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Abstract
A two-species commensal symbiosis model involving Allee effect and one party can
not survive independently is proposed and studied in this paper. Sufficient conditions
which ensure the local and global stability of the boundary equilibrium and the
positive equilibrium are obtained, respectively. Numeric simulations show that with
the increasing of Alee effect, the system takes much longer time to reach its stable
steady-state solution, though the Allee effect has no influence on the final density of
the species. The Allee effect has instable effect on the system, however, such effect is
controllable.
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1 Introduction
The aim of this paper is to investigate the dynamic behaviors of the following two-species
commensal symbiosis model involving Allee effect and one party can not survive inde-
pendently, which takes the form

dx
dt

= x
(

–a1 – b1x +
c1y

x + y

)
,

dy
dt

= y(a2 – b2y)
y

u + y
,

(1.1)

where a1, b1, c1, a2, b2, and u are all positive constants, x(t) and y(t) are the densities of the
first and second species at time t, a1 is the death rate of the first species, a2 is the intrinsic
growth rate of the second species, a2

b2
is the environment carrying capacity of the second

species. Also, the following assumptions are made in formulating model (1.1):
1. The second species is favorable to the first species, while the first species has no

influence on the second species;
2. Without the help of the second species, the first species will be driven to extinction,

i.e., the first species could not survive independently;
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3. We use the ratio-dependent functional response c1y
x+y to describe the influence of the

second species on the first species, where c1 describes the intensity of the
cooperative effect of the second species on the first species;

4. We incorporate the Allee effect α(y) = y
u+y on the second species, such an Allee

effect describes the fact of limitations in finding mates, which is also called weak
Allee effect function. α(y) is the probability of finding a mate where u is the
individuals searching efficiency [1]. The bigger u is the stronger Allee effect is. By
introducing the Allee effect, the per capita growth rate of the second species is
reduced from

y(a2 – b2y)

to

y(a2 – b2y)
y

u + y
.

During the last decades, many scholars investigated the dynamic behaviors of the mu-
tualism model or commensalism model, see [2–33] and the references cited therein. Such
topics as the stability of the positive equilibrium [2, 4, 5, 11, 12, 14, 17, 19, 24, 27, 28], the
persistence of the feedback control cooperative system [2, 6, 8–10, 20], the existence of the
positive periodic solutions [15, 21, 23, 26], the existence of almost periodic solutions [22],
etc. have been extensively investigated. However, only recently did scholars pay attention
to the commensal symbiosis model with one party can not survive independently [26–31].

Zhu, Li, and Xu[28] for the first time proposed the following commensalism model:

ẋ = x(a1 + b1x + c1y),

ẏ = y(a2 + b2y),
(1.2)

where a1 < 0, a2 > 0, b1 < 0, b2 < 0, c1 > 0. Here, a1 < 0 means that the first species can
not survive independently. By analyzing the vector field of system (1.2), the authors could
give sufficient conditions which ensure local stability of the positive equilibrium and the
boundary equilibrium, respectively.

Yang, Han, and Xue [29] generalized system (1.2) to the non-autonomous case, they in-
vestigated the dynamic behaviors such as the persistence, extinction, and stability property
of the following two-species commensalism model:

ẋ = x
(
–a1(t) – b1(t)x + c1(t)y

)
,

ẏ = y
(
a2(t) – b2(t)y

)
,

(1.3)

where a1(t), a2(t), b1(t), c1(t), b2(t) are all continuous functions bounded above and below
by positive constants.

Corresponding to system (1.3), Chen, Pu, and Yang [26] and Chen, Lin, and Yang [30]
proposed a discrete commensal symbiosis model

x1(k + 1) = x1(k) exp
{

–a1(k) – b1(k)x1(k) + c1(k)x2(k)
}

,

x2(k + 1) = x2(k) exp
{

a2(k) – b2(k)x2(k)
}

.
(1.4)
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They investigated the existence of positive ω-periodic solution, the permanence, extinc-
tion, and global attractivity of the system.

All of the above systems used the assumption that the influence of the second species on
the first one is linearizing. Recently, Wu and Lin [27] argued that a more suitable model
should incorporate some functional response, which reflects the saturation effect. They
proposed the following commensalism model with ratio-dependent functional response
and one party can not survive independently:

dx
dt

= x
(

–a1 – b1x +
c1y

x + y

)
,

dy
dt

= y(a2 – b2y).
(1.5)

For the autonomous case, they obtained sufficient conditions which ensure the existence,
local and global stability property of the equilibria. For the non-autonomous case, suffi-
cient conditions which ensure the permanence and global stability property of the system
are obtained.

The Allee effect, which describes the fact that the phenomenon of reduced per-capita
population growth rate at low densities can be caused by difficulties in finding a mate
or predator, avoid danger or defense. As was pointed out by Wang, Zhang, and Liu [34],
“The population goes extinct below a threshold and increases above the threshold of pop-
ulation density. The Allee effect is therefore important in conservation of endangered and
exploited species.” During the last decades, many scholars studied the influence of Allee ef-
fect, see [1, 34–42] and the references cited therein. Kang and Yakuba [37] studied the pop-
ulation dynamics of a two-species discrete-time competition model where each species
suffers from either predator saturation induced Allee effects or mate limitation induced
Allee effects. Kang and Udiani [42] studied the dynamic behaviors of a single species with
Allee effect. Some scholars [1, 40, 41] also considered the influence of Allee effect on the
epidemic ecosystem.

Çelik and Duman[36] for the first time proposed the following two-species discrete
predator–prey system, where the prey species suffers from mating induced weak Allee
effect:

Nt+1 = Nt + rNt(1 – Nt)
Nt

u + Nt
– aNtPt ,

Pt+1 = Pt + aPt(Nt – Pt).
(1.6)

Their study showed that if the prey population is subjected to the Allee effect, the trajec-
tory of the solutions approximates to the corresponding equilibrium point much faster.
Also, in some cases, the equilibrium point moves from instability to stability.

Stimulated by the work of Çelik and Duman [36], Wang, Zhang, and Liu [34] proposed
the following predator–prey system with predator suffering the Allee effect:

Nt+1 = Nt + rNt(1 – Nt) – aNtPt ,

Pt+1 = Pt + aPt(Nt – Pt)
Pt

u + Pt
,
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where Pt
u+Pt

is the term for Allee effect, and u is the Alee effect constant. The bigger u
is, the stronger the Allee effect will be. By calculating the Jacobean matrix, the authors
obtained sufficient conditions which ensure the local asymptotic stability of the positive
equilibrium of the system.

Hüseyin Merdan [38] investigated the influence of the Allee effect on the Lotka–Volterra
type predator–prey system. To do so, the author proposed the following predator–prey
system with Allee effect:

dx
dt

= rx(1 – x)
x

β + x
– axy,

dy
dt

= ay(x – y), (1.7)

where x
β+x represents the Allee effect, β is a positive constant. He showed that the dynamic

behaviors of system (1.7) are very different to those of system (1.6); more precisely: (1) The
system subject to an Allee effect takes longer time to reach its steady-state solution; (2)
The Allee effect reduces the population densities of both predator and prey at the steady
state.

Recently, stimulated by the works of Çelik and Duman [36] and Wang, Zhang, and Liu
[34], Ufuktepe, Kapcak, and Akman [35] considered the influence of Allee effect on preda-
tor species, and they proposed the following system:

Nt+1 = Nt + rNt(1 – Nt) – aNtPt ,

Pt+1 = Pt + aPt(Nt – Pt)
Pd

t

u + Pd
t

.
(1.8)

The authors investigated the stability and invariant manifolds of the above system by using
center manifold theory.

Noting that all the works of [34–36, 38] are about the predator–prey system, some schol-
ars tried to propose and study other kinds of ecosystems, for example, Wu, Li, and Lin [39]
proposed the following two-species commensal symbiosis model with Holling type func-
tional response and the Allee effect on the second species:

dx
dt

= x
(

a1 – b1x +
c1yp

1 + yp

)
,

dy
dt

= y(a2 – b2y)
y

u + y
,

(1.9)

where ai, bi, i = 1, 2, p, u, and c1 are all positive constants, p ≥ 1. The authors investigated
the local and global stability property of the equilibria. They showed that the unique pos-
itive equilibrium is globally stable, the Allee effect has no influence on the final density
of the species; Sasmal et al. [1] proposed and analyzed the following deterministic eco-
epidemiological system where the susceptible pest exhibits a weak Allee effect due to mat-
ing limitation:

dS
dt

= rS
(

1 –
S + I

K

)
S

w + S
– λSI – h(S)P,

dI
dt

= λSI – βIP – μI,

dP
dt

= θ
(
h(S) – βI

)
P – δP.

(1.10)
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The reduction of disease eradication, and predator–pest coexistence is observed around
the predator-free and disease-free equilibrium, respectively. They also showed that the
interior equilibrium is always unstable.

Stimulated by the works of [1, 26–42], we propose system (1.1), where the second species
is subjected to the Allee effect from the mating limitation.

We arrange the paper as follows. In the next section, we investigate the existence and
local stability of the equilibria. In Sect. 3, we investigate the global stability property of
boundary equilibrium and positive equilibrium of the system. In Sect. 4, an example to-
gether with its numeric simulations is presented to show the feasibility of our main results.
We end this paper with a brief discussion.

2 The existence and local stability of the equilibria
The equilibria of system (1.1) are determined by the system

x
(

–a1 – b1x +
c1y

x + y

)
= 0,

y(a2 – b2y)
y

u + y
= 0.

One may argue that system (1.1) admits the equilibrium O(0, 0). However, since in the
above system, in the term c1y

x+y , 0 as denominator is unrealistic, and we could not explain
clearly the meaning of O(0, 0), so in this paper, we will focus on the solution of the following
system:

x
(

–a1 – b1x +
c1y

x + y

)
= 0,

a2 – b2y = 0.
(2.1)

From (2.1), system (1.1) always admits the boundary equilibrium A1(0, a2
b2

). Also, if a1 < c1,
then system (1.1) admits a unique positive equilibrium A2(x∗, y∗), where

x∗ =
–(a2b1 + a1b2) +

√
(a2b1 + a1b2)2 – 4(a1a2 – a2c1)b1b2

2b1b2
,

y∗ =
a2

b2
.

(2.2)

Obviously, A2(x∗, y∗) satisfies the equation

– a1 – b1x∗ +
c1y∗

x∗ + y∗ = 0,

(
a2 – b2y∗) y∗

u + y∗ = 0.
(2.3)

Concerned with the local stability property of the above three equilibria, we have the
following.

Theorem 2.1 A1(0, a2
b2

) is unstable if a1 < c1 and locally stable if a1 > c1; A2(x∗, y∗) is locally
stable if a1 < c1.
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Proof The Jacobian matrix of system (1.1) is calculated as

J(x, y) =

(
–a1 – 2b1x + c1y

x+y – c1xy
(x+y)2

c1x2

(x+y)2

0 �

)
, (2.4)

where

� =
y(–3b2uy – 2b2y2 + 2a2u + a2y)

(u + y)2 .

Then the Jacobian matrix of system (1.1) about the equilibrium A1(0, a2
b2

) is given by

⎛
⎝–a1 + c1 0

0 – a2
2

b2(u+ a2
b2

)

⎞
⎠ . (2.5)

The corresponding eigenvalues are

λ1 = –a1 + c1, λ2 = –
a2

2
b2(u + a2

b2
)

< 0.

Obviously, if a1 > c1, then λ1 < 0, in this case, A2(0, r2
a22

) is locally stable. And A1(0, r2
a22

) is
unstable if a1 < c1.

By using (2.3), the Jacobian matrix about the positive equilibrium A2 is given by

⎛
⎝–b1x∗ – c1x∗y∗

(x∗+y∗)2
c1(x∗)2

(x∗+y∗)2

0 – a2
2

a2+b2u

⎞
⎠ . (2.6)

The eigenvalues of the above matrix are

λ1 = –b1x∗ –
c1x∗y∗

(x∗ + y∗)2 < 0, λ2 = –
a2

2
a2 + b2u

< 0.

Hence, A2(x∗, y∗) is locally stable.
This ends the proof of Theorem 2.1. �

3 Global stability of the equilibria
This section will further investigate the global stability property of the equilibria.

Lemma 3.1 ([1]) Consider the following equation:

dy
dt

= y(a2 – b2y)
y

u + y
, (3.1)

where a2, b2, u are all positive constants. Then the unique positive equilibrium y∗ = a2
b2

is
globally stable.

Theorem 3.1 Assume that a1 > c1 holds, then A1(0, a2
b2

) is globally stable.
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Proof Noting that the second equation of (1.1) takes the form

dy
dt

= y(a2 – b2y)
y

u + y
. (3.2)

By applying Lemma 3.1 to system (3.2), we know that system (3.2) has a unique globally
stable positive equilibrium y∗ = a2

b2
, i.e., limt→+∞ y(t) = y∗.

From the first equation of system (1.1) and the nonnegativity of the solution of system
(1.1), it immediately follows that

dx
dt

≤ x(–a1 + c1), (3.3)

hence,

x(t) ≤ x(0) exp
{

(–a1 + c1)t
} → 0 as t → +∞. (3.4)

This ends the proof of Theorem 3.1. �

Theorem 3.2 Assume that a1 < c1 holds, then A2(x∗, y∗) is globally stable.

Proof In the proof of Theorem 3.1, we showed that limt→+∞ y(t) = a2
b2

. That is, for any ε > 0
small enough, there exists T > 0 such that, for all t > T ,

y∗ – ε < y(t) < y∗ + ε for all t > T . (3.5)

By using (3.5), from the first equation of system (1.1), similarly to the analysis of (3.4)–(3.9)
of Wu and Lin [27], we could have

lim sup
t→+∞

x(t) ≤ x∗
ε + ε, (3.6)

where

x∗
ε =

1
2

–b1(y∗ + ε) – a1 +
√

b2
1(y∗ + ε)2 – 2a1b1(y∗ + ε) + a2

1 + 4b1c1(y∗ + ε)
b1

. (3.7)

Equation (3.5) and (3.6) show that every solution of system (1.1) starting in R2
+ is uniformly

bounded on

D =
{

(x, y)|x < x∗
ε + ε, y < y∗ + ε

}
.

Also, under the assumption of Theorem 3.2, Theorem 2.1 shows that there is a unique
locally stable positive equilibrium A2(x∗, y∗). To show that A2(x∗, y∗) is globally stable, it is
enough to show that the system admits no limit cycle in the area D. Let us consider the
Dulac function u(x, y) = x–1y–2, then

∂(uF1)
∂x

+
∂(uF2)

∂y
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=
1

xy2

(
–a1 – 2b1x +

c1y
x + y

–
c1xy

(x + y)2

)

–
1

x2y2

(
–a1x – b1x2 +

c1xy
x + y

)
+

–2b2y + a2

y(u + y)x

–
–b2y2 + a2y
y2(u + y)x

–
–b2y2 + a2y
y(u + y)2x

= –
�(x, y)

x(x + y)2y2(u + y)2 < 0,

where

�(x, y) = b1u2x3 + 2b1u2x2y + b1u2xy2 + 2b1ux3y + 4b1ux2y2

+ 2b1uxy3 + b1x3y2 + 2b1x2y3 + b1xy4 + b2ux2y2

+ 2b2uxy3 + b2uy4 + a2x2y2 + 2a2xy3 + a2y4

+ c1u2xy + 2c1uxy2 + c1xy3,

F1(x, y) = x
(

–a1 – b1x +
c1y

x + y

)
,

F2(x, y) = y(a2 – b2y)
y

u + y
.

By Dulac theorem [33], there is no closed orbit in area D. Consequently, A2(x∗, y∗) is glob-
ally asymptotically stable. This completes the proof of Theorem 3.2. �

4 Numeric simulations
Now let us consider the following example, which is the modification of Example 5.1 of
Wu and Lin [27].

Example 4.1 Consider the following system:

dx
dt

= x
(

–a1 – x +
y

x + y

)
,

dy
dt

= y(1 – y)
y

u + y
.

(4.1)

In this system, corresponding to system (1.1), we take b1 = c1 = a2 = b2 = 1.
(1) Now take a1 = 2, u = 0.5, then a1 > c1, it follows from Theorem 3.1 that (0, 1) is

globally stable. Numeric simulation (Fig. 1) supports this assertion.
Now let us consider the influence of the parameter u. Let us take u = 0.1, 0.5, 1, respec-

tively. Figure 2 and Fig. 3 show that in this case, parameter u has no influence on the final
density of the species, i.e., the first species will be driven to extinction, while the second
species will approach 1;

(2) Now take a1 = 1
2 , then a1 < c1, it follows from Theorem 3.2 that the unique positive

equilibrium (0.281, 1) is globally stable. Numeric simulation (Fig. 4) supports this
assertion.

Now let us consider the influence of the parameter u. Let us take u = 0.1, 0.5, 1, respec-
tively. Figure 5 and Fig. 6 show that in this case, parameter u has no influence on the final
density of both species.
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Figure 1 Numeric simulations of system (4.1) with
a1 = 2, u = 0.5 and the initial conditions
(x(0), y(0)) = (0.4, 2), (1, 0.3), (1, 0.02), (1, 2), and (1, 1.2),
respectively

Figure 2 Numeric simulations of x(t), with u = 0.1,
0.5, 1, where the black curve is the solution of u = 1,
the green curve is the solution of u = 0.1, and the red
curve is the solution of u = 0.5, and (x(0), y(0)) = (0.1,
0.2)

Figure 3 Numeric simulations of y(t), with u = 0.1,
0.5, 1, where the black curve is the solution of u = 1,
the green curve is the solution of u = 0.1, and the red
curve is the solution of u = 0.5, and (x(0), y(0)) = (0.1,
0.2)

5 Discussion
Based on a commensalism model proposed by Wu and Lin [27], we propose a two-species
commensal symbiosis model involving Allee effect and one party can not survive indepen-
dently. We show that the dynamic behaviors of system (1.1) coincide with those of system
(1.5), i.e., if a1 > c1, that is, the intrinsic death rate of the first species is larger than the
commensalism effect between the species, then the first species will be driven to extinc-
tion; and if a1 < c1, that is, the cooperative effect between two species is larger than the
intrinsic death rate of the first species, then two species could coexist in a stable state.

For the case a1 > c1, the boundary equilibrium is globally stable, which means the ex-
tinction of the first species and the global attractivity of the second species (see Fig. 1).
Numeric simulations (Fig. 2, Fig. 3) show that with the increasing of Allee effect (the in-
creasing of u), the first species almost takes the same time to drive to extinction, while the
second species needs much more time to reach its stable state.
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Figure 4 Numeric simulations of system (4.1) with
a1 = 1

2 and the initial conditions (x(0), y(0)) = (0.4, 2),
(1, 0.3), (1, 0.02), (1, 2), and (1, 1.2), respectively

Figure 5 Numeric simulations of x(t), with u = 0.1,
0.5, 1, where the black curve is the solution of u = 1,
the green curve is the solution of u = 0.1, and the red
curve is the solution of u = 0.5, and (x(0), y(0)) = (0.1,
0.2)

Figure 6 Numeric simulations of y(t), with u = 0.1,
0.5, 1, where the black curve is the solution of u = 1,
the green curve is the solution of u = 0.1, and the red
curve is the solution of u = 0.5, and (x(0), y(0)) = (0.1,
0.2)

For the case a1 < c1, the system admits a unique positive equilibrium, which is globally
stable (see Fig. 4); however, numeric simulations (Fig. 5, Fig. 6) show that with the in-
creasing of Allee effect (the increasing of u), the system needs much more time to reach
its steady state.

We mention here that a suitable system should incorporate some past state of the
species, and this leads to a system with time delay, generally speaking, time delay may
lead to the Hopf bifurcation or some other new phenomenon, we will leave this for future
investigation.
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