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Abstract
The main aim of this paper is to give the definitions of Caputo fractional derivative
operators and show their use in the special function theory. For this purpose, we
introduce new types of incomplete hypergeometric functions and obtain their
integral representations. Furthermore, we define incomplete Caputo fractional
derivative operators and show that the images of some elementary functions under
the action of incomplete Caputo fractional operators give a new type of incomplete
hypergeometric functions. This definition helps us to obtain linear and bilinear
generating relations for the new type incomplete Gauss hypergeometric functions.
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1 Introduction
In recent years, some extensions of the well-known special functions have been considered
by several authors (see, for example, [4, 8, 9, 11, 15, 16, 18–20, 31]). The familiar incomplete
gamma functions γ (s, x) and �(s, x) are defined by

γ (s, x) :=
∫ x

0
ts–1e–t dt

(
Re(s) > 0; x � 0

)
(1)

and

�(s, x) :=
∫ ∞

x
ts–1e–t dt

(
x � 0; Re(s) > 0 when x = 0

)
, (2)

respectively. They satisfy the following decomposition formula:

γ (s, x) + �(s, x) = �(s)
(
Re(s) > 0

)
. (3)

The function �(s) and its incomplete versions γ (s, x) and �(s, x) play important roles in
the study of analytical solutions of a variety of problems in diverse areas of science and
engineering [10].
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In terms of the gamma function �(s), the widely used Pochhammer symbol (λ)ν (λ,ν ∈
C) is defined by

(λ)ν :=
�(λ + ν)

�(λ)
=

{
1 (ν = 0;λ ∈C \ {0})
λ(λ + 1) · · · (λ + ν – 1) (ν ∈N;λ ∈C)

}
. (4)

Recently, the incomplete Pochhammer symbols (λ; x)ν and [λ; x]ν (λ;ν ∈ C; x � 0) were
defined as follows [27]:

(λ; x)ν :=
γ (λ + ν, x)

�(λ)
(λ,ν ∈C; x � 0) (5)

and

[λ; x]ν :=
�(λ + ν, x)

�(λ)
(λ,ν ∈C; x � 0). (6)

In view of (3), these incomplete Pochhammer symbols (λ; x)ν and [λ; x]ν satisfy the fol-
lowing decomposition relation:

(λ; x)ν + [λ; x]ν = (λ)ν (λ,ν ∈C; x � 0). (7)

The incomplete Gauss hypergeometric functions were defined by [27]

2γ1

[
(a, x) · b ;

c ;
z

]
=

∞∑
n=0

(a; x)n(b)n

(c)n

zn

n!
(8)

and

2�1

[
(a, x) · b ;

c ;
z

]
=

∞∑
n=0

[a; x]n(b)n

(c)n

zn

n!
. (9)

In view of (3), these incomplete Gauss hypergeometric functions satisfy the following
decomposition relation:

2γ1

[
(a, x) · b ;

c ;
z

]
+ 2�1

[
(a, x) · b ;

c ;
z

]
= 2F1

[
a · b ;

c ;
z

]
. (10)

It should be also mentioned that Srivastava, Chaudhry and Agarwal [27] discussed some
of their properties and some interesting applications of these families of incomplete hyper-
geometric functions such as integral representation, derivative formula, transformation
formula, recurrence relation, and so on. Çetinkaya [7] introduced the incomplete second
Appell hypergeometric functions by means of the incomplete Pochhammer symbols and
obtained some integral representations and transformation formulas for these functions.
After these works, incomplete hypergeometric functions have become one of the hot top-
ics of recent years [4, 7, 11, 12, 14, 15, 21, 23, 25, 26, 29–32].

Another approach for extending the above-mentioned hypergeometric functions was
given in [17] by using the incomplete beta function defined by

By(x, z) :=
∫ y

0
tx–1(1 – t)z–1 dt, Re(x) > Re(z) > 0, 0 ≤ y < 1. (11)
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In terms of the incomplete beta function By(x, z), the incomplete Pochhammer ratios
[b, c; y]n and {b, c; y}n were introduced as follows:

[b, c; y]n :=
By(b + n, c – b)

B(b, c – b)
(12)

and

{b, c; y}n :=
B1–y(c – b, b + n)

B(b, c – b)
, (13)

where 0 ≤ y < 1.
Using the incomplete Pochhammer ratios, the authors introduced incomplete Gauss,

confluent, and Appell hypergeometric functions as follows:

2F1
(
a, [b, c; y]; x

)
:=

∞∑
n=0

(a)n[b, c; y]n
xn

n!
, 0 ≤ y < 1, (14)

2F1
(
a, {b, c; y}; x

)
:=

∞∑
n=0

(a)n{b, c; y}n
xn

n!
, 0 ≤ y < 1, (15)

1F1
(
[a, b; y]; x

)
:=

∞∑
n=0

[a, b; y]n
xn

n!
, 0 ≤ y < 1, (16)

1F1
({a, b; y}; x

)
:=

∞∑
n=0

{a, b; y}n
xn

n!
, 0 ≤ y < 1, (17)

F1[a, b, c; d; x, z; y] :=
∞∑

m,n=0

[a, d; y]m+n(b)m(c)n
xm

m!
zn

n!
, max

{|x|, |z|} < 1, (18)

F1{a, b, c; d; x, z; y} :=
∞∑

m,n=0

{a, d; y}m+n(b)m(c)n
xm

m!
zn

n!
, max

{|x|, |z|} < 1, (19)

F2[a, b, c; d, e; x, z; y] :=
∞∑

m,n=0

(a)m+n[b, d; y]m[c, e; y]n
xm

m!
zn

n!
, |x| + |z| < 1, (20)

and

F2[a, b, c; d, e; x, z; y] :=
∞∑

m,n=0

(a)m+n{b, d; y}m{c, e; y}n
xm

m!
zn

n!
, |x| + |z| < 1. (21)

Several properties of these functions, such as integral representations, derivative for-
mulas, transformation formulas, and recurrence relations, were obtained in [17].

Fractional calculus has gained popularity especially in the last decades. Many types of
fractional derivative and integral operators and their properties have been intensive re-
search topics of nowadays (see, for example, [1–3, 5, 6, 13, 14, 16, 17, 20, 22, 24, 25, 28, 31,
32]). In [17], the authors defined the following incomplete Riemann–Liouville fractional
derivative operators:

Dμ
z
[
f (z); y

]
:=

z–μ

�(–μ)

∫ y

0
f (uz)(1 – u)–μ–1 du, Re(μ) < 0, (22)
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and

Dμ
z
{

f (z); y
}

:=
z–μ

�(–μ)

∫ 1–y

0
f
(
(1 – t)z

)
t–μ–1 dt, Re(μ) < 0, (23)

and they gave linear and bilinear generating relations for incomplete hypergeometric func-
tions defined in (14) and (15).

The main purpose of this paper is to give definitions of Caputo fractional derivative
operators and show their use in the special function theory.

In Sect. 2, we introduce new type versions of incomplete Gauss hypergeometric func-
tions 2F1, the Appell hypergeometric functions F1 and F2, and the Lauricella hypergeomet-
ric functions F3

D,y, and we obtain their integral representations. In Sect. 3, we introduce
incomplete Caputo fractional derivative operators and show that the incomplete Caputo
fractional derivative operators of some elementary functions give new type incomplete
hypergeometric functions defined in Sect. 2. The main results are given in Sect. 4. Finally,
some graphical and tabular results are added in Sect. 5.

2 New type incomplete hypergeometric functions
In this section, we introduce new types of incomplete Gauss hypergeometric functions 2F1,
the incomplete Appell’s hypergeometric functions F1 and F2, and the incomplete Lauri-
cella hypergeometric functions F3

D,y. Throughout this paper, we assume that 0 ≤ y < 1 and
m ∈N.

Definition 1 New type incomplete hypergeometric functions are defined by

2F1
(
a, [b, c; y]; x

)
:=

∞∑
n=0

(a)n(b)n

(b – m)n
[b – m, c; y]n

xn

n!
(24)

and

2F1
(
a, {b, c; y}; x

)
:=

∞∑
n=0

(a)n(b)n

(b – m)n
{b – m, c; y}n

xn

n!
(25)

for all |x| < 1, where m < Re(b) < Re(c).

Definition 2 New type incomplete Appell hypergeometric functions F1 are defined by

F1[a, b, c; d; x, z; y] :=
∞∑

n,k=0

(a)n+k(b)n(c)k

(a – m)n+k
[a – m, d; y]n+k

xn

n!
zk

k!
(26)

and

F1{a, b, c; d; x, z; y} :=
∞∑

n,k=0

(a)n+k(b)n(c)k

(a – m)n+k
{a – m, d; y}n+k

xn

n!
zk

k!
(27)

for all |x| < 1, |z| < 1, where m < Re(a) < Re(d).
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Definition 3 New type incomplete Appell hypergeometric functions F2 are defined by

F2[a, b, c; d, e; x, z; y] :=
∞∑

n,k=0

(a)n+k(b)n(c)k

(b – m)n(c – m)k
[b – m, d; y]n[c – m, e; y]k

xn

n!
zk

k!
(28)

and

F2{a, b, c; d, e; x, z; y}

:=
∞∑

n,k=0

(a)n+k(b)n(c)k

(b – m)n(c – m)k
{b – m, d; y}n{c – m, e; y}k

xn

n!
zk

k!
(29)

for all |x| + |z| < 1, where m < Re(b) < Re(d) and m < Re(c) < Re(e).

Definition 4 New type incomplete Lauricella hypergeometric functions F3
D,yare defined

by

F3
D,y[a, b, c, d; e; x, w, z; y] :=

∞∑
n,k,r=0

(a)n+k+r(b)n(c)k(d)r

(a – m)n+k+r
[a – m, e; y]n+k+r

xn

n!
wk

k!
zr

r!
(30)

and

F3
D,y{a, b, c, d; e; x, w, z; y} :=

∞∑
n,k,r=0

(a)n+k+r(b)n(c)k(d)r

(a – m)n+k+r
{a – m, e; y}n+k+r

xn

n!
wk

k!
zr

r!
(31)

for all
√

x +
√

w +
√

z < 1, where m < Re(a) < Re(e).

Note that when m = 0, these functions reduce to the corresponding versions given by
(14), (15), (18)–(21), respectively. On the other hand, in the case y → 1–, the functions
in (24), (26), (28), and (30) are reduced to their usual versions (similarly, as y → 0+, the
functions in (25), (27), (29), and (31) are reduced to their usual versions).

Now we start by obtaining the integral representations of the functions given in defini-
tions (1)–(4).

Theorem 5 We have the following integral representations:

2F1
(
a, [b, c; y]; x

)
=

yb–m

B(b – m, c – b + m)

∫ 1

0
ub–m–1(1 – uy)c–b+m–1

× 2F1(a, b; b – m; xuy) du (32)

and

2F1
(
a, {b, c; y}; x

)
=

(1 – y)c–b+m

B(b – m, c – b + m)

∫ 1

0
uc–b+m–1(1 – u(1 – y)

)b–m–1

× 2F1
(
a, b; b – m; x

(
1 – u(1 – y)

))
du (33)

for all |x| < 1, where m < Re(b) < Re(c).
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Proof Replacing the incomplete beta function By(b – m + n, c – b + m) in definition (24)
by its integral representation given by (11) and interchanging the order of summation and
integration, which is permissible under the conditions given in the hypothesis, we get

2F1
(
a, [b, c; y]; x

)
=

1
B(b – m, c – b + m)

∫ y

0
tb–m–1(1 – t)c–b+m–1

×
∞∑

n=0

(a)n(b)n

(b – m)n

(xt)n

n!
dt,

which can be written as

2F1
(
a, [b, c; y]; x

)
=

yb–m

B(b – m, c – b + m)

∫ 1

0
ub–m–1(1 – uy)c–b+m–1

× 2F1(a, b; b – m; xuy) du.

Hence the proof is completed. Formula (33) can be proved in a similar way. �

Theorem 6 We have the following integral representations:

F1[a, b, c; d; x, z; y] =
ya–m

B(a – m, d – a + m)

∫ 1

0
ua–m–1(1 – uy)d–a+m–1

× F1(a; b, c; a – m; xuy, zuy) du (34)

and

F1{a, b, c; d; x, z; y} =
yd–a+m

B(a – m, d – a + m)

∫ 1

0
ud–a+m–1(1 – u(1 – y)

)a–m–1

× F1
(
a; b, c; a – m; x

(
1 – u(1 – y)

)
, z

(
1 – u(1 – y)

))
du, (35)

for all |x| < 1, |z| < 1, where m < Re(a) < Re(d).

Proof Replacing the incomplete beta function By(a – m + n + k, d – a + m) in definition
(26) by its integral representation given by (11), we have that

F1[a, b, c; d; x, z; y] =
1

B(a – m, d – a + m)

∫ y

0
ta–m–1(1 – t)d–a+m–1

×
∞∑

n,k=0

(a)n+k(b)n(c)k

(a – m)n+k

(xt)n

n!
(zt)k

k!
dt,

=
ya–m

B(a – m, d – a + m)

∫ 1

0
ua–m–1(1 – uy)d–a+m–1

× F1(a; b, c; a – m; xuy, zuy) du,

whence the result. Formula (35) can be proved in a similar way. �
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Theorem 7 We have the following integral representations:

F2[a, b, c; d, e; x, z; y] =
yb+c–2m

B(b – m, d – b + m)B(c – m, e – c + m)

×
∫ 1

0

∫ 1

0
ub–m–1(1 – uy)d–b+m–1vc–m–1(1 – vy)e–c+m–1

× F2(a; b, c; b – m, c – m; xuy, zvy) du dv (36)

and

F2{a, b, c; d, e; x, z; y}

=
(1 – y)d–b+e–c+2m

B(b – m, d – b + m)B(c – m, e – c + m)

×
∫ 1

0

∫ 1

0
ud–b+m–1(1 – u(1 – y)

)b–m–1ve–c+m–1(1 – v(1 – y)
)c–m–1

× F2
(
a; b, c; b – m, c – m; x

(
1 – u(1 – y)

)
, z

(
1 – v(1 – y)

))
du dv (37)

for all |x| + |z| < 1, where m < Re(b) < Re(d) and m < Re(c) < Re(e).

Proof Replacing the integral representations of By(b – m + n, d – b + m) and By(c – m +
k, e – c + m) in (28), we get

F2[a, b, c; d, e; x, z; y] =
1

B(b – m, d – b + m)B(c – m, e – c + m)

×
∫ y

0

∫ y

0
tb–m–1(1 – t)d–b+m–1sc–m–1(1 – s)e–c+m–1

×
∞∑

n,k=0

(a)n+k(b)n(c)k

(b – m)n(c – m)k

(xt)n

n!
(zs)k

k!
dt ds,

which is equivalent to

F2[a, b, c; d, e; x, z; y] =
yb+c–2m

B(b – m, d – b + m)B(c – m, e – c + m)

×
∫ 1

0

∫ 1

0
ub–m–1(1 – uy)d–b+m–1vc–m–1(1 – vy)e–c+m–1

× F2(a; b, c; b – m, c – m; xuy, zvy) du dv.

Hence the proof is completed. Formula (37) can be proved in a similar way. �

Theorem 8 We have the following integral representations:

F3
D,y[a, b, c, d; e; x, w, z; y] =

ya–m

B(a – m, e – a + m)

∫ 1

0
ua–m–1(1 – uy)e–a+m–1

× F3
D(a, b, c, d; a – m; xuy, wuy, zuy) du (38)
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and

F3
D,y{a, b, c, d; e; x, w, z; y}

=
(1 – y)e–a+m

B(a – m, e – a + m)

∫ 1

0
ue–a+m–1(1 – u(1 – y)

)a–m–1

× F3
D
(
a, b, c, d; a – m; xu(1 – y), wu(1 – y), zu(1 – y)

)
du, (39)

for all
√

x +
√

w +
√

z < 1, where m < Re(a) < Re(e).

Proof Replacing the incomplete beta function By(a – m + n + k + r, e – a + m) in definition
(30) by its integral representation given by (11), we find that

F3
D,y[a, b, c, d; e; x, w, z; y] =

1
B(a – m, e – a + m)

∫ y

0
ta–m–1(1 – t)e–a+m–1

×
∞∑

n,k,r=0

(a)n+k+r(b)n(c)k(d)r

(a – m)n+k+r

(xt)n

n!
(wt)k

k!
(zt)r

r!
dt,

which can be written as

F3
D,y[a, b, c, d; e; x, w, z; y] =

ya–m

B(a – m, e – a + m)

∫ 1

0
ua–m–1(1 – uy)e–a+m–1

× F3
D(a, b, c, d; a – m; xuy, wuy, zuy) du,

whence the result. Formula (39) can be proved in a similar way. �

3 Incomplete Caputo fractional derivative operators
The classical Caputo fractional derivative is defined by

Dαf (z) :=
1

�(m – α)

∫ z

0
(z – v)m–α–1 dm

dvm f (v) dv,

where m – 1 < Re(α) < m, m ∈N.
Now, we introduce the incomplete Caputo fractional derivatives as

Cα
z
[
f (z); y

]
:=

1
�(m – α)

∫ yz

0
(z – v)m–α–1 dm

dvm f (v) dv (40)

and

Cα
z
{

f (z); y
}

:=
1

�(m – α)

∫ z

yz
(z – v)m–α–1 dm

dvm f (v) dv, (41)

where 0 ≤ y < 1 and m – 1 < Re(α) < m, m ∈ N. In the case y → 1–, (40) reduces to the
classical Caputo fractional derivative (similarly, as y → 0+, (41) reduces to the classical
Caputo fractional derivative).
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Now, we begin our investigation by calculating the incomplete Caputo fractional deriva-
tives of some elementary functions.

Theorem 9 Let m – 1 < Re(α) < m and Re(α) < Re(λ). Then

Cα
z
[
zλ; y

]
=

�(λ + 1)
�(λ – α + 1)

By(λ – m + 1, m – α)
B(λ – m + 1, m – α)

zλ–α (42)

and

Cα
z
{

zλ; y
}

=
�(λ + 1)

�(λ – α + 1)
B1–y(m – α,λ – m + 1)

B(λ – m + 1, m – α)
zλ–α . (43)

Proof By direct calculation we get

Cα
z
[
zλ; y

]
=

1
�(m – α)

∫ yz

0
(z – v)m–α–1 dm

dvm vλ dv

=
1

�(m – α)
�(λ + 1)

�(λ – m + 1)

∫ yz

0
(z – v)m–α–1vλ–m dv

=
zλ–α

�(m – α)
�(λ + 1)

�(λ – m + 1)
yλ–m+1

∫ 1

0
uλ–m(1 – uy)m–α–1 du

=
�(λ + 1)

�(λ – α + 1)
By(λ – m + 1, m – α)
B(λ – m + 1, m – α)

zλ–α .

Hence the proof is completed. Formula (43) can be proved in a similar way. �

The next theorem expresses the incomplete Caputo fractional derivative of an analytic
function.

Theorem 10 If f (z) is an analytic function on the disk |z| < ρ and has a power series ex-
pansion f (z) =

∑∞
n=0 anzn, then

Cα
z
[
zλ–1f (z); y

]
=

�(λ)
�(λ – α)

zλ–α–1
∞∑

n=0

an
(λ)n

(λ – m)n

By(λ – m + n, m – α)
B(λ – m, m – α)

zn (44)

and

Cα
z
{

zλ–1f (z); y
}

=
�(λ)

�(λ – α)
zλ–α–1

∞∑
n=0

an
(λ)n

(λ – m)n

B1–y(m – α,λ – m + n)
B(λ – m, m – α)

zn, (45)

where m – 1 < Re(α) < m.

Proof Using Theorem 9, we get

Cα
z
[
zλ–1f (z); y

]
=

∞∑
n=0

anCα
z
[
zλ+n–1; y

]

=
∞∑

n=0

an

(
1

�(m – α)

∫ yz

0
(z – v)m–α–1 dm

dvm vλ+n–1 dv
)
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=
�(λ)

�(λ – α)
zλ–α–1

∞∑
n=0

an
(λ)n

(λ – α)n

By(λ – m + n, m – α)
B(λ – m + n, m – α)

zn

=
�(λ)

�(λ – α)
zλ–α–1

∞∑
n=0

an
(λ)n

(λ – m)n

By(λ – m + n, m – α)
B(λ – m, m – α)

zn,

whence the result. Formula (45) can be proved in a similar way. �

The following theorems will be useful for finding the generating function relations.

Theorem 11 Let m – 1 < Re(λ – α) < m < Re(λ). Then

Cλ–α
z

[
zλ–1(1 – z)–μ; y

]
=

�(λ)
�(α)

zα–1
2F1

(
μ, [λ,α; y]; z

)
(46)

and

Cλ–α
z

{
zλ–1(1 – z)–μ; y

}
=

�(λ)
�(α)

zα–1
2F1

(
μ, {λ,α; y}; z

)
(47)

for |z| < 1.

Proof Using the power series expansion of (1 – z)–μ, we get

Cλ–α
z

[
zλ–1(1 – z)–μ; y

]
= Cλ–α

z

[
zλ–1

∞∑
n=0

(μ)n
zn

n!
; y

]

=
∞∑

n=0

(μ)n

n!
Cλ–α

z
[
zλ+n–1; y

]

=
∞∑

n=0

(μ)n

n!
�(λ + n)
�(α + n)

By(λ – m + n, m – λ + μ)
B(λ – m + n, m – λ + μ)

zα+n–1

=
�(λ)
�(α)

zα–1
∞∑

n=0

(μ)n(λ)n

(α)n

By(λ – m + n, m – λ + μ)
B(λ – m + n, m – λ + μ)

zn

n!

=
�(λ)
�(α)

zα–1
∞∑

n=0

(μ)n(λ)n

(λ – m)n

By(λ – m + n, m – λ + μ)
B(λ – m,α – λ + m)

zn

n!
.

Using (24), we get the result. Formula (47) can be proved in a similar way. �

Theorem 12 Let m – 1 < Re(λ – α) < m < Re(λ). Then

Cλ–α
z

[
zλ–1(1 – az)–γ (1 – bz)–β ; y

]
=

�(λ)
�(α)

zα–1F1[λ,γ ,β ;α; az; bz; y] (48)

and

Cλ–α
z

{
zλ–1(1 – az)–γ (1 – bz)–β ; y

}
=

�(λ)
�(α)

zα–1F1{λ,γ ,β ;α; az; bz; y} (49)

for |az| < 1 and |bz| < 1.
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Proof Using the power series expansions of (1 – az)–γ and (1 – bz)–β , we get

Cλ–α
z

[
zλ–1(1 – az)–γ (1 – bz)–β ; y

]

= Cλ–α
z

[ ∞∑
n,k=0

(γ )n

n!
(β)k

k!
anbkzλ+n+k–1; y

]

=
∞∑

n,k=0

(γ )n

n!
(β)k

k!
anbkCλ–α

z
[
zλ+n+k–1; y

]

=
∞∑

n,k=0

(γ )n

n!
(β)k

k!
anbk �(λ + n + k)By(λ – m + n + k, m – λ + α)

�(λ – m + n + k)�(m – λ + α)
zα+n+k–1

=
�(λ)
�(α)

zα–1
∞∑

n,k=0

(λ)n+k(γ )n(β)k

(λ – m)n+k

By(λ – m + n + k, m – λ + α)
B(λ – m, m – λ + α)

(az)n

n!
(bz)k

k!
.

Using (26), we get the result. Formula (49) can be proved in a similar way. �

Theorem 13 Let m – 1 < Re(λ – α) < m < Re(λ). Then

Cλ–α
z

[
zλ–1(1 – az)–γ (1 – bz)–β (1 – cz)–μ; y

]

=
�(λ)
�(α)

zα–1F3
D,y[λ,γ ,β ,μ;α; az; bz; cz; y] (50)

and

Cλ–α
z

{
zλ–1(1 – az)–γ (1 – bz)–β (1 – cz)–μ; y

}

=
�(λ)
�(α)

zα–1F3
D,y{λ,γ ,β ,μ;α; az; bz; cz; y} (51)

for |az| < 1, |bz| < 1, and |cz| < 1.

Proof Using the power series expansions of (1 – az)–γ , (1 – bz)–β , and (1 – cz)–μ, we
get

Cλ–α
z

[
zλ–1(1 – az)–γ (1 – bz)–β (1 – cz)–μ; y

]

= Cλ–α
z

[ ∞∑
n,k,r=0

(γ )n

n!
(β)k

k!
(μ)r

r!
anbkcrzλ+n+k+r–1; y

]

=
∞∑

n,k,r=0

(γ )n

n!
(β)k

k!
(μ)r

r!
anbkcrCλ–α

z
[
zλ+n+k+r–1; y

]

=
∞∑

n,k,r=0

(γ )n

n!
(β)k

k!
(μ)r

r!
anbkcr

× �(λ + n + k + r)By(λ – m + n + k + r, m – λ + α)
�(λ – m + n + k + r)�(m – λ + α)

zα+n+k+r–1
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=
�(λ)
�(α)

zα–1
∞∑

n,k,r=0

(λ)n+k+r(γ )n(β)k(μ)r

(λ – m)n+k+r

× By(λ – m + n + k + r, m – λ + α)
B(λ – m, m – λ + α)

(az)n

n!
(bz)k

k!
(cz)r

r!
.

Using (30), we get the result. Formula (51) can be proved in a similar way. �

Theorem 14 Let m – 1 < Re(λ – α) < m < Re(λ) and m < Re(β) < Re(γ ). Then

Cλ–α
z

[
zλ–1(1 – z)–μ

2F1

(
μ, [β ,γ ; y];

x
1 – z

)
; y

]

=
�(λ)
�(α)

zα–1F2[μ,β ,λ;γ ,α; x, z; y] (52)

and

Cλ–α
z

{
zλ–1(1 – z)–μ

2F1

(
μ, {β ,γ ; y}; x

1 – z

)
; y

}

=
�(λ)
�(α)

zα–1F2{μ,β ,λ;γ ,α; x, z; y} (53)

for |x| + |z| < 1.

Proof Using the power series expansion of (1 – z)–μ, we get

Cλ–α
z

[
zλ–1(1 – z)–μ

2F1

(
μ, [β ,γ ; y];

x
1 – z

)
; y

]

= Cλ–α
z

[
zλ–1(1 – z)–μ

∞∑
n=0

(μ)n(β)n

(β – m)nn!
By(β – m + n,γ – β + m)

B(β – m,γ – β + m)

(
x

1 – z

)n

; y

]

= Cλ–α
z

[
zλ–1

∞∑
n=0

(μ)n(β)n

(β – m)n

By(β – m + n,γ – β + m)
B(β – m,γ – β + m)

xn

n!
(1 – z)–μ–n; y

]

=
∞∑

n=0

(μ)n(β)n

(β – m)n

By(β – m + n,γ – β + m)
B(β – m,γ – β + m)

xn

n!
Cλ–α

z
[
zλ–1(1 – z)–μ–n; y

]

=
�(λ)
�(α)

zα–1
∞∑

n,k=0

[
(μ)n+k(β)n(λ)k

(β – m)n(λ – m)k

By(β – m + n,γ – β + m)
B(β – m,γ – β + m)

× By(λ – m + k,μ – λ + m)
B(λ – m,μ – λ + m)

xn

n!
zk

k!

]
.

Using (28), we get the result. Formula (53) can be proved in a similar way. �

4 Main results
In this section, we give linear and bilinear generating relations for the new type incomplete
Gauss hypergeometric functions by using the relations obtained in (46), (47), (48), (49),
(52), and (53).
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Theorem 15 Let m – 1 < Re(λ – α) < m < Re(λ). Then

∞∑
n=0

(μ)n

n! 2F1
(
μ + n, [λ,α; y]; z

)
tn = (1 – t)–μ

2F1

(
μ, [λ,α; y];

z
1 – t

)
(54)

and

∞∑
n=0

(μ)n

n! 2F1
(
μ + n, {λ,α; y}; z

)
tn = (1 – t)–μ

2F1

(
μ, {λ,α; y}; z

1 – t

)
, (55)

where |z| < min{1, |1 – t|}.

Proof Taking into account the identity

[
(1 – z) – t

]–μ = (1 – t)–μ

(
1 –

z
1 – t

)–μ

and expanding the left-hand side, we get for |t| < |1 – z| that

∞∑
n=0

(μ)n

n!
(1 – z)–μ

(
t

1 – z

)n

= (1 – t)–μ

(
1 –

z
1 – t

)–μ

.

If we multiply both sides with zλ–1 and apply the incomplete Caputo fractional derivative
operator Cλ–α

z , we get

Cλ–α
z

[ ∞∑
n=0

(μ)ntn

n!
zλ–1(1 – z)–μ–n; y

]
= Cλ–α

z

[
(1 – t)–μzλ–1

(
1 –

z
1 – t

)–μ

; y
]

.

Since |t| < |1 – z| and Re(λ) > Re(μ) > 0, it is possible to change the order of the summation
and differentiation, so that

∞∑
n=0

(μ)n

n!
Cλ–α

z
[
zλ–1(1 – z)–μ–n; y

]
tn = (1 – t)–μCλ–α

z

[
zλ–1

(
1 –

z
1 – t

)–μ

; y
]

.

So we get the result after using Theorem 11 on both sides. Formula (55) can be proved in
a similar way. �

Theorem 16 Let m – 1 < Re(λ – α) < m < Re(λ). Then

∞∑
n=0

(μ)n

n! 2F1
(
ρ – n, [λ,α; y]; z

)
tn = (1 – t)–μF1

[
ρ,μ,λ;α; z;

–zt
1 – t

; y
]

(56)

and

∞∑
n=0

(μ)n

n! 2F1
(
ρ – n, {λ,α; y}; z

)
tn = (1 – t)–μ

1

{
ρ,μ,λ;α; z;

–zt
1 – t

; y
}

, (57)

where |t| < 1
1+|z| .
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Proof Considering

[
1 – (1 – z)t

]–μ = (1 – t)–μ

(
1 +

zt
1 – t

)–μ

and expanding the left-hand side, we get

∞∑
n=0

(μ)n

n!
(1 – z)ntn = (1 – t)–μ

(
1 –

–zt
1 – t

)–μ

for |t| < |1 – z|. Multiplying both sides with zλ–1(1 – z)–ρ and applying the incomplete
Caputo fractional derivative operator Cλ–α

z , we get

Cλ–α
z

[ ∞∑
n=0

(μ)n

n!
zλ–1(1 – z)–ρ+ntn; y

]

= Cλ–α
z

[
(1 – t)–μzλ–1(1 – z)–ρ

(
1 –

–zt
1 – t

)–μ

; y
]

.

Since |zt| < |1 – t| and Re(λ) > Re(α) > 0, it is possible to change the order of summation
and differentiation:

∞∑
n=0

(μ)n

n!
Cλ–α

z
[
zλ–1(1 – z)–ρ+n; y

]
tn

= (1 – t)–μCλ–α
z

[
zλ–1(1 – z)–ρ

(
1 –

–zt
1 – t

)–μ

; y
]

.

So we get the result after using Theorems 11 and 12. Formula (57) can be proved in a
similar way. �

Theorem 17 Let m – 1 < Re(ρ – γ ) < m < Re(ρ) and m < Re(λ) < Re(α). Then

∞∑
n=0

(μ)n

n! 2F1
(
μ + n, [λ,α; y]; z

)
2F1

(
–n, [ρ,γ ; y]; x

)
tn

= (1 – t)–μF2

[
μ,λ,ρ;α,γ ; z,

–xt
1 – t

; y
]

(58)

and

∞∑
n=0

(μ)n

n! 2F1
(
μ + n, {λ,α; y}; z

)
2F1

(
–n, {ρ,γ ; y}; x

)
tn

= (1 – t)–μF2

{
μ,λ,ρ;α,γ ; z,

–xt
1 – t

; y
}

. (59)

Proof Replacing t by (1 – x)t in (54) and then multiplying both sides with xρ–1, we get

∞∑
n=0

(μ)n

n! 2F1
(
μ + n, [λ,α; y]; z

)
xρ–1(1 – x)ntn

= xρ–1[1 – (1 – x)t
]–μ

2F1

(
μ, [λ,α; y];

z
1 – (1 – x)t

)
.
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Applying the fractional derivative Cρ–γ
x to both sides and changing the order, we find

∞∑
n=0

(μ)n

n! 2F1
(
μ + n, [λ,α; y]; z

)
Cρ–γ

x
[
xρ–1(1 – x)n; y

]
tn

= Cρ–γ
x

[
xρ–1[1 – (1 – x)t

]–μ
2F1

(
μ, [λ,α; y];

z
1 – (1 – x)t

)
; y

]
,

where |z| < 1, | 1–x
1–z t| < 1, and | z

1–t | + | xt
1–t | < 1. Writing the equality as

∞∑
n=0

(μ)n

n! 2F1
(
μ + n, [λ,α; y]; z

)
Cρ–γ

x
[
xρ–1(1 – x)n; y

]
tn

= (1 – t)–μCρ–γ
x

[
xρ–1

[
1 –

–xt
1 – t

]–μ

2F1

(
μ, [λ,α; y];

z
1 – –xt

1–t

)
; y

]

and using Theorems 11 and 14, we get the desired result. Formula (59) can be proved in a
similar way. �

5 Graphical and tabular representation for 2F1(a, [b, c; y]; x)
In this section, we take m = 2, a = 0.8, b = 3.3, c = 3.5, xi+1 = 0.001 + i(0.05257895),
i = 0, 1, . . . , 19 and evaluate the values of 2F1(a, [b, c; y]; x) by using Wolfram Mathemat-
ica (see Table 1). Figure 1 illustrates the graph of integral representation of the incomplete
hypergeometric function 2F1(a, [b, c; y]; x).

6 Conclusion
Recently, in [17], we defined incomplete Pochhammer ratios in terms of the incomplete
beta function. Then, with the help of this incomplete Pochhammer ratios, we introduced
new incomplete Gauss, confluent hypergeometric, and Appell’s functions. Furthermore,
incomplete Riemann–Liouville fractional derivative operators were introduced. In our

Table 1 Values for y = 0.4, y = 0.6, y = 0.8, and y = 1

xi y = 0.4 y = 0.6 y = 0.8 y = 1

x1 0.579398 0.816125 0.958368 1.00075
x2 0.602232 0.848289 0.996139 1.0402
x3 0.62723 0.8835 1.03749 1.08337
x4 0.65473 0.92236 1.08297 1.13087
x5 0.685151 0.965086 1.13329 1.18342
x6 0.71901 1.01278 1.1893 1.2419
x7 0.756961 1.06624 1.25207 1.30745
x8 0.799839 1.12663 1.323 1.38151
x9 0.848732 1.1955 1.40387 1.46596
x10 0.905085 1.27488 1.49708 1.56329
x11 0.970863 1.36753 1.60588 1.67691
x12 1.04882 1.47734 1.73483 1.81155
x13 1.14294 1.60991 1.8905 1.97412
x14 1.25923 1.77372 2.08286 2.17499
x15 1.40729 1.98227 2.32776 2.43071
x16 1.60346 2.25859 2.65224 2.76954
x17 1.87841 2.64588 3.10703 3.24445
x18 2.29816 3.23713 3.80134 3.96946
x19 3.0403 4.28248 5.02888 5.2513
x20 4.85056 6.83238 8.0232 8.37805
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Figure 1 Integral representation of the incomplete
hypergeometric function 2F1(a, [b, c; y]; x)

present investigation, we give definitions of an incomplete Caputo fractional derivative
operator. To show the use of this incomplete Caputo fractional derivative operator, we
introduce new type versions of incomplete Gauss, Appell, and Lauricella hypergeomet-
ric functions. Finally, we obtain linear and bilinear generating relations for the new type
versions of incomplete hypergeometric functions.

Some advantages of the study are as follows:
1. The usual Caputo fractional derivative operator is singular, but the incomplete

Caputo fractional derivative operator

Cα
z
[
f (z); y

]
=

1
�(μ – α)

∫ yz

0
(z – ν)m–α–1 dm

dνm f (ν) dν,

0 ≤ y < 1, m – 1 < Re(α) < m,

is nonsingular.
2. The incomplete hypergeometric functions were defined in [27] by (8) and (9).

Fractional calculus properties of these functions cannot be given. Furthermore, the
generating functions cannot be obtained by using the fractional calculus approach. In
this paper, we solved these problems with the help of our new definitions.

We believe that the approach used here to define the incomplete hypergeometric func-
tions will be used in the definitions of multivariable incomplete hypergeometric functions.
In the study of their fractional calculus properties the new incomplete Caputo fractional
derivative operators will be the main tools. Finally, we believe that these new defined hy-
pergeometric functions and incomplete Caputo fractional derivative operators will be po-
tentially useful in engineering and applied sciences and will help to investigate interesting
phenomena arising in the real-world problems.
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