denote |ε1
l | = max1≤i≤M–1 |ε1

i |. It follows from Proposition 3.1, v > 0, and
d±(x, t) ≥ 0 that

∥∥E1∥∥∞ =
∣∣ε1

l
∣∣

≤
{

1 – v

[
d1

+,l

l+1∑
j=0

g(β)
j + d1

–,l

M–l+1∑
j=0

g(β)
j

]}∣∣ε1
l
∣∣

=
∣∣ε1

l
∣∣ – v

[
d1

+,lg
(β)
1 + d1

–,lg
(β)
1
]∣∣ε1

l
∣∣

– v

[
d1

+,l

l+1∑
j=0,j �=1

g(β)
j
∣∣ε1

l
∣∣ + d1

–,l

M–l+1∑
j=0,j �=1

g(β)
j
∣∣ε1

l
∣∣
]

≤ ∣∣ε1
l
∣∣ – v

[
d1

+,lg
(β)
1 + d1

–,lg
(β)
1
]∣∣ε1

l
∣∣

– v

[
d1

+,l

l+1∑
j=0,j �=1

g(β)
j
∣∣ε1

l–j+1
∣∣ + d1

–,l

M–l+1∑
j=0,j �=1

g(β)
j
∣∣ε1

l+j–1
∣∣
]

=
∣∣ε1

l
∣∣ – v

[
d1

+,l

l+1∑
j=0

g(β)
j
∣∣ε1

l–j+1
∣∣ + d1

–,l

M–l+1∑
j=0

g(β)
j
∣∣ε1

l+j–1
∣∣
]

≤
∣∣∣∣∣ε1

l – v

[
d1

+,l

l+1∑
j=0

g(β)
j ε1

l–j+1 + d1
–,l

M–l+1∑
j=0

g(β)
j ε1

l+j–1

]∣∣∣∣∣
=
∣∣ε1

l
∣∣ =
∥∥E0∥∥∞.

Now suppose that, for some integer k ≥ 0, the result is established, that is,

∥∥Ej∥∥∞ ≤ ∥∥E0∥∥∞ for j ≤ k.

As we did earlier for k = 0, let |εk+1
l | = max1≤i≤M–1 |εk+1

i |. By Proposition 3.1, v > 0, and
d±(x, t) ≥ 0 we can see that

∥∥Ek+1∥∥∞ =
∣∣εk+1

l
∣∣

≤
{

1 – v

[
dk+1

+,l

l+1∑
j=0

g(β)
j + dk+1

–,l

M–l+1∑
j=0

g(β)
j

]}∣∣εk+1
l
∣∣

=
∣∣εk+1

l
∣∣ – v

[
dk+1

+,l g(β)
1 + dk+1

–,l g(β)
1
]∣∣εk+1

l
∣∣

– v

[
dk+1

+,l

l+1∑
j=0,j �=1

g(β)
j
∣∣εk+1

l
∣∣ + dk+1

–,l

M–l+1∑
j=0,j �=1

g(β)
j
∣∣εk+1

l
∣∣
]

≤ ∣∣εk+1
l
∣∣ – v

[
dk+1

+,l g(β)
1 + dk+1

–,l g(β)
1
]∣∣εk+1

l
∣∣

– v

[
dk+1

+,l

l+1∑
j=0,j �=1

g(β)
j
∣∣εk+1

l–j+1
∣∣ + dk+1

–,l

M–l+1∑
j=0,j �=1

g(β)
j
∣∣εk+1

l+j–1
∣∣
]

=
∣∣εk+1

l
∣∣ – v

[
dk+1

+,l

l+1∑
j=0

g(β)
j
∣∣εk+1

l–j+1
∣∣ + dk+1

–,l

M–l+1∑
j=0

g(β)
j
∣∣εk+1

l+j–1
∣∣
]



Jian et al. Advances in Difference Equations  (2018) 2018:205 Page 11 of 24

≤
∣∣∣∣∣εk+1

l – v

[
dk+1

+,l

l+1∑
j=0

g(β)
j εk+1

l–j+1 + dk+1
–,l

M–l+1∑
j=0

g(β)
j εk+1

l+j–1

]∣∣∣∣∣

≤
k∑

j=1

[ q∑
s=1

vs
(
aαs

k–j – aαs
k–j+1

)]∣∣εj
l
∣∣ +

q∑
s=1

vsaαs
k
∣∣ε0

l
∣∣

≤
{ k∑

j=1

[ q∑
s=1

vs
(
aαs

k–j – aαs
k–j+1

)]
+

q∑
s=1

vsaαs
k

}∥∥E0∥∥∞

=
q∑

s=1

vs
∥∥E0∥∥∞ =

∥∥E0∥∥∞,

which completes the proof of Theorem 3.3. �

The next step is to analyze the convergence of the implicit method given in (2.14)–
(2.16). To this end, suppose that the continuous problem (1.1)–(1.3) has a smooth so-
lution u(x, t) ∈ Cβ+1,2

x,t ([0, L] × [0, T]). Recall that U denotes the exact solution of system
(1.1)–(1.3); u represents the numerical solution of the implicit difference approximation
(2.14)–(2.16) for 1 < β < 2. Let us assume that the error e = U – u at mesh points (xi, tk) is
defined by ek

i = Uk
i – uk

i (i = 1, 2, . . . , M – 1; k = 0, 1, 2, . . . , N ). Let Rk = [ek
1, ek

2, . . . , ek
M–1]T and

R0 = [e0
1, e0

2, . . . , e0
M–1]T = 0.

According to (2.13), equation (2.8) can be rewritten as

Uk+1
i – v

[
dk+1

+,i

i+1∑
j=0

g(β)
j Uk+1

i–j+1 + dk+1
–,i

M–i+1∑
j=0

g(β)
j Uk+1

i+j–1

]

=
k∑

j=1

[ q∑
s=1

vs
(
aαs

k–j – aαs
k–j+1

)]
Uj

i +
q∑

s=1

vsaαs
k U0

i + v̄f k+1
i + v̄pk+1

i ,

i = 1, 2, . . . , M – 1, k = 0, 1, . . . , N – 1. (3.1)

Subtracting (3.1) from (2.14), we have

ek+1
i – v

[
dk+1

+,i

i+1∑
j=0

g(β)
j ek+1

i–j+1 + dk+1
–,i

M–i+1∑
j=0

g(β)
j ek+1

i+j–1

]

=
k∑

j=1

[ q∑
s=1

vs
(
aαs

k–j – aαs
k–j+1

)]
ej

i +
q∑

s=1

vsaαs
k e0

i

+ v̄O
(
h + τ 1+σ /2 + σ 2), k = 0, 1, . . . , N – 1. (3.2)

The bound (3.2) is an essential ingredient for the convergence analysis of this section.
The following theorem shows that our implicit difference scheme is convergent with first-
order accuracy in space and (1 + σ

2 )-order in time (i.e., O(h + τ 1+σ /2)).
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Theorem 3.4 Suppose that the continuous problem (1.1)–(1.3) has a smooth solution
u(x, t) ∈ Cβ+1,2

x,t ([0, L] × [0, T]), 1 < β < 2. Then

∥∥Rk+1∥∥∞ ≤ κ1
(
h + τ 1+σ /2 + σ 2) / q∑

s=1

dsaαs
k

μs
, k = 0, 1, 2, . . . , N – 1.

Proof For k = 0, suppose ‖R1‖∞ = |e1
l | = max1≤i≤M–1 |e1

i |. By Proposition 3.1, v > 0,
d±(x, t) ≥ 0, (2.9), (2.13), and (3.2) we acquire

∥∥R1∥∥∞ =
∣∣e1

l
∣∣≤
{

1 – v

[
d1

+,l

l+1∑
j=0

g(β)
j + d1

–,l

M–l+1∑
j=0

g(β)
j

]}∣∣e1
l
∣∣

≤ ∣∣e1
l
∣∣ – v

[
d1

+,lg
(β)
1 + d1

–,lg
(β)
1
]∣∣e1

l
∣∣

– v

[
d1

+,l

l+1∑
j=0,j �=1

g(β)
j
∣∣e1

l–j+1
∣∣ + d1

–,l

M–l+1∑
j=0,j �=1

g(β)
j
∣∣e1

l+j–1
∣∣
]

=
∣∣e1

l
∣∣ – v

[
d1

+,l

l+1∑
j=0

g(β)
j
∣∣e1

l–j+1
∣∣ + d1

–,l

M–l+1∑
j=0

g(β)
j
∣∣e1

l+j–1
∣∣
]

≤
∣∣∣∣∣e1

l – v

[
d1

+,l

l+1∑
j=0

g(β)
j e1

l–j+1 + d1
–,l

M–l+1∑
j=0

g(β)
j e1

l+j–1

]∣∣∣∣∣

=

∣∣∣∣∣
q∑

s=1

vsaαs
0 e0

i + v̄
[
O
(
h + τ 1+σ /2 + σ 2)]

∣∣∣∣∣
=
∣∣v̄[O(h + τ 1+σ /2 + σ 2)]∣∣

≤ κ1v̄
[
h + τ 1+σ /2 + σ 2]

= κ1
(
h + τ 1+σ /2 + σ 2) / q∑

s=1

dsaαs
0

μs
.

Suppose that the result is valid for some integer k ≥ 1, that is,

∥∥Rj∥∥∞ ≤ κ1
(
h + τ 1+σ /2 + σ 2) / q∑

s=1

dsaαs
j–1

μs
, j = 1, 2, . . . , k.

Let |ek+1
l | = max1≤i≤M–1 |ek+1

i |. According to Proposition 3.1, v > 0, d±(x, t) ≥ 0, (2.9),
(2.13), and (3.2), since the coefficients aαs

j are decreasing for j = 0, 1, 2, . . . , we have

∥∥Rk+1∥∥∞ =
∣∣ek+1

l
∣∣≤
∣∣∣∣∣ek+1

l – v

[
dk+1

+,l

l+1∑
j=0

g(β)
j ek+1

l–j+1 + dk+1
–,l

M–l+1∑
j=0

g(β)
j ek+1

l+j–1

]∣∣∣∣∣

≤
k∑

j=1

[ q∑
s=1

vs
(
aαs

k–j – aαs
k–j+1

)]∣∣ej
i
∣∣ + κ1v̄

[
h + τ 1+σ /2 + σ 2]

≤
q∑

s=1

vs

[ k∑
j=1

(
aαs

k–j – aαs
k–j+1

)
κ1
(
h + τ 1+σ /2 + σ 2)

/ q∑
s=1

dsaαs
j–1

μs

]



Jian et al. Advances in Difference Equations  (2018) 2018:205 Page 13 of 24

+ κ1v̄
[
h + τ 1+σ /2 + σ 2]

≤
q∑

s=1

vs

[ k∑
j=1

(
aαs

k–j – aαs
k–j+1

)
κ1
(
h + τ 1+σ /2 + σ 2)

/ q∑
s=1

dsaαs
k

μs

]

+ κ1v̄
[
h + τ 1+σ /2 + σ 2]

= κ1
(
h + τ 1+σ /2 + σ 2)

[(
1 –

q∑
s=1

vsaαs
k

)/ q∑
s=1

dsaαs
k

μs
+ v̄

]

= κ1
(
h + τ 1+σ /2 + σ 2) / q∑

s=1

dsaαs
k

μs
,

which proves the theorem. �

4 Fast solution techniques based on preconditioned Krylov subspace solvers
In this section, we analyze both the implementation and the computational complexity
of the implicit difference scheme (2.14)–(2.16) and propose an efficient implementation
based on Krylov subspace solvers with suitable circulant preconditioners.

According to (2.17) and (2.18), there is a sequence of nonsymmetric Toeplitz linear sys-
tem to be solved at each time level k. If a direct method is employed to solve the linear
system (2.18), the LU decomposition can be reused in each time level k. This approach,
however, needs the memory requirement of O(M2) and the complexity of O(M3) per iter-
ation step, which is prohibitively expensive if M is large. Fortunately, since Gβ is a Toeplitz
matrix, it can be stored with only M entries [41]. The Krylov subspace methods with cir-
culant preconditioners [45, 61] can be used to solve Toeplitz-like linear systems with a
fast convergence rate. In this case, we also remark that the computational complexity of
preconditioned Krylov subspace methods is only in O(M log M) at each iteration step
for implementing the implicit difference scheme. In this study, we employ four precon-
ditioned Krylov subspace methods, the PBiCGSTAB method, the PBiCRSTAB method,
the PGPBiCOR(m,
) method, and the PCGNR method. The numerical results show the
performance of three proposed preconditioned Krylov subspace solvers over the LU de-
composition and the PCGNR method, while solving (2.18), and reveal that the results of
the PGPBiCOR(m,
) method are better than others when m = 2, 
 = 1.

The PGPBiCOR(2,1) method with the preconditioner K applied to the system Ax = b is
given in Algorithm 4.1.

Now we propose a circulant preconditioner generated from the Strang circulant precon-
ditioner [46] in the PGPBiCOR(2,1) method for solving (2.18). For a real Toeplitz matrix
Q = [qj–m]0≤j,m<N , the Strang circulant matrix s(Q) = [sj–m]0≤j,m<N is obtained by copying
the central diagonals of Q to complete the circulant requirements [43]. More precisely, the
diagonals of s(Q) are given by

sj =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

qj, 0 ≤ j < N/2,

0, j = N/2 if N is even,

qj–N , N/2 < j < N ,

sj+N , 0 < –j < N .
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Algorithm 4.1 PGPBiCOR(2,1) for Ax = b with preconditioner K

1: Select initial guess x0 and r0 = b – Ax0
2: Choose r∗

0 = AK–1r0 s.t. (r∗
0, AK–1r0) �= 0.

Set t–1 = w–1 = u–1 = û–1 = 0, β–1 = 0, e0 =
K–1r0, ê0 = Ae0.

3: for n = 0, 1, . . . , until convergence do
4: pn = en + βn–1(pn–1 – un–1)
5: p̂n = ên + βn–1(p̂n–1 – ûn–1)
6: Solve Khn = p̂n

7: Compute gn = Ahn and then αn = (r∗
0,en)

(r∗
0,gn)

8: tn = rn – αnp̂n
9: yn = tn–1 – tn – αnqn–1

10: sn = en – αnhn (
 sn � K–1tn)
11: wn = ên – αngn (
 wn � Asn)
12: if ( mod (n, 3) < 2 or n = 0) then
13: ξ = (wn ,tn)

(wn ,wn) (Hint: ηn = 0)
14: un = ξnhn, ûn = ξngn

15: zn = ξnen – αnun
16: rn+1 = tn – ξnwn
17: else
18: ξn = (yn ,yn)(wn ,tn)–(yn ,tn)(wn ,yn)

(wn ,wn)(yn ,yn)–(yn ,wn)(wn ,yn)

19: ηn = (wn ,wn)(yn ,tn)–(yn ,wn)(wn ,tn)
(wn ,wn)(yn ,yn)–(yn ,wn)(wn ,yn)

20: un = ξnhn + ηn(sn–1 – en + βn–1un–1)
21: ûn = ξngn + ηn(wn–1 – ên + βn–1ûn–1)
22: zn = ξnen + ηnzn–1 – αnun
23: rn+1 = tn – ηnyn – ξnwn
24: end if
25: Solve Ken+1 = rn+1
26: Compute ên+1 = Aen+1

27: βn = αn
ξn

· (r∗
0,ên+1)

(r∗
0,ên)

28: xn+1 = xn + αnpn + zn
29: qn = wn + βnp̂n
30: end for

Recall formula (2.18):

Mk+1 = I – vAk+1 = I – v
(
Dk+1

+ Gβ + Dk+1
– GT

β

)
,

where Dk+1± = diag(dk+1±,1 , . . . , dk+1
±,M–1), and Gβ is the Toeplitz matrix. Then our circulant pre-

conditioner is defined as

Sk+1 = I – v
[
d̄k+1

+ s(Gβ ) + d̄k+1
– s
(
GT

β

)]
, (4.1)

where

d̄k+1
± =

1
M – 1

M–1∑
i=1

dk+1
±,i .

Specifically, the first columns of both s(Gβ ) and s(GT
β ) are given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(β)
1

g(β)
2
...

g(β)
� M

2 �
0
...
0

g(β)
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g(β)
1

g(β)
0

0
...
0

g(β)
� M

2 �
...

g(β)
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively. A high efficiency of Strang’s circulant preconditioner for space FDEs with
constant diffusion coefficients was demonstrated in [45]. In [45], the proposed precon-
ditioner was invertible, and its spectrum was theoretically proven to be clustered at 1 if
the diffusion coefficients were constant. In this paper, we focus the attention on the case
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of variable diffusion coefficients. We further show that the preconditioner Sk+1 defined
in (4.1) is also nonsingular and thus is well-defined. Before that, we need the following
lemma, which is essential to prove the nonsingularity of Sk+1 in (4.1).

Lemma 4.2 All eigenvalues of s(Gβ ) and s(GT
β ) fall inside the open disc

{
z ∈C : |z + β| < β

}
.

Proof All Gershgorin discs [51] of the circulant matrices s(Gβ ) and s(GT
β ) are centered at

g(β)
1 = –β with radius

rN = g(β)
0 +

� M
2 �∑

j=2

g(β)
j <

∞∑
j=0,j �=1

g(β)
j = –g(β)

1 = β

by the properties of the sequence {g(β)
j }; refer to Proposition 3.1. �

Remark 4.3 It is worth mentioning that the real parts of all eigenvalues of s(Gβ ) and s(GT
β )

are strictly negative for all M.

As we know, a circulant matrix E can be diagonalized by the Fourier matrix F [43], that
is,

E = F∗�F ,

where the entries of F are given by

Fj,m =
1√
N

e2π ijm/N , 0 ≤ j, m ≤ N – 1,

with the imaginary unit i, and � is a diagonal matrix holding the eigenvalues of E.
Then it follows that s(Gβ ) = F∗�βF and s(GT

β ) = F∗�̄βF , where �̄β is the complex con-
jugate of �β . Decompose the circulant matrix Sk+1 = F∗�sF with the diagonal matrix
�s = I –v[d̄k+1

+ �β + d̄k+1
– �̄β ]. Then Sk+1 is invertible if all diagonal entries of �s are nonzero.

Moreover, we can obtain the following conclusion about the invertibility of Sk+1 in (4.1).

Theorem 4.4 For 1 < β < 2, the preconditioner Sk+1 defined as in (4.1) is nonsingular, and

∥∥(Sk+1)–1∥∥
2 ≤ 1.

Proof By Remark 4.3 we have Re([�β ]i,i) < 0. Noting that v > 0 and d̄k+1± ≥ 0, we obtain

∣∣[�s]i,i
∣∣≥ Re

(
[�s]i,i

)
= 1 – v

[
d̄k+1

+ Re
(
[�β ]i,i

)
+ d̄k+1

– Re
(
[�̄β ]i,i

)]≥ 1 > 0

for each i = 1, . . . , M – 1. Therefore, Sk+1 is nonsingular. Furthermore, we have

∥∥(Sk+1)–1∥∥
2 =

1
min1≤i≤M–1 |[�s]i,i| ≤ 1.

Hence the statements in Theorem 4.4 are proved. �
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Unfortunately, when the diffusion coefficients d±(x, t) are nonconstant functions, the
preconditioned sequence (Sk+1)–1Mk+1 cannot be clustered at 1; we refer to [48] for de-
tails of the theoretical analysis. For clarity, we still give some figures to illustrate the clus-
tering eigenvalue distributions of several specified preconditioned matrices in the next
section.

5 Numerical examples
The numerical experiments presented in this section have a two-fold objective. They il-
lustrate that the proposed finite difference scheme can indeed converge with first-order in
space and (1 + σ

2 )-order in time. At the same time, they assess the computational efficiency
of the fast solution techniques (Algorithm 4.1) designed in Sect. 4. The nonsymmetric
linear system (2.18) is solved at each time step by the PCGNR method, the PBiCRSTAB
method, the PBiCGSTAB method, the PGPBiCOR(2,1) method (Algorithm 4.1), and LU
factorization of MATLAB, respectively. The numbers of iterations required for conver-
gence and CPU times of those methods are shown further. The stopping criterion of those
methods is

‖r(k)‖2

‖r(0)‖2
< 10–12,

where r(k) is the residual vector of the linear system after k iterations, and the initial guess is
chosen as a zero vector. In the following tables, setting e(h, τ ,σ ) = max1≤i≤M–1 |u(xi, tN ,σ )–
uN

i |, where u(xi, tN ,σ ) id the exact solution, and uN
i is the numerical solution with step sizes

h and τ at tN = T . The convergence order is computed by

rateh = log2
e(h, τ ,σ )

e(h/2, τ ,σ )
,

rateτ = log2
e(h, τ ,σ )

e(h, τ /2,σ )
,

rateσ = log2
e(h, τ ,σ )

e(h, τ ,σ /2)
.

The number of spatial grid points is denoted by M, N denotes the number of time steps,
CPU (s) denotes the total CPU time in seconds for solving the whole TDFDEs problem,
and Iter denotes the average number of iterations required for solving the TDFDEs prob-
lem, that is,

Iter =
1
N

N∑
n=1

Iter(n),

where Iter(n) denotes the number of iterations required for solving (2.18). For those meth-
ods, besides the proposed circulant preconditioner Sk+1 in (4.1), we also test the T. Chan’s
preconditioner [43] which can be written as

c
(
Mk+1) = I – v

[
d̄k+1

+ c(Gβ ) + d̄k+1
– c

(
GT

β

)]
,



Jian et al. Advances in Difference Equations  (2018) 2018:205 Page 17 of 24

where c(Q) denotes Chan’s preconditioner for an arbitrary matrix Q. More specifically, the
first columns of the circulant matrices c(Gβ ) and c(GT

β ) are given as

1
M – 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(M – 1)g(β)
1

(M – 2)g(β)
2

...
2g(β)

M–2

g(β)
M–1 + (M – 2)g(β)

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and
1

M – 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(M – 1)g(β)
1

g(β)
M–1 + (M – 2)g(β)

0

2g(β)
M–2
...

(M – 2)g(β)
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively.
In all tables, the symbols “PCGNR(S)”, “PBiCRSTAB(S)”, “PBiCGSTAB(S)”, and “PGPBi-

COR(S)” correspond to the PCGNR, PBiCRSTAB, PBiCGSTAB, and PGPBiCOR methods
with the circulant preconditioner Sk+1, respectively. Similarly, the symbols “PCGNR(C)”,
“PBiCRSTAB(C)”, “PBiCGSTAB(C)”, and “PGPBiCOR(C)” denote Chan’s circulant pre-
conditioner c(Mk+1) for the PCGNR, PBiCRSTAB, PBiCGSTAB, and PGPBiCOR(2,1)
methods, respectively. All numerical experiments are implemented in MATLAB (R2013a)
on a desktop PC with 4 GB RAM, Inter (R) Core (TM) i3-2130 CPU, @3.40 GHz.

Example 5.1 Consider the following time distributed-order and space fractional diffusion
equations with variable coefficients:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ 1
0 �(3 – α)C

0 Dα
t u(x, t) dα

= d+(x, t)RLDβ
0,xu(x, t) + d–(x, t)RLDβ

x,Lu(x, t) + f (x, t), 0 < x < 1, 0 < t ≤ T ,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ T ,

u(x, 0) = x2(1 – x)2, 0 ≤ x ≤ 1,

where 1 < β ≤ 2, d+(x, t) = (1 + t)x0.6, d–(x, t) = (1 + t)(1 – x)0.6, and

f (x, t) = –
(
1 – t2)[ �(3)

�(3 – β)
(
d+(x, t)x2–β + d–(x, t)(1 – x)2–β

)

– 2
�(4)

�(4 – β)
(
d+(x, t)x3–β + d–(x, t)(1 – x)3–β

)

+
�(5)

�(5 – β)
(
d+(x, t)x4–β + d–(x, t)(1 – x)4–β

)]

– 2x2(1 – x)2(t2 – t
)
/ ln t.

The exact solution of this problem is u(x, t) = x2(1 – x)2(1 – t2).

The errors and convergence orders are displayed in Tables 1 and 2. We can clearly see
that the convergence orders are of first-order in space and (1 + σ

2 )-order in time, which
verifies the correctness of our theoretical results.

A comparison of the exact and numerical solutions for β = 1.8 with h = 0.02, τ = 0.015,
α = 0.5, σ = 0.1 at t = 0.3 (triangles), t = 0.75 (stars), and t = 1.5 (squares) is shown in Fig. 1.
We can see that the numerical solution is in good conformity with the exact one.
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Table 1 Maximum errors and spatial convergence orders of difference scheme (2.14)–(2.16) for
Example 5.1 with α = 0.5; σ = 0.1; T = 1.5; N = 800

M β = 1.3 β = 1.5 β = 1.8

e(h,τ ,σ ) rateh e(h,τ ,σ ) rateh e(h,τ ,σ ) rateh

20 3.978980e–03 – 1.594856e–03 – 9.815094e–04 –
40 2.181749e–03 0.8669 8.201275e–04 0.9595 3.974269e–04 1.3043
80 1.144519e–03 0.9307 4.133978e–04 0.9883 1.779229e–04 1.1594
160 5.855271e–04 0.9669 2.080332e–04 0.9907 8.429100e–05 1.0778
320 2.950680e–04 0.9887 1.046050e–04 0.9919 4.121610e–05 1.0322

Table 2 Maximum errors and temporal convergence orders of difference scheme (2.14)–(2.16) for
Example 5.1 with α = 0.5; σ = 0.2; T = 1.5; M = 2000

N β = 1.3 β = 1.5 β = 1.8

e(h,τ ,σ ) rateτ e(h,τ ,σ ) rateτ e(h,τ ,σ ) rateτ

5 6.897311e–04 – 4.256675e–04 – 2.559967e–04 –
10 2.640520e–04 1.3852 1.711099e–04 1.3148 1.099115e–04 1.2198
20 8.702462e–05 1.6013 6.546150e–05 1.3862 4.935518e–05 1.1551
40 4.570569e–05 0.9290 3.003826e–05 1.1238 2.399388e–05 1.0405

Figure 1 Exact solutions (lines) and numerical solutions (symbols) of Example 5.1 with β = 1.8 at t = 0.3
(rounds), t = 0.75 (squares), t = 1.5 (rhombus)

In Figs. 2 and 3, the eigenvalue plots of the original matrix Mk+1 and the preconditioned
matrices (Sk+1)–1Mk+1 are plotted. These two figures confirm that the circulant precon-
ditioning exhibits very nice clustering properties. The eigenvalues of preconditioned ma-
trices are clustered at 1, except for a few outliers. It indicates that the vast majority of the
eigenvalues are well separated away from 0. It may guarantee that our proposed precon-
ditioners can deeply accelerate Krylov subspace methods for solving the nonsymmetric
Toeplitz system. We also validate the effectiveness and robustness of the designed circu-
lant preconditioner from the perspective of clustering spectrum distribution.

Tables 3 and 4 report the numerical results for solving Example 5.1, which show that
both the average number of iterations and the CPU time of the PCGNR, PBiCRSTAB,
PBiCGSTAB, PGPBiCOR(2,1) with Strang’s circulant preconditioners are much less than
those with Chan’s circulant preconditioners, respectively. It also verifies that the proposed
PGPBiCOR(2,1) method based on Strang’s preconditioner is more attractive than other
proposed methods in aspects of the less CPU time and average number of iterations.



Jian et al. Advances in Difference Equations  (2018) 2018:205 Page 19 of 24

(a) (b)

Figure 2 Spectrum of original matrix (red) and preconditioned matrix (blue) for Example 5.1 at time level
(a): k = 0 and (b): k = 1, respectively, when M = N = 128, α = 0.5, q = 10, β = 1.8, and T = 0.75

(a) (b)

Figure 3 Spectrum of original matrix (red) and preconditioned matrix (blue) for Example 5.1 at time level
(a): k = 0 and (b): k = 1, respectively, when M = N = 256, α = 0.5, q = 10, β = 1.8, and T = 1.5

Example 5.2 Consider the following equation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ 1
0 ω(α)C

0 Dα
t u(x, t) dα

= d+(x, t)RLDβ
0,xu(x, t) + d–(x, t)RLDβ

x,Lu(x, t) + (1 + t2) sin x, 0 < x < 1, 0 < t ≤ 5,

u(0, t) = 0, u(1, t) = 0, 0 ≤ t ≤ 5,

u(x, 0) = 10δ(x), 0 ≤ x ≤ 1,

where 1 < β ≤ 2, d+(x, t) = (1 + t)x0.6, d–(x, t) = (1 + t)(1 – x)0.6.

Gorenflo et al. [23] considered the special case ω(α) = δ(α – η), 0 < η < 1, and showed
that the fundamental solution of the time distributed-order fractional diffusion equation
can be viewed as a probability density function in space x, evolving in time t. Hu et al. [31]
also considered the solutions of the time distributed-order and two-sided space-fractional
advection-dispersion equation in the special cases of the derivative weight function ω(α) =
δ(α – 0.5) and ω(α) = τα , where τ is a positive constant.
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Table 3 Comparisons for solving Example 5.1 by the LU method and the PCGNR/PBiCRSTAB method
with two circulant preconditioners, where β = 1.3, 1.5, 1.8, α = 0.5, q = 10, and T = 0.75

β M N LU PCGNR(S) PCGNR(C) PBiCRSTAB(S) PBiCRSTAB(C)

CPU(s) CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter

1.3 26 22 0.01 0.02 18.0 0.01 16.8 0.02 14.0 0.02 14.0
27 23 0.01 0.04 20.0 0.04 20.4 0.04 18.6 0.04 18.9
28 24 0.13 0.09 22.9 0.09 24.8 0.11 22.3 0.10 21.7
29 25 1.36 0.38 25.4 0.44 30.2 0.45 26.3 0.42 25.3
210 26 16.72 1.20 27.5 1.72 40.9 1.47 30.5 1.39 29.0
211 27 213.81 7.99 28.8 16.74 63.1 9.60 33.5 16.23 58.7

1.5 26 22 0.01 0.03 18.0 0.03 14.0 0.01 12.0 0.01 11.8
27 23 0.01 0.03 19.3 0.03 17.0 0.03 14.0 0.03 14.0
28 24 0.14 0.08 21.8 0.08 19.2 0.08 16.4 0.08 16.0
29 25 1.40 0.34 23.3 0.32 21.6 0.32 18.4 0.32 18.7
210 26 16.86 1.05 24.1 1.06 24.2 1.01 20.6 1.00 20.3
211 27 217.19 6.69 24.2 7.20 25.9 6.16 21.3 6.34 22.0

1.8 26 22 0.01 0.04 18.5 0.03 16.0 0.01 8.0 0.01 9.0
27 23 0.01 0.04 22.0 0.03 18.8 0.02 9.0 0.03 10.6
28 24 0.14 0.09 24.0 0.09 22.9 0.06 10.0 0.07 12.8
29 25 1.43 0.36 26.1 0.41 27.8 0.21 11.0 0.26 14.9
210 26 17.16 1.21 27.3 1.47 34.4 0.61 11.0 0.86 17.0
211 27 221.05 8.22 29.7 12.02 44.7 3.66 11.6 5.86 20.0

Table 4 Comparisons for solving Example 5.1 by the PBiCGSTAB/PGPBiCOR(2, 1) method with two
circulant preconditioners, where β = 1.3, 1.5, 1.8, α = 0.5, q = 10, and T = 0.75

β M N PBiCGSTAB(S) PBiCGSTAB(C) PGPBiCOR(S) PGPBiCOR(C)

CPU(s) Iter CPU(s) Iter CPU(s) Iter CPU(s) Iter

1.3 26 22 0.02 14.0 0.02 14.0 0.02 13.0 0.02 12.3
27 23 0.04 17.6 0.04 17.4 0.04 15.0 0.04 15.0
28 24 0.09 21.1 0.09 20.8 0.09 17.3 0.09 17.0
29 25 0.39 24.8 0.38 24.1 0.36 19.3 0.36 19.9
210 26 1.27 28.0 1.25 27.7 1.07 21.0 1.18 23.3
211 27 8.48 31.0 15.92 60.5 6.64 22.6 11.73 41.1

1.5 26 22 0.01 12.0 0.01 11.8 0.01 11.0 0.02 10.0
27 23 0.03 14.0 0.03 14.0 0.03 12.0 0.03 12.0
28 24 0.07 15.6 0.07 15.9 0.07 13.0 0.08 14.3
29 25 0.28 17.4 0.29 18.2 0.26 14.0 0.29 16.0
210 26 0.88 19.1 0.90 19.7 0.80 15.0 0.89 17.3
211 27 5.59 20.2 5.75 21.1 4.75 15.8 5.37 18.0

1.8 26 22 0.01 10.0 0.01 10.0 0.01 8.0 0.01 9.0
27 23 0.02 9.8 0.02 11.0 0.02 8.0 0.03 11.0
28 24 0.05 10.2 0.07 13.9 0.05 9.0 0.07 12.8
29 25 0.19 11.0 0.26 15.6 0.18 9.0 0.28 15.0
210 26 0.56 11.0 0.85 17.8 0.55 9.3 0.94 17.9
211 27 3.28 11.0 5.93 21.5 3.24 10.0 6.19 20.8

We also take ω(α) = δ(α – 0.5) and ω(α) = τα as examples to investigate the numerical
solutions of Example 5.2, respectively. Taking q = 15, M = 50, N = 20, and T = 5, Fig. 4
exhibits the numerical solutions of (2.14)–(2.16) in solving Example 5.2 with different β

and ω(α). The effect of the spatial order β and these two weight functions ω(α) can be
illustrated by (a), (b), (c), and (d). First, we fixed ω(α) and, increasing the number of the
β , we observed a lower diffusion. Then, we can see from these four solution profiles that
different diffusion phenomena occur under different weight function ω(α) conditions with
fixed β . In this example, when ω(α) = δ(α – 0.5), it leads to a slightly faster diffusion than
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(a) (b)

(c) (d)

Figure 4 Numerical solutions of Example 5.2 at α = 0.5, q = 15, M = 50, N = 20, and T = 5 with different β and
ω(α). ω(α) = τα (red); ω(α) = δ(α – 0.5) (blue)

that of ω(α) = τα . This implies that we can model different complex dynamical process by
choosing appropriate ω(α).

6 Conclusion
In this paper, an implicit difference scheme approximating the TDFDEs on bounded do-
mains has been described. The implicit difference scheme is unconditionally stable and
convergent based on mathematical induction. Meanwhile, the new difference scheme con-
verges with the first-order in space and the (1 + σ

2 )-order in time for the TDFDEs. Numer-
ical experiments confirming the obtained theoretical results are carried out. More sig-
nificantly, it has also been shown that an efficient implementation of the PGPBiCOR(2,1)
method with Strang’s circulant preconditioner for solving the discretized Toeplitz-like lin-
ear system requires only O(M log M) computational complexity and O(M) storage cost.
Extensive numerical results fully support the theoretical findings and prove the efficiency
of the proposed preconditioned Krylov subspace methods.

In future work, we will focus on handling two- or more dimensional TDFDEs with
fast solution techniques. Meanwhile, we will also focus on the development of other ef-
ficient preconditioners for accelerating the convergence of Krylov subspace solvers for
discretized Toeplitz systems.
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