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Abstract
This paper is concerned with the global fixed-time synchronization issue for
semi-Markovian jumping neural networks with time-varying delays. A novel
state-feedback controller, which includes integral terms and time-varying delay
terms, is designed to realize the fixed-time synchronization goal between the drive
system and the response system. By applying the Lyapunov functional approach and
matrix inequality analysis technique, the fixed-time synchronization conditions are
addressed in terms of linear matrix inequalities (LMIs). Finally, two numerical examples
are provided to illustrate the feasibility of the proposed control scheme and the
validity of theoretical results.
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1 Introduction
In the past decades, the neural networks (NNs) have been found extensive applications
in many areas, such as pattern recognition, computer vision, speech synthesis, artificial
intelligence and so on; see [1–3]. Such a wide range of applications attract considerable
attention from many scholars to the dynamical behavior of the networks. Up to now, many
significant works with respect to NNs have been reported; see [4–9], and the references
therein.

Synchronization, which means that the dynamical behaviors of coupled systems achieve
the same state, is a fundamental phenomenon in networks. At present, considerable atten-
tion has been devoted to the analysis of the synchronization of NNs and some effective
synchronization criteria of NNs have been established in the literature [10–15]. Via the
sliding mode control, the synchronization problem for complex-valued neural network
was addressed in [12]. Reference [14] elaborates the impulsive stabilization and impulsive
synchronization of discrete-time delayed neural networks. By adopting the periodically in-
termittent control scheme, the exponential lag synchronization issue for neural networks
with mixed delays was described in [15]. It should be pointed out that most of these syn-
chronization criteria are based on the Lyapunov stability theory, which is defined over an
infinite-time interval. However, from the practical perspective, we are inclined to real-
ize the synchronization goal in a finite-time interval. Because in a finite-time interval the
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maximal synchronization time can be calculated through appropriate methods. Hence, it
is significative to study the finite-time synchronization of NNs. In Ref. [16], the finite-time
robust synchronization issue for memristive neural networks was discussed. By utilizing
the discontinuous controllers, the finite-time synchronization issue for the coupled neu-
ral networks was addressed in [17]. And under the sampled-date control scheme, some
finite-time synchronization criteria for inertial memristive neural networks were estab-
lished in [18].

For the finite-time synchronization, the settling time heavily depends on the initial con-
ditions, which may lead to different convergence times under different initial conditions.
However, the initial conditions may be invalid in practice. In order to overcome these
shortcomings, a new concept named fixed-time synchronization was firstly taken into ac-
count in [19]. Hints for future research on the fixed-time synchronization problem can
be found in [20–25]. By designing a sliding mode controller, the fixed-time synchroniza-
tion issue for complex dynamical networks was addressed in [21]. Robust fixed-time syn-
chronization for uncertain complex-valued neural networks with discontinuous activation
functions was introduced in [23]. Furthermore, the fixed-time synchronization issue for
delayed memristor-based recurrent neural networks was investigated in [25].

As is well known, time delay is inevitable in the process of transitional information be-
cause of the finite velocity of the transmission signal. Time delays often cause the systems
to be instable and oscillatory. Thus, considering the synchronization of NNs with delays
is meaningful. Owing to the value of the delay not always being fixed, exploring the syn-
chronization of NNs with time-varying delays has become the subject of great interests for
many scholars. Finite-time and fixed-time synchronization analysis for inertial memris-
tive neural networks with time-varying delays was addressed in [26]. Reference [27] also
presents an intensive study of the fixed-time synchronization issue for the memristor-
based BAM neural networks with time-varying discrete delays. In [28], the author elabo-
rated the synchronization control problem for chaotic neural networks with time-varying
and distributed delays. Moreover, the robust extended dissipativity criteria for discrete-
time uncertain neural networks with time-varying delays were investigated in [29].

By adding the Markovian process into the network systems of NNs, a new network
model is developed. Up to now, the study concerning synchronization of Markovian jump-
ing NNs, especially the global finite-time synchronization of Markovian jumping NNs
have received wide attention from the scholars, and a number of results have been de-
veloped, such as finite-time synchronization [30], robust control [31], exponential syn-
chronization [32], and state estimation [33]. However, the sojourn-time of a Markovian
process obeys an exponential distribution, which results in the transition rate to be a con-
stant. That limits the application of Markovian process. Compared with Markovian pro-
cess, semi-Markovian process can obey to some other probability distributions, such as
Weibull distribution, Gaussian distribution, which makes the semi-Markovian process has
a more extensive application prospect. Hence, the investigation for semi-Markovian jump-
ing NNs is of great theoretical value and practical significance, which has been conducted
in [34–38]. In [34], the finite-time H∞ synchronization for complex networks with semi-
Markov jump topology was investigated by adopting a suitable Lyapunov function and
LMI approach. In [36], the exponential stability issue for the semi-Markovian jump gen-
eralized neural networks with interval time-varying delays was addressed. And in [38], the
improved stability and stabilization results for stochastic synchronization of continuous-
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time semi-Markovian jump NNs with time-varying delays were also studied. However, to
the best of our knowledge, little attention was paid to the synchronization issue for semi-
Markovian jumping NNs. This motivates us to study the fixed-time synchronization of
semi-Markovian jumping NNs with time-varying delays.

Motivated by the aforementioned discussions, we intend to realize the fixed-time syn-
chronization goal for semi-Markovian jumping NNs with time-varying delays. By applying
Lyapunov functional approach, the fixed-time synchronization conditions are presented
in terms of LMIs. Therefore, the novelty of our contributions is in the following:

(1) A novel state-feedback controller, which includes double-integral terms, is designed
to ensure the fixed-time synchronization, which can further improve the
effectiveness of the convergence.

(2) A new formula for calculating the settling time for semi-Markovian jumping
nonlinear system is developed; see Theorem 3.2.

(3) The time-varying delays and semi-Markovian processes are introduced in the
construction of the NNs models.

(4) The fixed-time synchronization conditions are addressed in terms of LMIs.
The rest of this article is arranged as follows. Some preliminaries and model description

are described in Sect. 2. In Sect. 3, we introduce the main results, the fixed-time syn-
chronization conditions are derived under different nonlinear controllers. In Sect. 4, two
examples are presented to show the correctness of our main results. Section 5, also the
final part, the conclusion of this paper is shown.

Notation R represents the set of real numbers. Rn denotes the n-dimensional Eu-
clidean space, and Rn×n denotes the set of all n × n matrices. Given column vectors
x = (x1, x2, . . . , xn)T ∈ Rn, where the superscript T represents the transpose operator. X < Y
(X > Y ), which means that X – Y is negative (positive) definite. E stand for mathemati-
cal expectation. �V (x(t), r(t), t) denotes the infinitesimal generator of V (x(t), r(t), t). For
real matrix P = (pij)n×n, |P| = (|pij|)n×n, λmin(P) and λmax(P) denote the minimum and maxi-
mum eigenvalues of P, respectively. ∗ stands for the symmetric terms in a symmetric block
matrix. ‖x‖ stands for the Euclidean norm of the vector x, i.e., ‖x‖ = (xT x) 1

2 . Matrices, if
their dimensions are not explicitly stated, are assumed to have compatible dimensions for
the algebraic operation.

2 Preliminaries and model description
Let (�,F , {F }t≥0,P) be the complete probability space and the filtration Ft≥0 satisfies the
usual conditions that it is right continuous and increasing while F contains allP-null sets,
where � is the sample space, F is the algebra of events and P is the probability measure
defined on F . Let {r(t), t ≥ 0} be a continuous-time semi-Markovian process taking values
in a finite state space S = {1, 2, 3, . . . , N}. The evolution of the semi-Markovian process r(t)
obeys the following probability transitions:

P
(
r(t + h) = k|r(t) = r

)
=

⎧
⎨

⎩
πrk(h)h + o(h), if r �= k,

1 + πrr(h)h + o(h), if r = k,
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where h > 0, limh→0
o(h)

h = 0, πrk(h) ≥ 0 (r, k ∈ S, r �= k) is the transition rate from mode r
to k and for any state or mode, it satisfies

πrr(h) = –
N∑

k=1,k �=r

πrk(h).

Remark 2.1 It is worth noting that in the continuous-time semi-Markovian process, the
transition rate πrk(h) is time-varying and depend on the sojourn-time h. Meanwhile,
the probability distribution of sojourn-time h obeys the Weibull distribution, etc [39].
If the sojourn-time h subjects to the exponential distribution, and the transition rate
πrk(h) = πrk , is a constant. Then the continuous-time semi-Markovian process recedes
to the continuous-time Markovian process. On the other hand, the transition rate πrk(h)
is bounded, with π rk ≤ πrk(h) ≤ π rk , π rk and π rk are known constant scalars, and πrk(h)
can be denoted as πrk(h) = πrk + �πrk , where πrk = 1

2 (π rk + π rk), and |�πrk| ≤ κrk with
κrk = 1

2 (π rk – π rk), see [37].

The model we consider in this paper is the neural networks model with semi-Markovian
jumping parameters. The dynamical behavior of the drive system is described as the fol-
lowing stochastic differential equation:

⎧
⎨

⎩
ẋi(t) = –D(r(t))xi(t) + A(r(t))fi(xi(t)) + B(r(t))fi(xi(t – τ (t)) + Ii,

xi(t) = ψi(t), –τ ≤ t ≤ 0,
(1)

and the corresponding response system is
⎧
⎨

⎩
ẏi(t) = –D(r(t))yi(t) + A(r(t))fi(yi(t)) + B(r(t))fi(yi(t – τ (t)) + Ii + ui(t),

yi(t) = φi(t), –τ ≤ t ≤ 0,
(2)

where {r(t), t ≥ 0} is the continuous-time semi-Markovian process and r(t) stands for the
evolution of the mode at time t. x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn, y(t) = (y1(t), y2(t), . . . ,
yn(t))T ∈ Rn denotes the state vector of the ith neuron at time t; D(r(t)) ∈ Rn is a positive-
definite diagonal matrix; A(r(t)) ∈ Rn×n and B(r(t)) ∈ Rn×n are matrices with real val-
ues in mode r(t); f (x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ∈ Rn is the neuronal activa-
tion function; I = (I1, I2, . . . , In)T denotes the external input on the ith neuron. u(t) =
(u1(t), u2(t), . . . , un(t))T stands for the control input, which will be designed later. ψ(t) =
(ψ1(t),ψ2(t), . . . ,ψn(t) ∈ C([–τ , 0]; Rn) and φ(t) = (φ1(t),φ2(t), . . . ,φn(t)) ∈ C([–τ , 0]; Rn) are
the initial conditions of system (1) and (2), respectively.

Variable τ (t) denotes the time-varying delay function, and it is assumed to satisfy

0 < τ (t) ≤ τ , τ̇ (t) ≤ r,

where τ > 0 and 0 < r < 1 are known constants.
For notation simplicity, we replace D(r(t)), A(r(t)), B(r(t)) with Dr , Ar and Br , respec-

tively, for r(t) = r ∈ S. Then the neural networks models can be rewritten as follows:
⎧
⎨

⎩
ẋi(t) = –Drxi(t) + Arfi(xi(t)) + Brfi(xi(t – τ (t)) + Ii,

xi(t) = ψi(t), –τ ≤ t ≤ 0,
(3)
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⎧
⎨

⎩
ẏi(t) = –Dryi(t) + Arfi(yi(t)) + Brfi(yi(t – τ (t)) + Ii + ui(t),

yi(t) = φi(t), –τ ≤ t ≤ 0.
(4)

For the purpose of this paper, we suppose that the activation function fi(·) satisfies the
following assumption:

(H1) For any xi(t), yi(t) ∈ Rn, fi(·) satisfies

∣∣fi
(
yi(t)

)
– fi

(
xi(t)

)∣∣ ≤ μi
∣∣yi(t) – xi(t)

∣∣ and
∣∣fi(·)

∣∣ ≤ Qi,

where μi > 0 and Qi > 0 are both known constants.
Let ei(t) = yi(t) – xi(t) be the synchronization error, then the error dynamics system can

be expressed as

⎧
⎨

⎩
ėi(t) = –Drei(t) + Argi(ei(t)) + Brgi(ei(t – τ (t)) + ui(t),

ei(t) = ϕ(t), –τ ≤ t ≤ 0,
(5)

where e(t) = (e1(t), e2(t), . . . , en(t))T , gi(ei(t)) = fi(yi(t)) – fi(xi(t)) and gi(ei(t – τ (t))) = fi(yi(t –
τ (t))) – fi(xi(t – τ (t))), and ϕ(t) = ψi(t) – φi(t).

Remark 2.2 From assumption (H1), we can conclude that gi(·) is also continuous and
bounded, then

∣
∣gi

(
ei(t)

)∣∣ ≤ μi
∣
∣ei(t)

∣
∣ and

∣
∣gi(·)

∣
∣ ≤ Hi,

where Hi is a known positive constant.

Before proceeding our main results, some basic definitions and lemmas are introduced.

Definition 2.1 The neural network system (3) is said to be synchronized with the system
(4) in finite time, if for any initial condition ϕ(t), –τ ≤ t ≤ 0, there exists a settling time
function Tϕ = T(ϕ), such that

lim
t→Tϕ

E
∥
∥e(t)

∥
∥ = 0, e(t) = 0, ∀t ≥ Tϕ .

Moreover, if there exists a constant Tmax > 0, such that Tϕ ≤ Tmax, then the neural net-
work system (3) is said to be synchronized onto system (4) in fixed time. Tmax is called the
synchronization settling time.

Lemma 2.1 ([40]) Given any scalar ε and matrix S ∈ Rn×n, the following inequality:

ε
(
S + ST) ≤ ε2W + SW –1ST ,

holds for any symmetric positive-definite matrix W ∈ Rn×n.
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Lemma 2.2 ([41]) For any constant vector x ∈ Rn and 0 < c < l, the following norm equiv-
alence holds:

( n∑

i=1

|xi|l
) 1

l

≤
( n∑

i=1

|xi|c
) 1

c

and

(
1
n

n∑

i=1

|xi|l
) 1

l

≥
(

1
n

n∑

i=1

|xi|c
) 1

c

.

Lemma 2.3 Let U ∈ Rn×n be a symmetric matrix, and let x ∈ Rn, then the following in-
equality holds:

λmin(U)xT x ≤ xT Ux ≤ λmax(U)xT x.

Lemma 2.4 ([42]) Suppose there exists a continuous nonnegative function V (t) : Rn →
R+ ∪ (0), such that

(1) V (e(t)) > 0 for e(t) �= 0, V (e(t)) = 0 ⇔ e(t) = 0;
(2) for given constants α > 0, β > 0, 0 < ρ < 1, and υ > 1, any solution e(t) satisfies the

following inequality:

D+V
(
e(t)

) ≤ –αV ρ
(
e(t)

)
– βV υ

(
e(t)

)
,

then the error system (5) is globally fixed-time stable for any initial conditions ϕ(t), and it
satisfies

V (t) ≡ 0, t ≥ Tϕ ,

with the settling time estimated as

Tϕ ≤ Tmax :=
1

α(1 – ρ)
+

1
β(υ – 1)

.

Lemma 2.5 ([43]) Suppose there exists a continuous nonnegative function V (t) : Rn →
R+ ∪ (0), such that

(1) V (e(t)) > 0 for e(t) �= 0, V (e(t)) = 0 ⇔ e(t) = 0;
(2) for some α, β > 0, ρ = 1 – 1

2p , υ = 1 + 1
2p , p > 1, any solution e(t) satisfies

D+V
(
e(t)

) ≤ –αV ρ
(
e(t)

)
– βV υ

(
e(t)

)
,

then the error system (5) is globally fixed-time stable, and the settling time bounded by

Tϕ ≤Tmax =
πp√
αβ

.

Lemma 2.6 ([44]) Suppose that there exists a positive-definite, continuous differential
function V (t) which satisfies

V̇ (t) ≤ –αV ρ(t) (t ≥ 0),
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where α > 0, 0 < ρ < 1 are two constants. Then we have limt→T∗ V (t) = 0, and V (t) ≡ 0,
∀t ≥ T∗, with the settling time T∗ estimated as

T∗ =
V 1–ρ(0)
α(1 – ρ)

.

3 Main results
In this subsection, the fixed-time synchronization conditions are developed between the
system (3) and (4). For this purpose, we adopt the following discontinuous feedback con-
troller:

ui(t) = –λi1ei(t) – λi2 sign
(
ei(t)

)
– λi3 sign

(
ei(t)

)∣∣ei(t)
∣∣ρ – λi4 sign

(
ei(t)

)∣∣ei(t)
∣∣υ , (6)

where 0 < ρ < 1, υ > 1, λi1, λi2, λi3, λi4, i = 1, 2, are the parameters to be designed later.

Theorem 3.1 Under assumption (H1), for given scalars 0 < α < 1 and β > 1, if there exist
symmetric positive-definite matrices Pr , Wrk , such that

⎧
⎪⎪⎨

⎪⎪⎩

–λi1Pr – PrDr + μi|PrAr| + �̃
2 < 0,

λi2Pr > Hi|PrBr|,
λi3 > 0, λi4 > 0,

(7)

where �̃ =
∑N

k=1 πrkPk +
∑N

k=1,k �=r[
κ2

rk
4 Wrk + (Pk – Pr)W –1

rk (Pk – Pr)], then the drive system
(3) is synchronized onto the response system (4) in fixed time.

Proof Consider the following Lyapunov functional:

V (t) =
n∑

i=1

eT
i (t)Prei(t). (8)

For simplicity, here, we replace V (e(t), t, r), LV (e(t), t, r) with V (t) and LV (t), respec-
tively. With regard to Itô formula, we have

LV (t) = lim
�t→0

E{V (e(t + �t), r(t + �t), t + �t)|r(t) = r} – V (e(t), r, t)
�t

,

where �t is a small positive number. Hence, for every r(t) = r ∈ S, it can be deduced that

LV (t) = 2
n∑

i=1

eT
i (t)Prėi(t) +

n∑

i=1

eT
i (t)

[ N∑

k=1

πrk(h)Pk

]

ei(t). (9)

Considering πrk(h) = πrk + �πrk , �πrr = –
∑N

k=1,k �=r �πrk and applying Lemma 2.1, we
obtain

N∑

k=1

πrk(h)Pk =
N∑

k=1

πrkPk +
N∑

k=1,k �=r

�πrkPk + �πrrPr

=
N∑

k=1

πrkPk +
N∑

k=1,k �=r

�πrk(Pk – Pr)
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=
N∑

k=1

πrkPk +
N∑

k=1,k �=r

[
1
2
�πrk(Pk – Pr) +

1
2
�πrk(Pk – Pr)

]

≤
N∑

k=1

πrkPk +
N∑

k=1,k �=r

[
κ2

rk
4

Wrk + (Pk – Pr)W –1
rk (Pk – Pr)

]
.

Then calculating the derivative of V (t) along the trajectory of (5), we have

LV (t) ≤ 2
n∑

i=1

eT
i (t)Pr(–Drei(t) + Argi

(
ei(t)

)
+ Brgi

(
ei

(
t – τ (t)

)
+ ui(t)

)

+
n∑

i=1

eT
i (t)

( N∑

k=1

πrkPk +
N∑

k=1,k �=r

[
κ2

rk
4

Wrk + (Pk – Pr)W –1
rk (Pk – Pr)

])

ei(t).

Based on assumption (H1), we get

LV (t) ≤ –2
n∑

i=1

eT
i (t)PrDrei(t) + 2μi

n∑

i=1

eT
i (t)|PrAr|ei(t) + 2Hi

n∑

i=1

∣∣eT
i (t)

∣∣|PrBr|

+ 2
n∑

i=1

eT
i (t)Prui(t) +

n∑

i=1

eT
i (t)�̃ei(t). (10)

Substituting the controller (6) into (10), it yields

LV (t) ≤ 2
n∑

i=1

eT
i (t)

(
–λi1Pr – PrDr + μi|PrAr| +

�̃

2

)
ei(t)

+ 2
n∑

i=1

∣∣eT
i (t)

∣∣(Hi|PrBr| – λi2Pr
)

– 2λi3

n∑

i=1

eT
i (t)Pr

∣∣ei(t)
∣∣ρ

– 2λi4

n∑

i=1

eT
i (t)Pr

∣∣ei(t)
∣∣υ . (11)

By the condition (7), (11) can be rewritten as the following inequality:

LV (t) ≤ –2λi3

n∑

i=1

eT
i (t)Pr

∣∣ei(t)
∣∣ρ – 2λi4

n∑

i=1

eT
i (t)Pr

∣∣ei(t)
∣∣υ .

In view of Lemmas 2.2 and 2.3, it derives that

LV (t) ≤ –2λi3
λmin(Pr)

λmax(Pr)
1+ρ

2

( n∑

i=1

eT
i (t)Prei(t)

) 1+ρ
2

– 2λi4
λmin(Pr)n 1–υ

2

λmax(Pr) 1+υ
2

( n∑

i=1

eT
i (t)Prei(t)

) 1+υ
2

.

According to (8), one obtains

LV (t) ≤ –2λi3
λmin(Pr)

λmax(Pr)
1+ρ

2

[
V (t)

] 1+ρ
2 – 2λi4

λmin(Pr)n 1–υ
2

λmax(Pr) 1+υ
2

[
V (t)

] 1+υ
2 . (12)
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Then, taking the expectation on both sides of (12), we can get

ELV (t) ≤ –2λi3
λmin(Pr)

λmax(Pr)
1+ρ

2
E
[(

V (t)
)] 1+ρ

2 – 2λi4
λmin(Pr)n 1–υ

2

λmax(Pr) 1+υ
2

E
[(

V (t)
)] 1+υ

2 .

As is well known, for any t > 0, E [(V (t))
1+ρ

2 ] = (E [V (t)])
1+ρ

2 and E [(V (t)) 1+υ
2 ] =

(E [V (t)]) 1+υ
2 , then we have the following inequality:

ELV (t) ≤ –2 min(λi3)
λmin(Pr)

λmax(Pr)
1+ρ

2

[
E
(
V (t)

)] 1+ρ
2

– 2 min(λi4)
λmin(Pr)n 1–υ

2

λmax(Pr) 1+υ
2

[
E
(
V (t)

)] 1+υ
2 .

By Lemma 2.4, we know that the error system (5) is globally fixed-time stable. And the
settling time is estimated as

Tϕ ≤ Tmax ≤ λmax(Pr)
1+ρ

2

2 min(λi3)λmin(Pr)(1 – ρ)
+

λmax(Pr) 1+υ
2

2 min(λi4)n 1–υ
2 λmin(Pr)(υ – 1)

.

Hence, under the controller (6), the fixed-time synchronization conditions is derived. The
proof is completed. �

Remark 3.1 The function fi(·) we choose in this paper is continuous and bounded by a con-
stant Gi. It is a special condition for the function fi(·). The boundedness is not necessary
in general conditions. In this paper, for estimating the parameter accurately, we choose
the function bounded by Gi. In other continuous cases, there only needs the condition
|fi(yi(t)) – fi(xi(t))| ≤ μi|yi(t) – xi(t)|. Owing to |fi(yi(t))–fi(xi(t))|

|yi(t)–xi(t)| ≤ μi, thus, for the constant
μi, the value of μi is determined by the selection of activation function fi(·).

Remark 3.2 To the best of our knowledge, of the current literature on the synchroniza-
tion issue for NNs, only a part of the matrices in the network systems and Lyapunov func-
tional are distinct for different system modes. Hence, the network systems and the Lya-
punov functional in this paper are more general than the existing results (such as [24, 26]).
Meanwhile, inspired by [33], the double-integral terms is introduced into the Lyapunov
functional to deal with the adverse effect caused by the integral terms which include the
semi-Markovian jumping parameters. The following theorem is established to show the
advantage of this approach.

In the following, the fixed-time synchronization conditions are addressed in terms of
LMIs between the system (3) and (4). For this purpose, we adopt the following discontin-
uous feedback controller which includes the integral terms:

ui(t) = –λi1ei(t) – λi2 sign
(
ei(t)

)
– λi3 sign

(
ei(t)

)∣∣ei(t)
∣∣ρ – λi4 sign

(
ei(t)

)∣∣ei(t)
∣∣υ

– λi5
ei(t)

‖ei(t)‖2

[∫ t

t–τ (t)
eT

i (s)Krei(s) ds +
∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds
] 1+ρ

2

– λi6
ei(t)

‖ei(t)‖2

[∫ t

t–τ (t)
eT

i (s)Krei(s) ds +
∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds
] 1+υ

2
. (13)
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Theorem 3.2 Under assumption (H1), for given scalars 0 < α < 1 and β > 1, if there exist
symmetric positive-definite matrices Pr , Wrk , and Kr , symmetric matrix K ≥ 0, such that

[
� K
∗ (r – 1)Kr

]

≤ 0, (14)

where � = Kr +
∑N

k=1 πrkPk +
∑N

k=1,k �=r[ κ2
rk
4 Wrk + (Pk – Pr)W –1

rk (Pk – Pr)] + τK ,
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

–PrDr – λi1Pr + μi|PrAr| ≤ 0,

λi2Pr > Hi|PrBr|,
λi5 > λi3

λmax(Pr)
1+ρ

2
> 0,

λi6 > λi4

λmax(Pr)
1+υ

2
> 0,

∑
k∈S πrk(h)Kk – K ≤ 0,

(15)

then the drive system (3) is synchronized onto the response system (4) in fixed time.

Proof Consider the following Lyapunov functional:

V (t) = V1(t) + V2(t) + V3(t)

=
n∑

i=1

eT
i (t)Prei(t) +

n∑

i=1

∫ t

t–τ (t)
eT

i (s)Krei(s) ds +
n∑

i=1

∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds. (16)

For V1(t), based on (8) and (9), we have

LV1(t) = 2
n∑

i=1

eT
i (t)Prėi(t) +

n∑

i=1

eT
i (t)

[ N∑

k=1

πrk(h)Pk

]

ei(t). (17)

Calculating the derivatives of V2(t) and V3(t) along the trajectory of (5), it yields

LV2(t) =
n∑

i=1

eT
i (t)Krei(t) –

(
1 – τ̇ (t)

) n∑

i=1

eT
i
(
t – τ (t)

)
Krei

(
t – τ (t)

)

+
n∑

i=1

N∑

k=1

πrk(h)
∫ t

t–τ (t)
eT

i (s)Kkei(s) ds,

and

LV3(t) =
n∑

i=1

eT
i (t)τKei(t) –

n∑

i=1

∫ t

t–τ

eT
i (s)Kei(s) ds. (18)

Combining (16)–(18), we acquire

LV (t) = 2
n∑

i=1

eT
i (t)Prėi(t) +

n∑

i=1

eT
i (t)

[ N∑

k=1

πrk(h)Pk

]

ei(t) +
n∑

i=1

eT
i (t)Krei(t)

–
(
1 – τ̇ (t)

) n∑

i=1

eT
i
(
t – τ (t)

)
Krei

(
t – τ (t)

)
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+
n∑

i=1

N∑

k=1

πrk(h)
∫ t

t–τ (t)
eT

i (s)Kkei(s) ds

+
n∑

i=1

eT
i (t)τKei(t) –

n∑

i=1

∫ t

t–τ

eT
i (s)Kei(s) ds.

Based on assumption (H1) and the error system (5), we have

LV (t) ≤ –2
n∑

i=1

eT
i (t)PrDrei(t) + 2μi

n∑

i=1

eT
i (t)|PrAr|ei(t)

+ 2Hi

n∑

i=1

∣∣eT
i (t)

∣∣|PrBr| + 2
n∑

i=1

eT
i (t)Prui(t) +

n∑

i=1

eT
i (t)Krei(t)

+
n∑

i=1

eT
i (t)τKei(t) – (1 – r)

n∑

i=1

eT
i
(
t – τ (t)

)
Krei

(
t – τ (t)

)

+
n∑

i=1

eT
i (t)

( N∑

k=1

πrkPk +
N∑

k=1,k �=s

[
κ2

rk
4

Wrk + (Pk – Pr)W –1
rk (Pk – Pr)

])

ei(t)

+
n∑

i=1

∫ t

t–τ (t)
eT

i (s)

( N∑

k=1

πrk(h)Kk – K

)

ei(s) ds.

Under the condition of the Theorem, we have the following inequality:

LV (t) ≤ 2
n∑

i=1

eT
i (t)

(
–PrDr + μi|PrAr|

)
ei(t) + 2Hi

n∑

i=1

∣
∣eT

i (t)
∣
∣|PrBr|

+ 2
n∑

i=1

eT
i (t)Prui(t) +

n∑

i=1

eT
i (t)�ei(t) + (r – 1)

n∑

i=1

eT
i
(
t – τ (t)

)
Krei

(
t – τ (t)

)

+ 2
n∑

i=1

∣∣eT
i (t)

∣∣K
∣∣ei

(
t – τ (t)

)∣∣. (19)

Substituting (13) into (19), we can obtain

LV (t) ≤ 2
n∑

i=1

eT
i (t)

(
–λi1Pr – PrDr + μi|PrAr|

)
ei(t) + 2

n∑

i=1

∣
∣eT

i (t)
∣
∣(Hi|PrBr| – λi2Pr

)

+
n∑

i=1

(∣∣eT
i (t)

∣∣∣∣eT
i
(
t – τ (t)

)∣∣)
(

� K
∗ (r – 1)Kr

)(
|ei(t)|

|ei(t – τ (t))|

)

+ 2
n∑

i=1

eT
i (t)Pr

(
–λi3

∣∣ei(t)
∣∣ρ – λi4

∣∣ei(t)
∣∣υ

– λi5
ei(t)

‖ei(t)‖2

[∫ t

t–τ (t)
eT

i (s)Krei(s) ds
] 1+ρ

2

– λi5
ei(t)

‖ei(t)‖2

[∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds
] 1+ρ

2
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– λi6
ei(t)

‖ei(t)‖2

[∫ t

t–τ (t)
eT

i (s)Krei(s) ds
] 1+υ

2

– λi6
ei(t)

‖ei(t)‖2

[∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds
] 1+υ

2
)

.

By the conditions (14) and (15), then employing Lemma 2.3, we have

LV (t) ≤ –2λi3λmin(Pr)
n∑

i=1

∣∣ei(t)
∣∣ρ+1 – 2λi4λmin(Pr)

n∑

i=1

∣∣ei(t)
∣∣υ+1

– 2λi5λmin(Pr)

[ n∑

i=1

∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds +
n∑

i=1

∫ t

t–τ (t)
eT

i (s)Krei(s) ds

] 1+ρ
2

– 2λi6λmin(Pr)

[ n∑

i=1

∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds

+
n∑

i=1

∫ t

t–τ (t)
eT

i (s)Krei(s) ds

] 1+υ
2

. (20)

According to Lemma 2.2, we get

( n∑

i=1

∣
∣ei(t)

∣
∣1+ρ

) 1
1+ρ

≥
( n∑

i=1

∣
∣ei(t)

∣
∣2

) 1
2

,

thus

n∑

i=1

∣∣ei(t)
∣∣1+ρ ≥

( n∑

i=1

∣∣ei(t)
∣∣2

) 1+ρ
2

=

( n∑

i=1

eT
i (t)ei(t)

) 1+ρ
2

.

Thus, (20) can be rewritten as

LV (t) ≤ –2λi3
λmin(Pr)

λmax(Pr)
1+ρ

2

[ n∑

i=1

eT
i (t)Prei(t)

] 1+ρ
2

– 2λi4
λmin(Pr)

λmax(Pr) 1+υ
2

[ n∑

i=1

eT
i (t)Prei(t)

] 1+υ
2

– 2λi5λmin(Pr)

[ n∑

i=1

∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds +
n∑

i=1

∫ t

t–τ (t)
eT

i (s)Krei(s) ds

] 1+ρ
2

– 2λi6λmin(Pr)

[ n∑

i=1

∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds +
n∑

i=1

∫ t

t–τ (t)
eT

i (s)Krei(s) ds

] 1+υ
2

.
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According to the conditions given in (15), then, based on Lemma 2.2, we get

LV (t) ≤ –2λi3
λmin(Pr)

λmax(Pr)
1+ρ

2

[ n∑

i=1

eT
i (t)Prei(t)

+
n∑

i=1

∫ t

t–τ (t)
eT

i (s)Krei(s) ds +
n∑

i=1

∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds

] 1+ρ
2

– 2λi4
λmin(Pr)

λmax(Pr) 1+υ
2

[ n∑

i=1

eT
i (t)Prei(t)

+
n∑

i=1

∫ t

t–τ (t)
eT

i (s)Krei(s) ds +
n∑

i=1

∫ 0

–τ

∫ t

t+s
eT

i (s)Kei(s) ds

] 1+υ
2

,

where 0 < ρ < 1, υ > 1, λi3, λi4 > 0.

LV (t) ≤ –2λi3
λmin(Pr)

λmax(Pr)
1+ρ

2

[
V (t)

] 1+ρ
2 – 2λi4

λmin(Pr)n 1–υ
2

λmax(Pr) 1+υ
2

[
V (t)

] 1+υ
2 . (21)

Taking the expectation on both sides of (21), it yields

ELV (t) ≤ –2λi3
λmin(Pr)

λmax(Pr)
1+ρ

2
E
[(

V (t)
) 1+ρ

2
]

– 2λi4
λmin(Pr)n 1–υ

2

λmax(Pr) 1+υ
2

E
[(

V (t)
) 1+υ

2
]
. (22)

It is easily known that E [(V (t))
1+ρ

2 ] = (E [V (t)])
1+ρ

2 and E [(V (t)) 1+υ
2 ] = (E [V (t)]) 1+υ

2 , then
(22) can be rewritten as

ELV (t) ≤ –2 min(λi3)
λmin(Pr)

λmax(Pr)
1+ρ

2

[
EV (t)

] 1+ρ
2

– 2 min(λi4)
λmin(Pr)n 1–υ

2

λmax(Pr) 1+υ
2

[
EV (t)

] 1+υ
2 . (23)

Together with Lemma 2.4 and (23), we conclude that the error system (5) is globally
fixed-time stable, and the settling time is estimated as

Tϕ ≤ Tmax ≤ λmax(Pr)
1+ρ

2

2 min(λi3)λmin(Pr)(1 – ρ)
+

λmax(Pr) 1+υ
2

2 min(λi4)n 1–υ
2 λmin(Pr)(υ – 1)

. (24)

Hence, the fixed-time synchronization conditions are addressed in terms of LMIs. The
proof is completed. �

Remark 3.3 To the best of our knowledge, many existing works with respect to the fixed-
time synchronization conditions for NNs, see [25, 27], address these in terms of algebraic
inequalities. Compared with the approach used in [25], the fixed-time synchronization
conditions obtained in Theorem 3.2 can be addressed in terms of LMIs, which can be
solved by utilizing the LMI toolbox in Matlab. It should be mentioned that the condition
(14) cannot be solved directly in terms of LMIs, because there exists a nonlinear term
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∑N
r=1,k �=r(Pk – Pr)W –1

rk (Pk – Pr) in �. In order to overcome this difficulty, constructing a
diagonal matrix diag{∑N

r=1,k �=r(Pk – Pr)W –1
rk (Pk – Pr), 0} is necessary. Then, utilizing the

condition of the transition rate πrk(h) and Schur complement lemma which are mentioned
in [37], the matrix inequalities is turned into the linear matrix inequalities, which can be
solved in terms of LMIs.

Corollary 3.1 Suppose the conditions in Theorem 3.2 admit. Under the controller (13), the
drive system (3) is synchronized with the response system (4) in fixed time, and the settling
time is estimated as

Tϕ ≤ Tmax ≤ πp

2λmin(Pr)
√

min(λi3) min(λi4)n 1–υ
2 λmax(Pr)

2+ρ+υ
2

, (25)

with p > 1.

Corollary 3.2 Under assumption (H1), for given scalars 0 < ρ < 1, the drive system (3) is
synchronized onto the response system (4) in a finite-time interval based on the following
controller:

ui(t) = –λi1ei(t) – λi2 sign
(
ei(t)

)
– λi3 sign

(
ei(t)

)∣∣ei(t)
∣
∣ρ , (26)

if there exist symmetric positive-definite matrices Pr , Wrk , such that

⎧
⎪⎪⎨

⎪⎪⎩

–λi1Pr – PrDr + μi|PrAr| + �̃
2 < 0,

λi2 > Hi|PrBr|,
λi3 > 0,

where �̃ =
∑N

k=1 πrkPk +
∑N

k=1,k �=r[
κ2

rk
4 Wrk + (Pk – Pr)W –1

rk (Pk – Pr)].
Meanwhile, the settling time is estimated as

T∗ ≤ V (0)1– 1+ρ
2 λmax(Pr)

1+ρ
2

2λi3(1 – ρ)λmin(Pr)
. (27)

Remark 3.4 Compared with the finite-time synchronization conditions obtained in [30],
it needs more conditions to realize the fixed-time synchronization goal. For finite-time
synchronization, there only needs such a term –V ρ(t), 0 < ρ < 1; whereas for fixed-time
synchronization, it needs the two terms –V ρ(t) (0 < ρ < 1) and –V ν(t) (ν > 1). Similar
to the results in [30], the settling time T∗ of the finite-time synchronization obtained in
Corollary 3.2 depends on the initial condition V (0). When V (0) is so large that the T∗

is not reasonable in practice application. However, the settling time Tϕ of the fixed-time
synchronization obtained in Theorem 3.2 is independent of any initial conditions. Thus,
the settling time can be accurately evaluated by selecting appropriate control input pa-
rameters and semi-Markovian jumping parameters.

4 Numerical examples
Example 1 In this section, we perform two examples to demonstrate the correctness of
Theorem 3.2.
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Consider the 2-dimensional semi-Markovian jumping neural networks system. The pa-
rameters we choose as follows:

D1 =

(
4.5 0
0 2.5

)

, D2 =

(
2.5 0
0 1.0

)

, A1 =

(
1.3 –1.4

–2.6 1.3

)

,

A2 =

(
0.8 –1.4
0.6 1.8

)

, B1 =

(
–0.6 0.8
0.4 –0.7

)

, B2 =

(
–0.7 0.4
0.3 –0.5

)

.

The scalars we use in this paper are chosen as follows. The activation function is taken
as f (t) = tanh(t), thus μ1 = μ2 = 1, and G1 = G2 = 1. ρ = 0.5, υ = 2. The time-varying delay
function is assumed to be τ (t) = 0.5 + 0.5 cos(t), the initial value is x(t) = (e3t , e3t)T , y(t) =
(sin(3t), tanh(3t))T , I = (0, 0)T . We can easily see that its upper bound τ = 1, τ̇ (t) = r≤ 0.5.

The transition rates for each mode are given as follows:
For mode 1

π11(h) ∈ (–2.53, –2.35), π12(h) ∈ (2.43, 2.63).

For mode 2

π21(h) ∈ (0.45, 0.59), π22(h) ∈ (–0.62, –0.46).

Then we can get the parameters πrk , κrk , where r, k ∈ S = {1, 2}.

π11 = –2.5, π12 = 2.5, π21 = 0.5, π22 = –0.5,

κ11 = 0.09, κ12 = 0.10, κ21 = 0.07, κ22 = 0.08.

Through simple computations, we have

P1 =

(
11.4132 0.0545
0.0545 10.3522

)

, P2 =

(
10.1249 0.1175
0.1175 9.7243

)

,

K1 =

(
0.9500 0

0 0.3500

)

, K2 =

(
0.2500 0

0 0.1300

)

,

K =

(
1.1345 0

0 1.1326

)

.

Meanwhile, the parameters of the controller we choose as follows:
For mode 1

λ11 =

(
0.8725 0

0 0.5248

)

, λ12 =

(
2.4156 0

0 2.5426

)

,

λ13 =

(
0.2500 0

0 0.2500

)

,

λ14 =

(
1.5236 0

0 1.2698

)

, λ15 =

(
0.0625 0

0 0.0625

)

,
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λ16 =

(
0.3048 0

0 0.2540

)

.

For mode 2

λ21 =

(
1.8961 0

0 1.6261

)

, λ22 =

(
2.0501 0

0 1.7626

)

,

λ23 =

(
0.2100 0

0 0.2100

)

,

λ24 =

(
1.4046 0

0 1.3898

)

, λ25 =

(
0.0530 0

0 0.0530

)

,

λ26 =

(
0.2810 0

0 0.2780

)

,

and the settling time Tmax can be calculated as 4.45.
Based on the values given above, then the first and second state trajectories of the sys-

tems (3) and (4) are displayed in Fig. 1 and Fig. 2, respectively. And the trajectories of the
corresponding synchronization error system are depicted in Fig. 3. Hence, the correctness
of Theorem 3.2 is proved.

Figure 1 State trajectory of variables x1(t) and y1(t)
under the controller (13)

Figure 2 State trajectory of variables x2(t) and y2(t)
under the controller (13)
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Figure 3 The trajectories of the synchronization
error e1(t) and e2(t) under the controller (13)

Example 2 Consider the 3-dimensional semi-Markovian jumping neural networks sys-
tem. The parameters we choose as follows:

D1 =

⎛

⎜
⎝

3.5 0 0
0 2.6 0
0 0 2.6

⎞

⎟
⎠ , D2 =

⎛

⎜
⎝

2.5 0 0
0 1.5 0
0 0 1.5

⎞

⎟
⎠ ,

A1 =

⎛

⎜
⎝

–2.0 –1.2 –0.5
1.8 1.6 1.5
1.8 1.4 1.6

⎞

⎟
⎠ ,

A2 =

⎛

⎜
⎝

–1.5 1.0 0.5
1.0 –0.5 0.3
0.5 –1.2 –1.5

⎞

⎟
⎠ , B1 =

⎛

⎜
⎝

0.6 0.4 0.3
0.4 –0.5 –0.2
0.3 0.1 –0.4

⎞

⎟
⎠ ,

B2 =

⎛

⎜
⎝

–0.6 –0.3 0.5
0.2 –0.5 0.4

–0.1 0.2 0.6

⎞

⎟
⎠ .

It is assumed that the activation function and the time-varying delay function are taken
as the same as Example 1. The initial conditions we choose as x(t) = (3e2t , 3e2t , 3e2t)T , y(t) =
(3 sin(2t), 3 sin(2t), 3 tanh(2t))T , I = (0, 0, 0)T . And the relevant parameters are μ1 = μ2 =
μ3 = 1, G1 = G2 = G3 = 1, ρ = 0.5, υ = 2.0.

The transition rates for each mode are given as follows.
For mode 1

π11(h) ∈ (–1.22, –1.06), π12(h) ∈ (1.04, 1.24).

For mode 2

π21(h) ∈ (–0.40, –0.26), π22(h) ∈ (0.27, 0.45).

Then we can get the parameters πrk , κrk , where r, k ∈ S = {1, 2},

π11 = –1.2, π12 = 1.2, π21 = 0.30, π22 = –0.30,

κ11 = 0.08, κ12 = 0.10, κ21 = 0.07, κ22 = 0.09.
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Through simple computations, we have

P1 =

⎛

⎜
⎝

7.3749 –0.2883 –0.2382
–0.2883 6.5211 0.3268
–0.2382 0.3268 6.0236

⎞

⎟
⎠ ,

P2 =

⎛

⎜
⎝

6.0354 –0.1984 –0.1371
–0.1984 5.4230 0.1258
–0.1371 0.1258 4.5223

⎞

⎟
⎠ ,

K1 =

⎛

⎜
⎝

0.55 0 0
0 0.37 0
0 0 0.48

⎞

⎟
⎠ , K2 =

⎛

⎜
⎝

0.25 0 0
0 0.35 0
0 0 0.35

⎞

⎟
⎠ ,

K =

⎛

⎜
⎝

0.3567 0 0
0 0.2462 0
0 0 0.6426

⎞

⎟
⎠ .

For mode 1

λ11 =

⎛

⎜
⎝

1.6231 0 0
0 2.5401 0
0 0 1.5480

⎞

⎟
⎠ , λ12 =

⎛

⎜
⎝

2.3122 0 0
0 2.0512 0
0 0 2.5501

⎞

⎟
⎠ ,

λ13 =

⎛

⎜
⎝

0.5200 0 0
0 0.5200 0
0 0 0.5200

⎞

⎟
⎠ , λ14 =

⎛

⎜
⎝

1.2415 0 0
0 0.8575 0
0 0 1.5786

⎞

⎟
⎠ ,

λ15 =

⎛

⎜
⎝

0.1456 0 0
0 0.1456 0
0 0 0.1456

⎞

⎟
⎠ , λ16 =

⎛

⎜
⎝

0.3104 0 0
0 0.2145 0
0 0 0.3947

⎞

⎟
⎠ .

For mode 2

λ21 =

⎛

⎜
⎝

2.5311 0 0
0 1.0120 0
0 0 1.4284

⎞

⎟
⎠ , λ22 =

⎛

⎜
⎝

2.2315 0 0
0 2.2413 0
0 0 2.5194

⎞

⎟
⎠ ,

λ23 =

⎛

⎜
⎝

0.4000 0 0
0 0.4000 0
0 0 0.4000

⎞

⎟
⎠ , λ24 =

⎛

⎜
⎝

1.2135 0 0
0 1.0574 0
0 0 1.3589

⎞

⎟
⎠ ,

λ25 =

⎛

⎜
⎝

0.1120 0 0
0 0.1120 0
0 0 0.1120

⎞

⎟
⎠ , λ26 =

⎛

⎜
⎝

0.3034 0 0
0 0.2644 0
0 0 0.3397

⎞

⎟
⎠ ,

and the settling time Tmax is evaluated as 4.45.
Under controller (13), the first, second and third state trajectories of the system (3) and

(4) are plotted in Figs. 4, 5, and 6, respectively. Moreover, Fig. 7 shows the trajectories
of the corresponding synchronization error system. The numerical simulation perfectly
supports Theorem 3.2.
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Figure 4 State trajectory of variables x1(t) and y1(t)
under the controller (13)

Figure 5 State trajectory of variables x2(t) and y2(t)
under the controller (13)

Figure 6 State trajectory of variables x3(t) and y3(t)
under the controller (13)

Figure 7 The trajectories synchronization errors
e1(t), e2(t), and e3(t) under the controller (13)
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5 Conclusion
In this paper, the fixed-time synchronization issue for semi-Markovian jumping neural
networks with time-varying delays is discussed. A novel state-feedback controller is de-
signed which includes double-integral terms and time-varying delay terms. Based on the
linear matrix inequality (LMI) technique, the Lyapunov functional method, some effec-
tive conditions are established to guarantee the fixed-time synchronization of neural net-
works. Moreover, the upper bound of the settling time can be explicitly evaluated. To a
certain extent, the results obtained in this paper have improved the previous works. More
complex conditions, such as discontinuous functions, stochastic disturbances and fixed-
time synchronization for complex dynamical networks will be taken into consideration in
future research.
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