
Zhang et al. Advances in Difference Equations  (2018) 2018:215 
https://doi.org/10.1186/s13662-018-1665-0

R E S E A R C H Open Access

Error estimates of finite element methods
for nonlinear fractional stochastic differential
equations
Yanpeng Zhang1, Xiaoyuan Yang1 and Xiaocui Li2*

*Correspondence:
xiaocuili@mail.buct.edu.cn
2School of Science, Beijing
University of Chemical Technology,
Beijing, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this paper, we consider the Galerkin finite element approximations of the initial
value problem for the nonlinear fractional stochastic partial differential equations
with multiplicative noise. We study a spatial semidiscrete scheme with the standard
Galerkin finite element method and a fully discrete scheme based on the
Goreno–Mainardi–Moretti–Paradisi (GMMP) scheme. We establish strong
convergence error estimates for both semidiscrete and fully discrete schemes.
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1 Introduction
In the last few years, fractional calculus has attracted lots of attention. The increasing in-
terest in fractional equations is motivated by their applications in various fields of science
such as fluid mechanics, heat conduction in materials with memory, physics, chemistry,
and engineering [1–5]. As we know, fractional differential equations are highly effective
mathematical tools to describe complex behaviors and phenomena of memory processes
because of the convolution integral with the power-law memory kernel introduced in
the fractional derivatives [6–8]. On the other hand, stochastic perturbations cannot be
avoided in physical systems and sometimes even cannot be ignored, so that the corre-
sponding stochastic terms need to be added to the deterministic governing equations.
Hence stochastic differential equations with fractional time derivatives have been pro-
posed, which are a more realistic mathematical model of the real-world situations [9], just
like the equations (1.1) we are going to discuss in this paper naturally arise from the con-
sideration of the heat equation in a material with thermal memory [10].

In this paper, we consider the following initial value problem for the nonlinear fractional
stochastic partial differential equation (SPDE) with multiplicative noise:

⎧
⎨

⎩

Dα
t u(t) + Au(t) = f (u(t)) + g(u(t)) dW (t)

dt , α ∈ (0, 1), t ∈ [0, T],

u(0) = u0.
(1.1)
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The random process {u(t)}t∈[0,T], defined on a filtered probability space (�,F ,P, {Ft}t≥0)
with normal filtration {Ft}t≥0, takes values in a separable Hilbert space H with inner prod-
uct (·, ·) and norm ‖ · ‖. The initial value u0 is an H-valued and F0-measurable random
variable. The operator A : D(A) ⊂ H → H is not necessarily a bounded, linear, densely
defined, and selfadjoint operator with compact inverse. The nonlinear operators f and g
are Lipschitz continuous in an appropriate sense. The process W with values in some sep-
arable Hilbert space U is a nuclear Q-Wiener process with respect to the filtration. The
covariance operator Q is assumed to be selfadjoint and positive semidefinite with finite
trace. Here, we denote the Caputo fractional derivative of order α (0 < α < 1) with respect
to t by Dα

t and define it as [11, 12]

Dα
t u(t) =

1
�(1 – α)

∫ t

0
(t – s)–α d

ds
u(s) ds.

It is known that the fractional derivative Dα
t recovers the canonical first-order deriva-

tive d
dt u(t) for the fractional order α = 1, and thus model (1.1) evolves into the standard

stochastic partial differential equation (SPDE), whose numerical approximation has been
extensively discussed in the literature; see, for example, [13–16].

Stochastic partial differential equations have been applied in many fields such as vis-
coelasticity, turbulence, electromagnetic theory, heterogeneous flows, and materials [17–
22], so the study of stochastic partial differential equations has recently attracted a lot of
attention. In particular, as in [10, 23–26], equations of type (1.1) can be used to model
random effects on transport of particles in medium with thermal memory. In [10], a class
of SPDEs with time-fractional derivatives was introduced, and the existence and unique-
ness of solutions to these equations was proved. The existence of mild solutions for a class
of nonlinear fractional stochastic partial differential equations has been discussed in [24].
Foondun and Nane [23] studied asymptotic properties of space–time fractional SPDEs.
In [25], the existence and uniqueness of mild solutions for a class of nonlinear fractional
Sobolev-type stochastic differential equations under non-Lipschitz conditions was dis-
cussed by employing Picard-type approximate sequences. The approximate controllability
problem for fractional stochastic differential inclusions with nonlocal conditions and infi-
nite delay has been researched in [26]. Since the random effects on transport of particles in
medium with thermal memory can be exactly modeled by fractional stochastic differential
systems, it is important and necessary to discuss numerical schemes and error estimation
for stochastic fractional equations. However, numerical methods for these kinds of frac-
tional SPDEs are rarely studied, and we only note [27–30]. To the authors’ knowledge, no
result has been reported on the error estimation of nonlinear fractional stochastic par-
tial differential equations with multiplicative noise based on the form of mild solutions
proposed in [24], so the motivation of this paper is to fill this gap.

The main difficulty in the analysis is estimation of nonlinear terms; see Lemmas 3.6 and
3.7. Estimation of a discrete solution operator with limited smoothing properties is also a
challenge; see Lemma 4.3. Our main results are as follows. First, in Theorem 3.1, denoting
by uh(t) and u(t) the mild solutions to (3.2) and (1.1), we derive a strong convergence error
bound for the semidiscrete scheme:

∥
∥u(t) – uh(t)

∥
∥

L2(�,H)
≤ Ch2.
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Second, for α ∈ (0, 1), we obtain am L2(�,H)-norm error estimate for the fully discrete
scheme in Theorem 4.1:

∥
∥u(tn) – un

h
∥
∥

L2(�;H)
≤ C

[
kα + h2],

where un
h denotes an approximation of the mild solution u(t) at time tn. The parameters h

and k, which will be detailed in Sects. 3 and 4, represent the maximal meshsize and time
step, respectively.

The rest of the paper is organized as follows: In Sect. 2, we introduce some basic no-
tation, present the Laplace transform, and give a representation of the mild solution of
equation (1.1) by using basic properties of the Mittag–Leffler function. In Sect. 3, we first
give a short review of Galerkin finite element methods and then study the space semidis-
crete scheme and derive error estimates for the standard Galerkin finite element method
with smooth initial data. Finally, in Sect. 4, using the GMMP scheme, we prove strong
error estimates for the fully discrete scheme.

2 Preliminaries
In this section, we recall some useful properties on the Mittag–Leffler function, introduce
the Laplace transform and present a representation of the mild solution of problem (1.1).
Besides, we use the letter C to denote a constant that may vary from one occurrence to
another and denote by L(U , H) the space of bounded linear operators from U to H , where
U and H are real separable Hilbert spaces with inner product (·, ·) and norms ‖ · ‖U and
‖ · ‖H .

2.1 Mittag–Leffler function
The Mittag–Leffler function is defined by

Eα,β (z) =
∞∑

k=0

zk

�(kα + β)
, z ∈C,

where �(·) is the standard gamma function

�(z) =
∫ ∞

0
tz–1e–t dt, R(z) > 0.

We give important properties of the Mittag–Leffler function Eα,β (z) essential in our anal-
ysis.

Lemma 2.1 ([31]) Let 0 < α < 2 and β ∈R be arbitrary, and let πα
2 < μ < min(π ,απ ). Then

there exists a constant C = C(α,β ,μ) > 0 such that, for μ ≤ | arg(z)| ≤ π ,

∣
∣Eα,β (z)

∣
∣ ≤

⎧
⎨

⎩

C
1+|z|2 , β – α ∈ Z

– ∪ {0},
C

1+|z| otherwise.

Moreover, for λ > 0, α > 0, and t > 0, we have

Dα
t Eα,1

(
–λtα

)
= –λEα,1

(
–λtα

)
and

d
dt

Eα,1
(
–λtα

)
= –λtα–1Eα,α

(
–λtα

)
.
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In our analysis, we also use the Laplace transform. Let π : R+ → H be subexponential,
that is, for any ε > 0, the function t → π (t)e–εt belongs to L1(R+, H). The Laplace transform
of π̂ : C+ → H is denoted by

π̂ (z) =
∫ +∞

0
π (t)e–zt dt, R(z) > 0,

where the same notation H represents the complexification of H . Further, we denote by
∗ the Laplace convolution product on [0, t] of two locally integrable subexponential func-
tions π ,σ ∈ L1

loc(R+, H), that is,

(π ∗ σ )(t) =
∫ t

0
π (t – s)σ (s) ds.

It is well known that π ∗ σ ∈ L1
loc(R+, H) is subexponential and

π̂ ∗ σ = π̂ (z)σ̂ (z).

2.2 Solution representation
In order to study the representation of the solution of (1.1), we introduce some notation.

Let (�,F , P) be a probability space. By L2(�, H) we denote the space of H-valued square-
integrable random variables with norm

‖v‖L2(�,H) =
(
E‖v‖2

H
) 1

2 =
(∫

�

∥
∥v(w)

∥
∥2

H P(w)
) 1

2
,

where E stands for expected value. Let Q ∈ L(U) be a selfadjoint positive semidefinite
operator with Tr(Q) < ∞, where Tr(Q) is the trace of Q. Let {(γj, ej)}∞j=1 be the eigenpairs of
Q with orthonormal eigenvectors. The U-valued Q-Wiener process W (t), defined on the
probability space (�,F , P), has the orthogonal expansion

W (t) =
∞∑

j=1

γ 1/2
j βj(t)ej,

where {βj(t)}∞j=1 are real-valued mutually independent standard Brownian motions. Fur-
ther, the set L0

2 = HS(Q1/2(H), H) expresses the space of all Hilbert–Schmidt operators
from Q1/2(H) to H with norm ‖ψ‖L0

2
= (

∑∞
j=1 ‖ψQ1/2ej‖2)1/2, and the subset L0

2,r ⊂ L0
2, r ≥ 0

is the subspace of all Hilbert–Schmidt operators from Q1/2(H) to Ḣr with norm ‖ψ‖L0
2,r

=
‖A r

2 ψ‖L0
2
. It is then possible to define the stochastic integral

∫ t
0 ψ(s) dW (s) together with

Itô’s isometry

E
∥
∥
∥
∥

∫ t

0
ψ(s) dW (s)

∥
∥
∥
∥

2

H
=

∫ t

0
E
∥
∥ψ(s)

∥
∥2

L0
2

ds. (2.1)

In a standard way, we present the fractional powers As, s ∈R, of A as

Asv =
∞∑

j=1

λs
j (v,ϕj)ϕj, D

(
A

s
2
)

=

{

v ∈ H :
∥
∥A

s
2 v

∥
∥2 =

∞∑

j=1

λs
j (v,ϕj)2 < ∞

}

,
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where {λj}∞j=1 and {ϕj}∞j=1 are respectively the eigenvalues and the orthonormal eigenfunc-
tions of A, that is,

Aϕj = λjϕj and (ϕi,ϕj) = δi,j for i, j ≥ 1.

In addition, the sequence {λj}∞j=1 is an increasing sequence of real numbers, that is, 0 ≤
λ1 ≤ λ2 ≤ · · · . Let Ḣs = D(A s

2 ) with norm

‖v‖s =
∥
∥A

s
2 v

∥
∥ =

( ∞∑

j=1

λs
j (v,ϕj)2

)1/2

, v ∈ Ḣs.

We define the operators E(t) and Ē(t) by

E(t)v =
∞∑

j=1

Eα,1
(
–λjtα

)
(v,ϕj)ϕj, v ∈ Ḣs,

Ē(t)v =
∞∑

j=1

tα–1Eα,α
(
–λjtα

)
(v,ϕj)ϕj, v ∈ Ḣs,

where α ∈ (0, 1) indicates the order of Caputo fractional derivative. Then, we present the
mild solution u(t) of (1.1) [24]:

u(t) = E(t)u0 +
∫ t

0
Ē(t – s)f

(
u(s)

)
ds +

∫ t

0
Ē(t – s)g

(
u(s)

)
dW (s). (2.2)

Next, we impose the following conditions on f , g , and u(t), which are the conditions of
existence and uniqueness of the mild solution u [24].

Assumption 2.1 For the nonlinear operator f : H → H , there exists a constant C such
that

∥
∥f (x) – f (y)

∥
∥ ≤ C‖x – y‖,

∥
∥f (x)

∥
∥ ≤ C‖x‖. (2.3)

Assumption 2.2 For the nonlinear operator g : H → L0
2, there exists a constant C such

that

∥
∥g(x) – g(y)

∥
∥

L0
2
≤ C‖x – y‖,

∥
∥g(x)

∥
∥

L0
2
≤ C‖x‖. (2.4)

Assumption 2.3 The mild solution u : [0, T] × � → H satisfies

sup
0≤t≤T

E
(∥
∥u(t)

∥
∥2

s

)
< +∞, (2.5)

where s ∈ [0, 2].

Some properties of the operators E(t) and Ē(t), which are crucial for the semidiscrete
error estimates, will be introduced later.
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Lemma 2.2 ([32]) For α ∈ (0, 1), we have the following estimates:

∥
∥
(
Dα

t
)�E(t)v

∥
∥

p ≤ Ct–α(�+ p–q
2 )‖v‖q, t > 0,

where 0 ≤ q ≤ p ≤ 2 for � = 0, and 0 ≤ p ≤ q ≤ 2 and q ≤ p + 2 for � = 1.

Lemma 2.3 ([31]) For any t > 0 and 0 ≤ p – q ≤ 4, we have

∥
∥Ē(t)v

∥
∥

p ≤ Ct–1+α(1+ q–p
2 )‖v‖q.

3 Error estimates for spatially semidiscrete approximation
In this section, we first review the Galerkin finite element methods and some basic esti-
mates for the finite element projection operators. Then we introduce a representation of
the semidiscrete scheme of the mild solution u(t) and some smoothing properties of the
operators Eh(t) and Ēh(t). We close this section with the proof of the semidiscrete error
estimates.

3.1 Space discretization
Let {Th}h∈(0,1] denote a regular family of triangulations of D, where h is the maximal mesh-
size, and let Vh denote the space of piecewise linear continuous functions with respect to
Th vanishing on ∂D. Thereby, Vh ⊂ H1

0 (D) = Ḣ1 = {v ∈ L2(D),∇v ∈ L2(D), v|∂D = 0}. De-
note by Rh : Ḣ1 → Vh the Ritz projector onto Vh with respect to the inner product

a(v, w) =
(
A

1
2 v, A

1
2 w

)
, v, w ∈ Ḣ1.

Thus we obtain

a(Rhv,χ ) = a(v,χ ), v ∈ Ḣ1,χ ∈ Vh.

Meanwhile, the following error estimate is established:

‖Rhv – v‖ ≤ Chs‖v‖s, v ∈ Ḣs, 1 ≤ s ≤ 2. (3.1)

The semidiscrete problem corresponding to (1.1) is to find a process uh(t) ∈ Vh such that

Dα
t uh(t) + Ahuh(t) = Phf

(
uh(t)

)
+ Phg

(
uh(t)

)dW
dt

, uh(0) = Phu0, (3.2)

where the mapping Ah : Vh → Vh is a discrete version of the operator A defined by

a(ϕ,χ ) = (Ahϕ,χ ), ∀ϕ,χ ∈ Vh,

and Ph is the orthogonal projector

Ph : H → Vh, (Phv,χ ) = (v,χ ), ∀v ∈ H ,∀χ ∈ Vh.
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Depending on the eigenvalues and eigenfunctions {λh
j }N

j=1 and {ϕh
j }N

j=1 of the discrete op-
erator Ah, we can introduce a representation of the solution of (3.2). Firstly, we present the
discrete analogues of operators E(t) and Ē(t) as follows:

Eh(t)vh =
N∑

j=1

Eα,1
(
–λh

j tα
)(

vh,ϕh
j
)
ϕh

j , (3.3)

Ēh(t)vh =
N∑

j=1

tα–1Eα,α
(
–λh

j tα
)(

vh,ϕh
j
)
ϕh

j . (3.4)

Analogously, the unique solution of the finite element problem (3.2) can be given by

uh(t) = Eh(t)Phu0 +
∫ t

0
Ēh(t – s)Phf

(
uh(s)

)
ds +

∫ t

0
Ēh(t – s)Phg

(
uh(s)

)
dW (s). (3.5)

Then, similarly to Lemmas 2.2 and 2.3, we show some vital properties of Eh(t) and Ēh(t)
in the following:

Lemma 3.1 ([32]) Let Eh(t) be defined by (3.3), and let χ ∈ Vh. Then, for α ∈ (0, 1) and
p, q ∈ [–1, 1], we have

∥
∥
(
Dα

t
)�Eh(t)χ

∥
∥

p ≤ Ct–α(�+ p–q
2 )‖χ‖q,

where q ≤ p and 0 ≤ p – q ≤ 2 for � = 0, and p ≤ q ≤ p + 2 for � = 1.

Lemma 3.2 ([32]) Let Ēh be defined by (3.4), and let χ ∈ Vh. Then, for all t > 0,

∥
∥Ēh(t)χ

∥
∥

p ≤
⎧
⎨

⎩

Ct–1+α(1+ q–p
2 )‖χ‖q, p – 2 ≤ q ≤ p,

Ct–1+α‖χ‖q, p < q,

where p, q ∈ [–1, 1].

Based on this lemma, we have the following conclusion.

Lemma 3.3 Let Ēh be defined by (3.4), and let v ∈ H , Phv = vh. For all t > 0, we have

∥
∥Ēh(t)Phv

∥
∥ ≤ Ctα–1‖v‖.

Proof By Lemma 3.2 with p = q = 0 we get

∥
∥Ēh(t)vh

∥
∥ ≤ Ctα–1‖vh‖.

Since vh = Phv, we get

∥
∥Ēh(t)vh

∥
∥ ≤ Ctα–1‖Phv‖ ≤ Ctα–1‖v‖,

which completes the proof. �

Moreover, we need the following estimate of uh(t).
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Lemma 3.4 For any t ∈ [0, T] and α ∈ ( 1
2 , 1), let uh(t) be the mild solution of (3.2). Then

there exists a constant C > 0 such that

sup
0≤t≤T

∥
∥uh(t)

∥
∥2

L2(�;H)
≤ C‖u0‖2

L2(�;H)
.

Proof For any t ∈ [0, T], from (3.5) by Lemma 3.1 with � = p = q = 0, Lemma 3.3, Assump-
tions 2.1 and 2.2, and Itô’s isometry we obtain

E
∥
∥uh(t)

∥
∥2 ≤ 4E

∥
∥Eh(t)Phu0

∥
∥2 + 4E

∥
∥
∥
∥

∫ t

0
Ēh(t – s)Phf

(
uh(s)

)
ds

∥
∥
∥
∥

2

+ 4E
∥
∥
∥
∥

∫ t

0
Ēh(t – s)Phg

(
uh(s)

)
dW (s)

∥
∥
∥
∥

2

≤ 4E
∥
∥Eh(t)Phu0

∥
∥2 + 4

∫ t

0
E
∥
∥Ēh(t – s)Phf

(
uh(s)

)∥
∥2 ds

+ 4
∫ t

0
E
∥
∥Ēh(t – s)Phg

(
uh(s)

)∥
∥2

L0
2

ds

≤ CE‖u0‖2 + C
∫ t

0
(t – s)2α–2E

∥
∥uh(s)

∥
∥2 ds

+ C
∫ t

0
(t – s)2α–2E

∥
∥uh(s)

∥
∥2 ds.

Thus, applying the integral version of Gronwall’s lemma, we deduce that

sup
0≤t≤T

E
∥
∥uh(t)

∥
∥2 ≤ CE‖u0‖2 exp

(

C
∫ t

0
(t – s)2α–2 ds

)

≤ CE‖u0‖2. �

3.2 Semidiscrete finite element approximation
In this subsection, we first present and prove some lemmas, which are crucial for the
derivation of the semidiscrete error estimate for the nonlinear fractional stochastic dif-
ferential equation. Then we give a detailed proof of the semidiscrete error estimate.

Lemma 3.5 ([28]) Let 0 ≤ ν ≤ μ ≤ 2 and Fh(t) = E(t) – Eh(t)Ph. Then, for α ∈ (0, 1), there
exists a constant C such that

∥
∥Fh(t)x

∥
∥ ≤ Chμt–α

μ–ν
2 ‖x‖ν , x ∈ Ḣν .

Lemma 3.6 Let 1 < q ≤ 2 and F̄h(t) = Ē(t) – Ēh(t)Ph. Then, for t ∈ [0, T], there exists a
constant C such that

∥
∥
∥
∥

∫ T

0
F̄h(t)h(t) dt

∥
∥
∥
∥

2

≤ Ch2q
∫ T

0

∥
∥h(t)

∥
∥2

q–2 dt, h(t) ∈ Ḣq–2.

Proof By the definition of F̄h(t) we split
∫ t

0 F̄h(t – s)h(t) ds into two additional terms:

∫ t

0
F̄h(t – s)h(t) ds =

∫ t

0
Ē(t – s)h(t) ds –

∫ t

0
Ēh(t – s)Phh(t) ds

= v(t) – vh(t)
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=
(
v(t) – Phv(t)

)
+

(
Phv(t) – vh(t)

)

= η(t) + ξ (t),

where v(t) and vh(t) are the solutions of the following equations:

⎧
⎨

⎩

Dα
t v(t) + Av(t) = h(t),

v(0) = 0,
(3.6)

⎧
⎨

⎩

Dα
t vh(t) + Ahvh(t) = Phh(t),

vh(0) = Phv(0) = 0.
(3.7)

To bound ξ , we note that by our definitions

Dα
t ξ (t) + Ahξ (t) = Ah

(
Rhv(t) – Phv(t)

)
, ξ (0) = 0.

By the Laplace transforms of both sides of this equation, we recover

zaξ̂ (z) + Ahξ̂ (z) = Ah(Rh – Ph)v̂(z).

Therefore

ξ̂ (z) =
(
zαI + Ah

)–1Ah(Rh – Ph)v̂(z).

Since the operator Ah generates an analytic contraction semigroup, there exists a constant
C, depending only on φ and α, such that

∥
∥
(
zαI + Ah

)–1∥∥ ≤ Cz–α , ∀z ∈ �φ ,

where �φ = {z ∈C : | arg z| ≤ φ}. By the identity

(
zαI + Ah

)–1Ah = I – zα
(
zαI + Ah

)–1

we get

∥
∥
(
zαI + Ah

)–1Ah
∥
∥ ≤ 1 +

∥
∥zα

(
zαI + Ah

)–1∥∥ ≤ 1 + C ≤ C.

Using the inverse Laplace transform and inequality (3.1), we obtain

∥
∥ξ (t)

∥
∥ ≤ C

∥
∥(Rh – Ph)v(t)

∥
∥

≤ C
∥
∥(Rh – I)v(t)

∥
∥ + C

∥
∥(I – Ph)v(t)

∥
∥ ≤ Chq∥∥v(t)

∥
∥

q.

Then by Theorem 2.1 of [31] we get

∫ T

0

∥
∥ξ (t)

∥
∥2 dt ≤ Ch2q

∫ T

0

∥
∥v(t)

∥
∥2

q dt ≤ Ch2q
∫ T

0

∥
∥h(t)

∥
∥2

q–2 dt.
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According to inequality (3.1) and Theorem 2.1 of [31], the estimate of η yields

∫ T

0

∥
∥η(t)

∥
∥2 dt ≤ C

∫ T

0

∥
∥(Rh – I)v(t)

∥
∥2 dt ≤ Ch2q

∫ T

0

∥
∥v(t)

∥
∥2

q dt

≤ Ch2q
∫ T

0

∥
∥h(t)

∥
∥2

q–2 dt.

Since

∫ T

0

∥
∥
∥
∥

∫ t

0
F̄h(t – s)h ds

∥
∥
∥
∥

2

dt = C(T)
∥
∥
∥
∥

∫ t

0
F̄h(t)h ds

∥
∥
∥
∥

2

=
∫ T

0

∥
∥η(t) + ξ (t)

∥
∥2 dt

≤ 2
∫ T

0

∥
∥η(t)

∥
∥2 dt + 2

∫ T

0

∥
∥ξ (t)

∥
∥2 dt

≤ Ch2q
∫ T

0

∥
∥h(t)

∥
∥2

q–2 dt,

we get the conclusion

∥
∥
∥
∥

∫ T

0
F̄h(t)h dt

∥
∥
∥
∥

2

≤ Ch2q
∫ T

0

∥
∥h(t)

∥
∥2

q–2 dt. �

Lemma 3.7 Let 1 < q ≤ 2 and F̄h(t) = Ē(t) – Ēh(t)Ph. Then, for t ∈ [0, T] and h̃(s) ∈ Ḣq,
there exists a constant C such that

E
∥
∥
∥
∥

∫ t

0
F̄h(t – s)h̃(s) dW (s)

∥
∥
∥
∥

2

≤ Ch2q
∫ t

0
(t – s)2α–2E

∥
∥h̃(s)

∥
∥2

L0
2,q

ds.

Proof Just like in the proof of Lemma 3.6, we split
∫ t

0 F̄h(t – s)h(t) ds into two additional
terms:

∫ t

0
F̄h(t – s)h̃(s) dW (s) =

∫ t

0
Ē(t – s)h̃(s) dW (s) –

∫ t

0
Ēh(t – s)Phh̃(s) dW (s)

= ṽ(t) – ṽh(t) =
(
ṽ(t) – Phṽ(t)

)
+

(
Phṽ(t) – ṽh(t)

)

= �(t) + ϑ(t),

where ṽ(t) and ṽh(t) are the solutions of the following equations:
⎧
⎨

⎩

Dα
t ṽ(t) + Aṽ(t) = h̃(t) dW (t)

dt ,

ṽ(0) = 0,
(3.8)

⎧
⎨

⎩

Dα
t ṽh(t) + Ahṽh(t) = Phh̃(t) dW (t)

dt ,

ṽh(0) = Phṽ(0) = 0.
(3.9)

To bound ϑ , we note that by our definitions

Dα
t ϑ(t) + Ahϑ(t) = Ah

(
Rhṽ(t) – Phṽ(t)

)
, ϑ(0) = 0.
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As in the proof of Lemma 3.6, taking the Laplace transform and inverse Laplace transform
on both sides of this equation, we eventually get

∥
∥ϑ(t)

∥
∥ ≤ C

∥
∥(Rh – Ph)ṽ(t)

∥
∥

≤ C
∥
∥(Rh – I)ṽ(t)

∥
∥ + C

∥
∥(I – Ph)ṽ(t)

∥
∥ ≤ Chq∥∥ṽ(t)

∥
∥

q.

Thus by Lemma 2.3 with p = q ∈ (1, 2] and Itô’s isometry we derive

E
∥
∥ϑ(t)

∥
∥2 ≤ Ch2qE

∥
∥ṽ(t)

∥
∥2

q = Ch2qE
∥
∥
∥
∥

∫ t

0
Ē(t – s)h̃(s) dW (s)

∥
∥
∥
∥

2

q

= Ch2qE
∥
∥
∥
∥

∫ t

0
A

q
2 Ē(t – s)h̃(s) dW (s)

∥
∥
∥
∥

2

= Ch2q
∫ t

0
E
∥
∥A

q
2 Ē(t – s)h̃(s)

∥
∥2

L0
2

ds

≤ Ch2q
∫ t

0
(t – s)2α–2E

∥
∥
∥
∥
∥

∞∑

j=1

h̃(s)Q
1
2 ej

∥
∥
∥
∥
∥

2

q

ds

= Ch2q
∫ t

0
(t – s)2α–2E

∥
∥A

q
2 h̃(s)

∥
∥2

L0
2

ds.

According to inequality (3.1) and Lemma 2.3, the estimate of � yields

E
∥
∥�(t)

∥
∥2 ≤ C

∥
∥(Rh – I)ṽ(t)

∥
∥2 ≤ Ch2qE

∥
∥ṽ(t)

∥
∥2

q

≤ Ch2q
∫ t

0
(t – s)2α–2E

∥
∥A

q
2 h̃(s)

∥
∥2

L0
2

ds.

Thereby,

E
∥
∥
∥
∥

∫ t

0
F̄h(t – s)h̃(s) dW (s)

∥
∥
∥
∥

2

≤ Ch2q
∫ t

0
(t – s)2α–2E

∥
∥h̃(s)

∥
∥2

L0
2,q

ds. �

Now, we will give the semidiscrete error estimate in space for the stochastic fractional
differential equation (1.1).

Theorem 3.1 Let u(t) and uh(t) be the solutions of (1.1) and (3.2), respectively. Then, for
t ≥ 0, α ∈ ( 1

2 , 1), and u0 ∈ L2(�, Ḣs), s ∈ [0, 2], we have

∥
∥u(t) – uh(t)

∥
∥

L2(�,H)
≤ Ch2.

Proof For t ∈ [0, T], by (1.1) and (3.2) we have

∥
∥u(t) – uh(t)

∥
∥

L2(�,H)

≤ ∥
∥
(
E(t) – Eh(t)Ph

)
u0

∥
∥

L2(�,H)

+
∥
∥
∥
∥

∫ t

0

(
Ē(t – s)f

(
u(s)

)
– Ēh(t – s)Phf

(
uh(s)

))
ds

∥
∥
∥
∥

L2(�,H)
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+
∥
∥
∥
∥

∫ t

0

(
Ē(t – s)g

(
u(s)

)
– Ēh(t – s)Phg

(
uh(s)

))
dW (s)

∥
∥
∥
∥

L2(�,H)

= I + II + III.

For I , by Lemma 3.5 with ν = μ = 1 + r (r ∈ (0, 1]) we have

I ≤ Ch1+r‖u0‖L2(�;Ḣ1+r )
.

We dominate II by two additional terms:

II =
∥
∥
∥
∥

∫ t

0
Ē(t – s)f

(
u(s)

)
– Ēh(t – s)Phf

(
uh(s)

)
ds

∥
∥
∥
∥

L2(�,H)

≤
∥
∥
∥
∥

∫ t

0
Ēh(t – s)Ph

(
f
(
u(s)

)
– f

(
uh(s)

))
ds

∥
∥
∥
∥

L2(�,H)

+
∥
∥
∥
∥

∫ t

0
F̄h(t – s)f

(
u(s)

)
ds

∥
∥
∥
∥

L2(�,H)

= I1 + I2.

We estimate each term separately. First, note that by Lemma 3.3 and Assumption 2.1 we
have

I1 ≤
∫ t

0

∥
∥Ēh(t – s)Ph

(
f
(
u(s)

)
– f

(
uh(s)

))∥
∥

L2(�,H)
ds

≤ C
∫ t

0
(t – s)α–1∥∥f

(
u(s)

)
– f

(
uh(s)

)∥
∥

L2(�,H)
ds

≤ C
∫ t

0
(t – s)α–1∥∥u(s) – uh(s)

∥
∥

L2(�,H)
ds.

The term I2 is reckoned by applying Lemma 3.6, Assumptions 2.1 and 2.3. Then we get

I2
2 = E

∥
∥
∥
∥

∫ t

0
F̄h(t – s)f

(
u(s)

)
ds

∥
∥
∥
∥

2

≤ Ch4
∫ t

0
E
∥
∥f

(
u(s)

)∥
∥2 ds

≤ Ch4
∫ t

0
sup

0≤s≤T
E
∥
∥u(s)

∥
∥2 ds

≤ Ch4.

A combination of the estimates I1 and I2 gives

II2 ≤ Ch4 + C
∫ t

0
(t – s)2(α–1)∥∥u(s) – uh(s)

∥
∥2

L2(�,H)
ds.

In a similar way as for II , we dominate III by two additional terms:

III =
∥
∥
∥
∥

∫ t

0
Ē(t – s)g

(
u(s)

)
– Ēh(t – s)Phg

(
uh(s)

)
dW (s)

∥
∥
∥
∥

L2(�,H)
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≤
∥
∥
∥
∥

∫ t

0
Ēh(t – s)Ph

(
g
(
u(s)

)
– g

(
uh(s)

))
dW (s)

∥
∥
∥
∥

L2(�,H)

+
∥
∥
∥
∥

∫ t

0
F̄h(t – s)g

(
u(s)

)
dW (s)

∥
∥
∥
∥

L2(�,H)

= I3 + I4.

As in an estimate for I1, we can get an estimate for I3 by using Lemma 3.3 together with
Assumption 2.2 and Itô’s isometry:

I2
3 = E

∥
∥
∥
∥

∫ t

0
Ēh(t – s)Ph

(
g
(
u(s)

)
– g

(
uh(s)

))
dW (s)

∥
∥
∥
∥

2

=
∫ t

0
E
∥
∥Ēh(t – s)Ph

(
g
(
u(s)

)
– g

(
uh(s)

))∥
∥2

L0
2

ds

=
∫ t

0
E

( ∞∑

j=1

∥
∥Ēh(t – s)Ph

(
g
(
u(s)

)
– g

(
uh(s)

))
Q

1
2 ej

∥
∥2

)

ds

≤ C
∫ t

0
(t – s)2α–2E

∥
∥g

(
u(s)

)
– g

(
uh(s)

)∥
∥2

L0
2

ds

≤ C
∫ t

0
(t – s)2α–2∥∥u(s) – uh(s)

∥
∥2

L2(�,H)
ds.

For the estimate of term I4, we apply Lemma 3.7, Assumptions 2.2 and 2.3, and Itô’s isom-
etry:

I2
4 = E

∥
∥
∥
∥

∫ t

0
F̄h(t – s)g

(
u(s)

)
dW (s)

∥
∥
∥
∥

2

≤ Ch4
∫ t

0
(t – s)2α–2E

∥
∥u(s)

∥
∥2

2 ds

≤ Ch4
∫ t

0
(t – s)2α–2 ds

∫ t

0
sup

0≤s≤T
E
∥
∥u(s)

∥
∥2

2 ds

≤ Ch4.

In total, we have by I3 and I4 that

III2 ≤ Ch4 + C
∫ t

0
(t – s)2α–2∥∥u(s) – u(t)

∥
∥2

L2(�,H)
ds.

Let ϕ(t) = ‖u(s) – uh(s)‖2
L2(�,H)

. Since

I2 ≤ Ch2+2r‖u0‖L2(�;Ḣ1+r )
= Ch4‖u0‖L2(�;Ḣ2)

,

II2 ≤ Ch4 + C
∫ t

0
(t – s)2(α–1)∥∥u(s) – uh(s)

∥
∥2

L2(�,H)
ds,

III2 ≤ Ch4 + C
∫ t

0
(t – s)2α–2∥∥u(s) – u(t)

∥
∥2

L2(�,H)
ds,
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according to the integral version of Gronwall’s lemma, we get

ϕ(t) ≤ Ch4.

Then we have

∥
∥u(s) – uh(s)

∥
∥

L2(�,H)
≤ Ch2. �

4 Error estimates for fully discrete approximation
In this section, we first introduce the GMMP scheme. Then we give a fully discrete scheme
and the corresponding fully discrete error estimate, together with some lemmas, which are
significant in the proof of the fully discrete error estimate.

4.1 The GMMP scheme
We denote the time mesh points by tn = nk, n = 0, 1, . . . , N , with a fixed time step k > 0, such
that 0 ≤ tn ≤ T and k = T

N . Now let us present the GMMP scheme derived by Gorenflo,
Mainardi, Moretti, and Paradisi [33]. The Caputo fractional derivative (when 0 < α < 1)
can be approximated by

Dα
t u(tn) ≈ 1

kα

n∑

m=0

wα
m
[
u(tn–m) – u(0)

]

=
1

kα

[ n∑

m=0

wα
mu(tn–m) – φnu(0)

]

, (4.1)

where

wα
m =

�(m – α)
�(–α)�(m + 1)

, (4.2)

φn =
n∑

m=0

wα
m =

�(n + 1 – α)
�(1 – α)�(n + 1)

, n ≥ 0. (4.3)

Moreover, wα
m and φn have the following properties.

Lemma 4.1 ([34, 35]) For α > 0, n = 1, 2, . . . , we have:
(1) wα

0 = 1, wα
n < 0, |wα

n+1| ≤ |wα
n |, and 0 < –

∑n
m=1 wα

m < –
∑∞

m=1 wα
m = wα

0 ;
(2) φn – φn–1 = wα

n < 0, that is, φn < φn–1 < φn–2 < · · · < φ0 = 1.

4.2 Error estimates
By using the GMMP scheme (4.1) we indicate the approximation of u(tn) by un ≈ u(tn).
Then the fully discrete scheme for equation (1.1) can be defined by

1
kα

[ n∑

m=0

wα
mun–m

h – φnu0
h

]

+ Ahun
h = Phf

(
un

h
)

+
1
k

∫ tn

tn–1

Phg
(
un–1

h
)

dW (s). (4.4)
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Furthermore, we define R(λ, X) = (λI – X)–1,λ > 0, and Ẽkh = R(k–α , –Ah) = (k–αI + Ah)–1.
Then scheme (4.4) can be rewritten as

un
h = k–αφnẼkhu0

h – k–αẼkh

n∑

m=1

wα
mun–m

h + ẼkhPhf
(
un

h
)

+
1
k

∫ tn

tn–1

ẼkhPhg
(
un–1

h
)

dW (s). (4.5)

Besides, the semidiscretized version of mild solution (3.5) at time tn should be shown:

uh(tn) = Eh(tn)Phu0 +
∫ tn

0
Ēh(tn – s)Phf

(
uh(s)

)
ds

+
∫ tn

0
Ēh(tn – s)Phg

(
uh(s)

)
dW (s). (4.6)

Now let us introduce and prove some lemmas, which will play an important role later
on.

Lemma 4.2 ([30]) For any k > 0 and h ∈ (0, 1), there exists a constant C > 0 such that

‖Ẽkhv‖ ≤ Ckα‖v‖, ‖ẼkhPhv‖ ≤ Ckα‖v‖, ∀v ∈ H .

Lemma 4.3 For any t > 0 and p, q ∈ [–1, 1] such that 0 ≤ p – q < 2, we have

∥
∥Eh(t)vh – vh

∥
∥

p ≤ Ct
(2+q–p)α

2 ‖vh‖q+2, ∀vh ∈ Vh.

Proof The definition of Eh(t)vh in (3.3) and Lemma 2.1 yield

∥
∥Eh(t)vh – vh

∥
∥2

p

=
N∑

j=1

(
λh

j
)p(1 – Eα,1

(
–λh

j tα
))2(vh,ϕh

j
)2

= t(q–p)α
N∑

j=1

(
λh

j tα
)p–q(1 – Eα,1

(
–λh

j tα
))2(

λh
j
)q(vh,ϕh

j
)2

= t(q–p)α
N∑

j=1

(
λh

j tα
)p–q

(∫ t

0
λh

j sα–1Eα,α
(
–λh

j sα
)

ds
)2(

λh
j
)q(vh,ϕh

j
)2

≤ Ct(q–p)α
N∑

j=1

(
λh

j tα
)p–q

(∫ t

0
λh

j sα–1 1
1 + (λh

j sα)2
ds

)2(
λh

j
)q(vh,ϕh

j
)2

= Ct(q–p)α
N∑

j=1

(
λh

j tα
)p–q

(∫ t

0

λh
j sα–1

(λh
j sα)( p–q

2 )

(λh
j sα)( p–q

2 )

1 + (λh
j sα)2

ds
)2(

λh
j
)q(vh,ϕh

j
)2

≤ Ct(q–p)α
N∑

j=1

(
λh

j tα
)p–q

(∫ t

0

λh
j sα–1

(λh
j sα)( p–q

2 )
ds

)2(
λh

j
)q(vh,ϕh

j
)2
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= Ct(q–p)α
N∑

j=1

(
tα

)p–q
(∫ t

0

sα–1

(sα)
p–q

2
ds

)2(
λh

j
)q+2(vh,ϕh

j
)2

≤ Ct(q–p)α
N∑

j=1

(
tα

)p–q · t2α–(p–q)α(
λh

j
)q+2(vh,ϕh

j
)2

= Ct(2+q–p)α‖vh‖q+2. �

Lemma 4.4 ([30]) For any λ > 0 and μ ∈ R, there exists a constant C such that

∥
∥
[
μR(λ, Ah) – I

]
Phv

∥
∥ ≤ Cλ–1‖v‖.

Based on the previous discussion, we are ready to prove the error estimates for the fully
discrete approximation.

Theorem 4.1 Let un
h and u(tn) be solutions of (4.4) and (1.1), respectively, for t ≥ 0, α ∈

( 1
2 , 1), and u0 ∈ L2(�, Ḣs), s ∈ [0, 2]. Then there exists a constant C > 0 such that

∥
∥u(tn) – un

h
∥
∥2

L2(�;H)
≤ C

[
k2α + h4].

Proof By the triangle inequality we have

∥
∥u(tn) – un

h
∥
∥

L2(�;H)
≤ ∥

∥u(tn) – uh(tn)
∥
∥

L2(�;H)
+

∥
∥uh(tn) – un

h
∥
∥

L2(�;H)

=
∥
∥ρn∥∥

L2(�;H)
+

∥
∥θn∥∥

L2(�;H)
.

Since we have estimated the error of ‖ρn‖L2(�;H) in Theorem 3.1, we only need to estimate
‖θn‖L2(�;H) . Using equations (4.6) and (4.5), we obtain

∥
∥θn∥∥

L2(�;H)
≤ ∥

∥Eh(tn)Phu0 – k–αφnẼkhPhu0
∥
∥

L2(�;H)

+

∥
∥
∥
∥
∥

–k–αẼkh

n∑

m=1

wα
mun–m

h

∥
∥
∥
∥
∥

L2(�;H)

+
∥
∥
∥
∥

∫ tn

0
Ēh(tn – s)Phf

(
uh(s)

)
ds

∥
∥
∥
∥

L2(�;H)

+
∥
∥–ẼkhPhf

(
un

h
)∥
∥

L2(�;H)

+
∥
∥
∥
∥

∫ tn

0
Ēh(tn – s)Phg

(
uh(s)

)
dW (s)

∥
∥
∥
∥

L2(�;H)

+
∥
∥
∥
∥–

1
k

∫ tn

tn–1

ẼkhPhg
(
un–1

h
)

dW (s)
∥
∥
∥
∥

L2(�;H)

= I1 + I2 + I3 + I4 + I5 + I6.

For I1, by the triangle inequality, we separate I2
1 into two additional terms:

I2
1 = E

∥
∥Eh(tn)Phu0 – k–αφnẼkhPhu0

∥
∥2
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= E
∥
∥
[
Eh(tn)Phu0 – Phu0

]
+

[
Phu0 – k–αφnẼkhPhu0

]∥
∥2

≤ 2E
∥
∥
[
Eh(tn)Phu0 – Phu0

]∥
∥2 + 2E

∥
∥
[
Phu0 – k–αφnẼkhPhu0

]∥
∥2

= I11 + I12.

For I11, by Lemma 4.3 with p = q = 0 we get

I11 = 2E
∥
∥
[
Eh(tn)Phu0 – Phu0

]∥
∥2 ≤ Ct2α

n E‖PhAu0‖2

≤ Ck2αE‖u0‖2
2.

For I12, setting μ = k–αφn and using Lemma 4.4, we have

I12 = 2E‖μẼkhPhu0 – Phu0‖2

= 2E
∥
∥
[
μR

(
k–α , Ah

)
– I

]
Phu0

∥
∥2

≤ Ck2αE‖u0‖2.

By Lemma 4.1 we have
∑n

m=1 |wα
m| < wα

0 = 1. Together with Lemmas 4.2 and 3.4, we obtain

I2
2 = E

∥
∥
∥
∥
∥

k–αẼkh

n∑

m=1

wα
mun–m

h

∥
∥
∥
∥
∥

2

= E

∥
∥
∥
∥
∥

k–αẼkh

n∑

m=1

wα
m
[(

un–m
h – uh(tn–m)

)
+ uh(tn–m)

]
∥
∥
∥
∥
∥

2

≤ C
n∑

m=1

E
∥
∥θn–m∥

∥2 + C
n∑

m=1

E
∥
∥Ẽkhuh(tn–m)

∥
∥2)

≤ C
n∑

m=1

E
∥
∥θn–m∥

∥2 + Ck2α
(
E‖u0‖2).

The term I3 is estimated by applying Lemma 3.2, Assumption 2.1, and Lemma 3.4: for
0 < tn ≤ T = Nk, we get

I2
3 = E

∥
∥
∥
∥

∫ tn

0
Ēh(tn – s)Phf

(
uh(s)

)
ds

∥
∥
∥
∥

2

≤
∫ tn

0
E
∥
∥Ēh(tn – s)Phf

(
uh(s)

)∥
∥2 ds

≤ C
∫ tn

0
(tn – s)2α–2E

∥
∥uh(s)

∥
∥2 ds

≤ Ck2αE‖u0‖2.

By Lemma 4.2, Lemma 3.4, and Assumption 2.1 we get the following estimate for I4:

I2
4 ≤ 2E

∥
∥ẼkhPh

(
f
(
un

h
)

– f
(
uh(tn)

))∥
∥2 + 2E

∥
∥ẼkhPhf

(
uh(tn)

)∥
∥2

≤ Ck2αE
∥
∥f

(
un

h
)

– f
(
uh(tn)

)∥
∥2 + Ck2αE

∥
∥f

(
uh(tn)

)∥
∥2
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≤ Ck2αE
∥
∥un

h – uh(tn)
∥
∥2 + Ck2αE

∥
∥uh(tn)

∥
∥2

≤ Ck2αE
∥
∥θn∥∥2 + Ck2αE‖u0‖2.

For I5, by Lemma 3.2, Assumption 2.2, Lemma 3.4, and Itô’s isometry, we obtain

I2
5 = E

∥
∥
∥
∥

∫ tn

0
Ēh(tn – s)Phg

(
uh(s)

)
dW (s)

∥
∥
∥
∥

2

=
∫ tn

0
E
∥
∥Ēh(tn – s)Phg

(
uh(s)

)∥
∥2

L0
2

ds

≤ C
∫ tn

0
(tn – s)2α–2E

∥
∥uh(s)

∥
∥2 ds

≤ Ck2α
(
E‖u0‖2).

For I6, by Lemma 4.2, Lemma 3.4, Assumption 2.2, and Itô’s isometry we have

I2
6 = E

∥
∥
∥
∥–

1
k

∫ tn

tn–1

ẼkhPhg
(
un–1

h
)

dW (s)
∥
∥
∥
∥

2

≤ 2E
∥
∥
∥
∥

1
k

∫ tn

tn–1

ẼkhPh
(
g
(
un–1

h
)

– g
(
uh(tn–1)

))
dW (s)

∥
∥
∥
∥

2

+ 2E
∥
∥
∥
∥

1
k

∫ tn

tn–1

ẼkhPhg
(
uh(tn–1)

)
dW (s)

∥
∥
∥
∥

2

=
2
k

∫ tn

tn–1

E
∥
∥ẼkhPh

(
g
(
un–1

h
)

– g
(
uh(tn–1)

))∥
∥2

L0
2

ds

+
2
k

∫ tn

tn–1

E
∥
∥ẼkhPhg

(
uh(tn–1)

)∥
∥2

L0
2

ds

≤ Ck2αE
∥
∥θn–1∥∥2 + Ck2α

(
E‖u0‖2).

Therefore, coming back to ‖θn‖L2(�;H) , combining I1, I2, I3, I4, I5, and I6 and applying a dis-
crete version of Gronwall’s lemma, we have

∥
∥θn∥∥2

L2(�;H)
≤ Ck2α .

By the triangle inequality we obtain

∥
∥u(tn) – un

h
∥
∥2

L2(�;H)
≤ ∥

∥θn∥∥2
L2(�;H)

+
∥
∥ρn∥∥2

L2(�;H)
≤ C

(
k2α + h4),

which completes the proof. �

5 Conclusions and discussions
In this paper, we have studied semidiscrete and fully discrete schemes for nonlinear time-
fractional SPDEs. The semidiscrete scheme employs a standard Galerkin finite element
method, and the time direction of the fully discrete scheme is based on the GMMP scheme.
The strong convergence error estimates for the semidiscrete and fully discrete schemes
in the L2-norm are demonstrated. However, there are several possible extensions of the
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work. First, we only consider the initial value condition in our given problem; the complex
boundary condition in our future study will be discussed. Second, numerical investigations
on time-space fractional SPDEs are an interesting direction for our future research.
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