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Abstract
We propose and study a nonautonomous harvesting Lotka–Volterra commensalism
model incorporating partial closure for the populations. By using the differential
inequality theory we obtain sufficient conditions that ensure the extinction, partial
survival, and permanence of the system. By applying the fluctuation lemma we
establish sufficient conditions that ensure the extinction of one of the components
and the stability of the the other one. For the permanent case, by constructing a
suitable Lyapunov function we obtain some sufficient conditions for the globally
attractivity of the positive solution of the system. Examples, together with their
numeric simulations, show the feasibility of the main results. To ensure the stable
coexistence of the two species, the harvesting area should be carefully restricted.
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1 Introduction
During the last decade, many scholars [1–11] investigated the dynamic behavior of the
mutualism model, and many excellent results were obtained. For example, Chen, Xie, and
Chen [1] showed that the stage structure of the species can lead to the extinction of the
mutualism model, despite the cooperation between the species; Chen, Chen, and Li [3]
showed that the feedback control variables have no influence on the persistent property
of a kind of mutualism model, and in this direction, some similar results was established
in [6, 8]; several scholars [2, 4, 7, 10, 11] investigated the stability property of the posi-
tive equilibrium of the cooperative system, Xie, Chen, and Xue [10] showed that if the
harvesting effort is limited, then the cooperative system admits a unique positive equilib-
rium, which is globally attractive.

Commensalism, which describes a symbiotic interaction between two populations
where one population gets benefit from the other while the other is neither harmed nor
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benefited due to the interaction with the previous species [12], has not arisen the atten-
tion of the scholars, since the model seems simple and can be seen as a particular case
of the mutualism model. Only recently scholars paid attention to such a kind of relation-
ship; see [12–20] and the references therein. Topics such as the existence of the positive
periodic solution [17], the existence of a positive almost periodic solution [14], the exis-
tence and stability of the positive equilibrium [16], the influence of the impulsive [15] were
investigated, and many excellent results were obtained. However, as was pointed out by
Georgescu and Maxin [20], “One would think that the stability of the coexisting equilibria
for two-species models of commensalism would follow immediately from the correspond-
ing results for models of mutualism, when these results are available, . . . , However, this is
not actually the case”. Hence, it is necessary to do some further works on commensalism
model.

Sun and Sun [18] proposed the following commensalism system:

dx
dt

= r1x
(

1 –
x

K1
+ α

y
K1

)
,

dy
dt

= r2y
(

1 –
y

K2

)
,

(1.1)

where r1, r2, K1, K2, α are all positive constants. By linearizing the system at equilibrium
the authors investigated the local stability property of the equilibria of the system. They
showed that the unique positive equilibrium of the system is locally asymptotically stable,
whereas the other three boundary equilibria are all unstable.

Recently, Xue, Han, Yang et al. [21] argued that the nonautonomous model is more suit-
able, since the coefficients of the system vary with time. They proposed the following two
species nonautonomous commensalism model:

dN1

dt
= N1

(
a(t) – b(t)N1 + c(t)N2

)
,

dN2

dt
= N2

(
d(t) – e(t)N2

)
.

(1.2)

The authors gave a set of sufficient conditions that ensure the existence of a unique globally
attractive positive periodic solution.

On the other hand, to obtain the resource for the development of the human being,
harvest of the species is necessary. During the last decades, many scholars investigated the
influence of the harvesting to predator–prey or competition system; see [22–27] and the
references therein. Chakraborty, Das, and Kar [24] argued that it is necessary to harvest the
population but harvesting should be regulated, so that both the ecological sustainability
and conservation of the species can be implemented in a long run. They proposed the
following harvesting predator–prey model:

dx
dt

= rx
(

1 –
x
K

)
–

αxy
a + bx + cy

– q1mEx,

dy
dt

= sy
(

1 –
y
L

)
+

βxy
a + bx + cy

– q2mEy.
(1.3)

Some interesting results concerned with the boundedness of the system, existence of equi-
libria, and local and global stability of the positive equilibrium were obtained.
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Stimulated by the works of Xue, Han, Yang et al. [21] and Chakraborty, Das, and Kar [24],
in this paper, we propose the following nonautonomous nonselective harvesting Lotka–
Volterra commensalism model incorporating partial closure for the populations:

dN1(t)
dt

= N1(t)
(
a(t) – b(t)N1(t) + c(t)N2(t)

)
– q1(t)F(t)m(t)N1(t),

dN2(t)
dt

= N2(t)
(
d(t) – e(t)N2(t)

)
– q2(t)F(t)m(t)N2(t),

N1(0) > 0, N2(0) > 0,

(1.4)

where a(t), b(t), c(t), d(t), e(t), q1(t), q2(t), F(t), and m(t) are positive constants, and a(t),
b(t), c(t), d(t), e(t) have the same meaning as in system (1.2); F(t) is the combined fishing
effort used to harvest, and m(t) (0 < m(t) < 1) is the fraction of the stock available for
harvesting.

As for as an ecosystem is concerned, there are the most important three topics: perma-
nence, extinction, and global attractivity, which reflect the existence of the species in the
long run, the extinction of the species, and the species maintained in a stable state. During
the last decades, there are many excellent results on these three topics; see [28–37] and
the references therein. For example, Shi, Li, and Chen [30] studied the extinction property
of a competition system with infinite delay and feedback controls; Chen, Xie, and Li [31]
investigated the partial extinction of the predator–prey model with stage structure; Chen,
Chen, and Huang [32] investigated the extinction property of the nonlinear competition
system with Beddington–DeAngelis functional response; Xie, Xue, Wu et al. [33] studied
the extinction property of a nonlinear toxic substance competition system; Chen, Ma, and
Zhang [34] showed that if the refuge is restricted to suitable area, then the Lotka–Volterra
predato–prey system can admit a unique positive equilibrium, which is globally attrac-
tive. In this paper, we also focus our attention on the persistency, extinction, and stability
of system (1.4).

The paper is arranged as follows. We will investigate the extinction, partial survival and
persistency of system (1.4) in the next section. In Sect. 3, we investigate the global stability
property of the solutions of the system. Two examples, together with their numeric sim-
ulations, are presented in Sect. 4 to show the feasibility of the main results. We end this
paper by a brief discussion.

2 Extinction and persistency of the system
For the rest of the paper, for a bounded continuous function g defined on R, let

gL = inf
t∈[0,+∞)

g(t) and gM = sup
t∈[0,+∞)

g(t).

Lemma 2.1 ([28]) If a > 0, b > 0, and ẋ ≥ x(b – ax) for t ≥ 0 and x(0) > 0, then

lim inf
t→+∞ x(t) ≥ b

a
.

If a > 0, b > 0, and ẋ ≤ x(b – ax) for t ≥ 0 and x(0) > 0, then

lim sup
t→+∞

x(t) ≤ b
a

.
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Lemma 2.2 The domain R2
+ = {(x, y)|x > 0, y > 0} is invariant with respect to (1.4).

Proof Since

N1(t) = N1(0) exp

{∫ t

0
�1(s) ds

}
> 0, N2(t) = N2(0) exp

{∫ t

0
�2(s) ds

}
> 0,

where

�1(s) = a(s) – q1(s)F(s)m(s) – b(s)N1(s) + c(s)N2(s),

�2(s) = d(s) – e(s)N2(s) – q2(s)F(s)m(s),

the assertion of the lemma immediately follows for all t ∈ [0, +∞). �

Theorem 2.1 Let (N1(t), N2(t))T be any solution of system (1.4). Assume that

dM < qL
2FLmL, aM < qL

1FLmL. (2.1)

Then

lim
t→+∞ N1(t) = 0, lim

t→+∞ N2(t) = 0,

that is, both species will be driven to extinction.

Proof It follows from (2.1) that there exists a small enough ε > 0 such that

aM + cMε < qL
1FLmL. (2.2)

Let (N1(t), N2(t))T be any solution of system (1.4). From the second equation of system
(1.4) it follows that

Ṅ2(t) ≤ (
dM – qL

2FLmL)N2(t). (2.3)

So

N2(t) ≤ N2(0) exp
{(

dM – qL
2FLmL)t

} → 0 as t → 0. (2.4)

For ε > 0 as in (2.2), it follows from (2.4) that there exists a large enough T1 such that

N2(t) < ε for all t ≥ T1. (2.5)

From the first equation and (2.5) it follows that

Ṅ1(t) ≤ N1(t)
(
aM + cMε – qL

1FLmL – bLN1(t)
)
. (2.6)

So

N1(t) ≤ N1(T1) exp
{(

aM + cMε – qL
1FLmL)(t – T1)

} → 0 as t → 0. (2.7)

This ends the proof of Theorem 2.1. �
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Theorem 2.2 Let (N1(t), N2(t))T be any solution of system (1.4). Assume that

dM < qL
2FLmL, aL > qM

1 FMmM. (2.8)

Then

aL – qM
1 FMmM

bM ≤ lim inf
t→+∞ N1(t) ≤ lim sup

t→+∞
N1(t) ≤ aM – qL

1FLmL

bL ,

lim
t→+∞ N2(t) = 0,

that is, the first species is permanent, and the second species will be driven to extinction.

Proof From the first inequality of (2.8), similarly to the analysis of (2.3)–(2.4), for any so-
lution (N1(t), N2(t))T of system (1.4), we obtain

N2(t) ≤ N2(0) exp
{(

dM – qL
2FLmL)t

} → 0 as t → 0. (2.9)

For ε > 0 small enough, it follows from (2.9) that there exists a large enough T2 such that

N2(t) < ε for all t ≥ T2. (2.10)

From the first equation and (2.10) it follows that

Ṅ1(t) ≤ N1(t)
(
aM + cMε – qL

1FLmL – bLN1(t)
)
. (2.11)

It follows from Lemma 2.1 and (2.11) that

lim sup
t→+∞

N1(t) ≤ aM + cMε – qL
1FLmL

bL . (2.12)

Since ε > 0 is an arbitrary small positive constant, letting ε → 0 in (2.12) leads to

lim sup
t→+∞

N1(t) ≤ aM – qL
1FLmL

bL . (2.13)

From the first equation we also have

Ṅ1(t) ≥ N1(t)
(
aL – qM

1 FMmM – bMN1(t)
)
. (2.14)

It follows from Lemma 2.1 and (2.14) that

lim inf
t→+∞ N1(t) ≥ aL – qM

1 FMmM

bM . (2.15)

Relations (2.9), (2.13), and (2.15) show that the statement of Theorem 2.2 holds. This ends
the proof of the theorem. �
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Theorem 2.3 Let (N1(t), N2(t))T be any solution of system (1.4). Assume that

dL > qM
2 FMmM, aM + cM dM – qL

2FLmL

eL < qL
1FLmL. (2.16)

Then

lim
t→+∞ N1(t) = 0,

dL – qM
2 FMmM

eM ≤ lim inf
t→+∞ N2(t) ≤ lim sup

t→+∞
N2(t) ≤ dM – qL

2FLmL

eL ,

that is, the second species is permanent, whereas the first species will be driven to extinction.

Proof It follows from (2.16) that there exists a small enough ε > 0 such that

aM + cM
(

dM – qL
2FLmL

eL + ε

)
< qL

1FLmL. (2.17)

Let (N1(t), N2(t))T be any positive solution of system (1.4). From the second equation of
system (1.4) it follows that

Ṅ2(t) ≤ N2(t)
(
dM – qL

2FLmL – eLN2(t)
)
. (2.18)

It follows from Lemma 2.1 and (2.18) that

lim sup
t→+∞

N2(t) ≤ dM – qL
2FLmL

eL . (2.19)

For ε > 0 as in (2.17), it follows from (2.19) that there exists T3 > 0 such that

N2(t) <
dM – qL

2FLmL

eL + ε for all t ≥ T3. (2.20)

Again, from the second equation of system (1.4) we also have

Ṅ2(t) ≥ N2(t)
(
dL – qM

2 FMmM – eMN2(t)
)
. (2.21)

It follows from Lemma 2.1 and (2.21) that

lim inf
t→+∞ N2(t) ≥ dL – qM

2 FMmM

eM . (2.22)

From the first equation and (2.20), for t ≥ T3, it follows that

Ṅ1(t) ≤
(

aM + cM
(

dM – qL
2FLmL

eL + ε

)
– qL

1FLmL
)

N1(t). (2.23)

So

N1(t) ≤ N1(T3) exp
{
�ε

1(t – T3)
} → 0 as t → +∞, (2.24)
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where

�ε
1 = aM + cM

(
dM – qL

2FLmL

eL + ε

)
– qL

1FLmL.

It immediately follows from (2.19), (2.22), and (2.24) that the statement of Theorem 2.3
holds. This ends the proof of the theorem. �

Theorem 2.4 Let (N1(t), N2(t))T be any solution of system (1.4). Assume that

dL > qM
2 FMmM, aL + cL dL – qM

2 FMmM

eM > qM
1 FMmM. (2.25)

Then the system is permanent, that is, there exist positive constants mi, Mi, i = 1, 2, inde-
pendent of the solutions of (1.4), such that

m1 ≤ lim inf
t→+∞ N1(t) ≤ lim sup

t→+∞
N1(t) ≤ M1,

m2 ≤ lim inf
t→+∞ N2(t) ≤ lim sup

t→+∞
N2(t) ≤ M2,

where

m1 =
aL + cL dL–qM

2 FMmM

eM – qM
1 FMmM

bM ;

M1 =
aM + cM dM–qL

2 FLmL

eL – qL
1FLmL

bL ;

m2 =
dL – qM

2 FMmM

eM ; M2 =
dM – qL

2FLmL

eL .

(2.26)

Proof It follows from (2.25) that, indeed, for enough small ε > 0, namely, for

ε <
aL + cL( dL–qM

2 FMmM

eM ) – qM
1 FMmM

cL , (2.27)

we have the inequality

aL + cL
(

dL – qM
2 FMmM

eM – ε

)
> qM

1 FMmM. (2.28)

From (2.28) we can easily see that

aM + cM
(

dM – qL
2FLmL

eL + ε

)
> qL

1FLmL. (2.29)

Let (N1(t), N2(t))T be any solution of system (1.4). From the second equation of system
(1.4), applying the first inequality of (2.25), similarly to the analysis of (2.18)–(2.22), we
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can show that

m2
def=

dL – qM
2 FMmM

eM ≤ lim inf
t→+∞ N2(t)

≤ lim sup
t→+∞

N2(t) ≤ dM – qL
2FLmL

eL
def= M2. (2.30)

For any positive constant ε > 0 small enough, which satisfies (2.27) and ε < dL–qM
2 FMmM

eM ,
there exists a large enough T4 > 0 such that

dL – qM
2 FMmM

eM – ε < N2(t) <
dM – qL

2FLmL

eL + ε for all t ≥ T4. (2.31)

From the first equation of (1.4) and (2.31), for t ≥ T4, it follows that

Ṅ1(t) ≤
(

aM + cM
(

dM – qL
2FLmL

eL + ε

)
– qL

1FLmL – bLN1(t)
)

N1(t). (2.32)

Applying Lemma 2.1 to (2.32) leads to

lim sup
t→+∞

N1(t) ≤ aM + cM( dM–qL
2 FLmL

eL + ε) – qL
1FLmL

bL .

Setting ε → 0 in this inequality leads to

lim sup
t→+∞

N1(t) ≤ aM + cM dM–qL
2 FLmL

eL – qL
1FLmL

bL
def= M1. (2.33)

From the first equation of (1.4) and (2.31), for t ≥ T4, we also have

Ṅ1(t) ≥
(

aL + cL
(

dL – qM
2 FMmM

eM – ε

)
– qM

1 FMmM – bMN1(t)
)

N1(t). (2.34)

Applying Lemma 2.1 to (2.34) leads to

lim inf
t→+∞ N1(t) ≥ aL + cL( dL–qM

2 FMmM

eM – ε) – qM
1 FMmM

bM .

Setting ε → 0 in this inequality leads to

lim inf
t→+∞ N1(t) ≥ aL + cL dL–qM

2 FMmM

eM – qM
1 FMmM

bM
def= m1. (2.35)

Relations (2.30), (2.33), and (2.35) show that the statement of Theorem 2.4 holds. This
ends the proof of the theorem. �

3 Global attractivity
In Sect. 2, we discussed the persistent or extinction property of the system, which means
that the solutions of the system are bounded above and below by some positive constants
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or the species will be driven to extinction. One of the interesting problems is to give suf-
ficient conditions to ensure the global attractivity of the positive solution of the system.
Before we state the main results of this section, we need to introduce two useful lemmas.

Lemma 3.1 (Fluctuation lemma, [35, Lemma 4]) Let x(t) be a bounded differentiable func-
tion on (α,∞). Then there exist sequences τn → ∞ and σn → ∞ such that

(a) ẋ(τn) → 0 and x(τn) → lim sup
t→∞

x(t) = x as n → ∞,

(b) ẋ(σn) → 0 and x(σn) → lim inf
t→∞ x(t) = x as n → ∞.

For the logistic equation

ẋ(t) = x(t)
(
r(t) – a(t)x(t)

)
, (3.1)

from Lemma 2.1 of Zhao and Chen [36] we have the following:

Lemma 3.2 Suppose that r(t) and a(t) are bounded above and below by positive constants.
Then any positive solutions of Eq. (3.1) are defined on [0, +∞), bounded above and below
by positive constants, and globally attractive.

Theorem 3.1 Under the assumptions of Theorem 2.2, let N(t) = (N1(t), N2(t))T be any
positive solution of system (1.4). Then the species N2 will be driven to extinction, that is,
N2(t) → 0 as t → +∞, and N1(t) → N∗

1 (t) as t → +∞, where N∗
1 (t) is any positive solution

of

dN1(t)
dt

= N1(t)
(
a(t) – q1(t)F(t)m(t) – b(t)N1(t)

)
. (3.2)

Proof Let N(t) = (N1(t), N2(t))T be any positive solution of system (1.4). By Theorem 2.2
the species N2 will be driven to extinction, that is, N2(t) → 0 as t → +∞. To finish the
proof of Theorem 3.1, it suffices to show that N1(t) → N∗

1 (t) as t → +∞, where N∗
1 (t) is

any positive solution of system (3.2). It follows from Theorem 2.2 and Lemma 3.2 that
there exists T5 > 0 such that

1
2

aL – qM
1 FMmM

bM < N1(t) <
3
2

aM – qL
1FLmL

bL

and

η1 < N∗
1 (t) < η2,

where ηi, i = 1, 2, are two positive constants independent of the solution of system (3.2).
Let w(t) = (N1(t))–1, w∗(t) = (N∗

1 (t))–1, and z(t) = w(t) – w∗(t). Then

ẇ(t) = –
(
a(t) – q1(t)F(t)m(t)

)
w(t) + b(t) + c(t)w(t)N2(t),

ẇ∗(t) = –
(
a(t) – q1(t)F(t)m(t)

)
w∗(t) + b(t).
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It follows that z satisfies

z′(t) = –
(
a(t) – q1(t)F(t)m(t)

)
z(t) + c(t)w(t)N2(t), t ≥ T5. (3.3)

From this analysis, for t ≥ T5, we have

0 <
(

3
2

aM – qL
1FLmL

bL

)–1

< w(t) <
(

1
2

aL – qM
1 FMmM

bM

)–1

and

0 < η–1
2 ≤ w∗(t) ≤ η–1

1 .

Thus z(t) is a bounded differentiable function. By the fluctuation lemma (Lemma 3.1) there
exist sequences τn → ∞ and σn → ∞ such that z(τn) → z, z′(τn) → 0; z(σn) → z, z′(σn) →
0 as n → ∞. We will show that z = z = 0. From (3.3) we have

z(t) =
c(t)w(t)N2(t)

a(t) – q1(t)F(t)m(t)
–

z′(t)
a(t) – q1(t)F(t)m(t)

.

Noting that

0 <
c(t)w(t)

a(t) – q1(t)F(t)m(t)
≤ cM( 1

2
aL–qM

1 FMmM

bM )–1

aL – qM
1 FMmM ,

0 <
1

a(t) – q1(t)F(t)m(t)
≤ 1

aL – qM
1 FMmM ,

and limt→∞ N2(t) = 0, we can see that

lim
n→∞

c(τn)w(τn)N2(τn)
a(τn) – q1(τn)F(τn)m(τn)

= lim
n→∞

c(σn)w(σn)N2(σn)
a(σn) – q1(σn)F(σn)m(σn)

= lim
n→∞

z′(τn)
a(τn) – q1(τn)F(τn)m(τn)

= lim
n→∞

z′(σn)
a(σn) – q1(σn)F(σn)m(σn)

= 0.

Hence z = z = 0. Since

∣∣N1(t) – N∗
1 (t)

∣∣ =
∣∣w∗(t) – w(t)

∣∣(N∗
1 (t)N1(t)

)

and both N1(t) and N∗
1 (t) are bounded functions, we have

lim
t→∞ N1(t) = N∗

1 (t),

as required. This completes the proof. �
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Theorem 3.2 Under the assumptions of Theorem 2.3, let N(t) = (N1(t), N2(t))T be any
positive solution of system (1.4). Then the species N1 will be driven to extinction, that is,
N1(t) → 0 as t → +∞, and N2(t) → N∗

2 (t) as t → +∞, where N∗
2 (t) is any positive solution

of

dN2(t)
dt

= N2(t)
(
d(t) – q2(t)F(t)m(t) – e(t)N2(t)

)
. (3.4)

Proof Let N(t) = (N1(t), N2(t))T be any positive solution of system (1.4). By Theorem 2.3
the species N1 will be driven to extinction, that is, N1(t) → 0 as t → +∞. On the other
hand, noting that the second equation of system (1.4) is independent of N1(t), from
Lemma 3.2 it immediately follows that N2(t) → N∗

2 (t) as t → +∞, where N∗
2 (t) is any pos-

itive solution of system (3.4). This ends the proof of Theorem 3.2. �

Theorem 3.3 In addition to (2.25), assume further that

eL > cM. (3.5)

Let N(t) = (N1(t), N2(t))T and N∗(t) = (N∗
1 (t), N∗

2 (t))T be any two positive solutions of system
(1.4). Then

lim
t→+∞

(∣∣N1(t) – N∗
1 (t)

∣∣ +
∣∣N2(t) – N∗

2 (t)
∣∣) = 0.

Proof Let N(t) = (N1(t), N2(t))T and N∗(t) = (N∗
1 (t), N∗

2 (t))T be any two positive solutions
of system (1.4). For any small enough positive constant ε > 0, it then follows from Theo-
rem 2.4 that there exists a large enough T6 such that, for all t ≥ T6,

N1(t), N∗
1 (t) < M1 + ε, N2(t), N∗

2 (t) < M2 + ε,

N1(t), N∗
1 (t) > m1 – ε, N2(t), N∗

2 (t) > m2 – ε.
(3.6)

Now let

V (t) =
∣∣ln N1(t) – ln N∗

1 (t)
∣∣ +

∣∣ln N2(t) – ln N∗
2 (t)

∣∣.
Then, by (3.5), for t > T6, we have

D+V (t) ≤ –b(t)
∣∣N1(t) – N∗

1 (t))
∣∣ + c(t)

∣∣N2(t) – N∗
2 (t)

∣∣
– e(t)

∣∣N2(t) – N∗
2 (t)

∣∣
≤ –bL∣∣N1(t) – N∗

1 (t))
∣∣ –

(
eL – cM)∣∣N2(t) – N∗

2 (t)
∣∣. (3.7)

Integrating both sides of (3.7) on the interval [T6, t), we have

V (t) – V (T6)

≤
∫ t

T6

[
–bL∣∣N1(s) – N∗

1 (s)
∣∣ –

(
eL – cM)∣∣N2(s) – N∗

2 (s)
∣∣]ds for t ≥ T6. (3.8)
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It follows from (3.8) that

V (t) + min
{

bL, eL – cM}∫ t

T6

[∣∣N1(s) – N∗
1 (s)

∣∣ +
∣∣N2(s) – N2(s)

∣∣]ds

≤ V (T6) for t ≥ T6. (3.9)

Therefore V (t) is bounded on [T6, +∞), and also

∫ t

T6

[∣∣N1(s) – N∗
1 (s)

∣∣ +
∣∣N2(s) – N2(s)

∣∣]ds < +∞. (3.10)

By (3.6), |N1(t) – N∗
1 (t)| and |N2(t) – N∗

2 (t)| are bounded on [T6, +∞). On the other hand, it
is easy to see that Ṅ1(t), Ṅ2(t), Ṅ∗

1 (t), and Ṅ∗
2 (t) are bounded for t ≥ T6. Therefore |N1(t) –

N∗
1 (t)|, |N2(t) – N∗

2 (t)| are uniformly continuous on [T6, +∞). By the Barbălat lemma we
conclude that

lim
t→+∞

[∣∣N1(t) – N∗
1 (t)

∣∣ +
∣∣N2(t) – N∗

2 (t)
∣∣] = 0.

This ends the proof of Theorem 3.3. �

4 Numerical simulations
Example 4.1 Consider the following system:

dN1(t)
dt

= N1(t)
(

1
2

+
1
4

cos t – N1(t) + N2(t)
)

–
1
2

N1(t),

dN2(t)
dt

= N2(t)
(

1
2

+
1
4

sin t – N2(t)
)

–
1
2

N2(t),

N1(0) > 0, N2(0) > 0.

(4.1)

Corresponding to system (1.4), here we take

a(t) =
1
2

+
1
4

cos t, d(t) =
1
2

+
1
4

sin t, (4.2)

q1(t) = q2(t) = F(t) = c(t) = e(t) = 1, m(t) =
1
2

. (4.3)

We can easily verify that

aM < qL
1FLmL, dM < qL

2FLmL.

Hence, all the conditions of Theorem 2.1 hold, and it follows from Theorem 2.1 that both
species will be driven to extinction. Numeric simulations (Figs. 1 and 2) also support this
assertion.
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Figure 1 Numeric simulations of the first component
system (4.1) with initial conditions (x(0), y(0)) = (0.5,
0.1), (0.8, 0.5), (0.3, 0.7), and (0.7, 0.9)

Figure 2 Numeric simulations of the second
component of system (4.1) with initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 0.5), (0.3, 0.7), and (0.7, 0.9)

Example 4.2 Consider the following system:

dN1(t)
dt

= N1(t)
(

1
2

+
1
4

cos t – N1(t) +
1
4

N2(t)
)

–
1

50
N1(t),

dN2(t)
dt

= N2(t)
(

1
2

+
1
4

sin t – N2(t)
)

–
1

50
N2(t),

N1(0) > 0, N2(0) > 0.

(4.4)

Corresponding to system (1.4), here we take

a(t) =
1
2

+
1
4

cos t, d(t) =
1
2

+
1
4

sin t, (4.5)

q1(t) = q2(t) = F(t) = e(t) = 1, c(t) =
1
4

, m(t) =
1

50
. (4.6)

We can easily verify that all the conditions of Theorems 2.4 and 3.3 hold, and it follows
from Theorems 2.4 and 3.3 that the system is permanent and that any positive solution
of system (4.4) is globally attractive. Numeric simulations (Figs. 3 and 4) also support this
assertion.
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Figure 3 Numeric simulations of the first
component of system (4.4) with initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 0.5), (0.3, 0.7), and (0.7, 0.9)

Figure 4 Numeric simulations of the second
component of system (4.4) with initial conditions
(x(0), y(0)) = (0.5, 0.1), (0.8, 0.5), (0.3, 0.7), and (0.7, 0.9)

5 Discussion
Recently, many scholars [12–21] studied the dynamic behavior of the commensalism
model; however, none of them consider the influence of harvesting. Stimulated by the re-
cent works of Chakraborty, Das, and Kar [24], we propose a nonautonomous nonselective
commensalism model incorporating partial closure to the population.

We focus our attention on the persistent and extinction property of the system, Theo-
rems 2.1–2.4 show that, depending on the area that can be harvested, the the system may
exhibit permanent, extinction, or partial survival phenomenon, that is, the introducing of
harvesting makes the dynamic behavior of the system complicated. Theorem 2.4 shows
that if the harvesting area is small enough (i.e., m is small enough), then two species can
coexist in the long run. If we further assume that the intrinsic competition rate (e(t)) is
larger than the cooperative between the two species (c(t)), then two species can coexist in
a stable state. Such a result may help us in designing the reserve area of the species.

It seems interesting to incorporate the time delay to system (1.4) and study the influence
of the time delay. We leave this for future study.
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