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Abstract
In this paper, we study the boundedness, persistence, and periodicity of the positive
solutions and the global asymptotic stability of the positive equilibrium points of the
system of difference equations

xn+1 = A +
xn–1
zn

, yn+1 = A +
yn–1
zn

, zn+1 = A +
zn–1
yn

, n = 0, 1, . . . ,

where A ∈ (0,∞) and the initial conditions xi , yi , zi ∈ (0,∞), i = –1, 0.
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1 Introduction
Difference equation or discrete dynamical system is a diverse field which impacts almost
every branch of pure and applied mathematics. Lately, there has been great interest in
investigating the behavior of solutions of a system of nonlinear difference equations and
discussing the asymptotic stability of their equilibrium points. One of the reasons for this
is a necessity for some techniques which can be used in investigating equations arising in
mathematical models that describe real life situations in population biology, economics,
probability theory, genetics, psychology, and so forth, see [3, 5, 8, 9]. Also, similar works
in two and three dimensions (limit behaviors) for more general cases, i.e., continuous and
discrete cases, have been done by some authors, see [1, 11–13, 16]. There are many pa-
pers in which systems of difference equations have been studied, as in the examples given
below.

In [14], Papaschinopoulos and Schinas considered the system of difference equations

xn+1 = A +
yn

xn–p
, yn+1 = A +

xn

yn–q
, n = 0, 1, . . . , (1)

where A ∈ (0,∞), p, q are positive integers and x–p, . . . , x0, y–q, . . . , y0 are positive numbers.
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In [15], Papaschinopoulos and Schinas studied the system of difference equations

xn+1 = A +
xn–1

yn
, yn+1 = A +

yn–1

xn
, n = 0, 1, . . . , (2)

where A is a positive constant and the initial conditions are positive numbers.
In [2], Bao investigated the local stability, oscillation, and boundedness character of pos-

itive solutions of the system of difference equations

xn+1 = A +
xp

n–1

yp
n

, yn+1 = A +
yp

n–1

xp
n

, n = 0, 1, . . . , (3)

where A ∈ (0,∞), p ∈ [1,∞) and the initial conditions xi, yi ∈ (0,∞), i = –1, 0.
In [7], Gümüş and Soykan considered the dynamical behavior of positive solutions for

a system of rational difference equations of the following form:

un+1 =
αun–1

β + γ vp
n–2

, vn+1 =
α1vn–1

β1 + γ1up
n–2

, n = 0, 1, . . . , (4)

where the parameters α, β , γ , α1, β1, γ1, p and the initial values u–i, v–i for i = 0, 1, 2 are
positive real numbers.

In [6], Göcen and Cebeci studied the general form of periodic solutions of some higher
order systems of difference equations

xn+1 =
±xn–kyn–(2k+1)

yn–(2k+1) ∓ yn–k
, yn+1 =

±yn–kxn–(2k+1)

xn–(2k+1) ∓ xn–k
, n, k ∈N0, (5)

where the initial values are arbitrary real numbers.
Also, for similar results in the area of difference equations and systems, see [4, 10, 16–

21].
In this paper, we investigate the stability, boundedness character, and periodicity of pos-

itive solutions of the system of difference equations

xn+1 = A +
xn–1

zn
, yn+1 = A +

yn–1

zn
,

zn+1 = A +
zn–1

yn
, n = 0, 1, . . . ,

(6)

where A and the initial values x–1, x0, y–1, y0, z–1, z0 are positive real numbers.

2 Preliminaries
We recall some basic definitions that we afterwards need in the paper.

Let us introduce the discrete dynamical system:

xn+1 = f1(xn, xn–1, . . . , xn–k , yn, yn–1, . . . , yn–k , zn, zn–1, . . . , zn–k),

yn+1 = f2(xn, xn–1, . . . , xn–k , yn, yn–1, . . . , yn–k , zn, zn–1, . . . , zn–k), (7)

zn+1 = f3(xn, xn–1, . . . , xn–k , yn, yn–1, . . . , yn–k , zn, zn–1, . . . , zn–k),

n ∈ N, where f1 : Ik+1
1 × Ik+1

2 × Ik+1
3 → I1, f2 : Ik+1

1 × Ik+1
2 × Ik+1

3 → I2, and f3 : Ik+1
1 × Ik+1

2 ×
Ik+1

3 → I3 are continuously differentiable functions and I1, I2, I3 are some intervals of real
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numbers. Also, a solution {(xn, yn, zn)}∞n=–k of system (7) is uniquely determined by the
initial values (x–i, y–i, z–i) ∈ I1 × I2 × I3 for i ∈ {0, 1, . . . , k}.

Definition 1 An equilibrium point of system (7) is a point (x, y, z) that satisfies

x = f1(x, x, . . . , x, y, y, . . . , y, z, z, . . . , z),

y = f2(x, x, . . . , x, y, y, . . . , y, z, z, . . . , z),

z = f3(x, x, . . . , x, y, y, . . . , y, z, z, . . . , z).

Together with system (7), if we consider the associated vector map

F = (f1, xn, xn–1, . . . , xn–k , f2, yn, yn–1, . . . , yn–k , f3, zn–1, . . . , zn–k),

then the point (x, y, z) is also called a fixed point of the vector map F .

Definition 2 ([2, 3]) Let (x, y, z) be an equilibrium point of system (7).
(a) An equilibrium point (x, y, z) is called stable if, for every ε > 0, there exists δ > 0 such

that, for every initial value (x–i, y–i, z–i) ∈ I1 × I2 × I3, with

0∑

i=–k

|xi – x| < δ,
0∑

i=–k

|yi – y| < δ,
0∑

i=–k

|zi – z| < δ

implying |xn – x| < ε, |yn – y| < ε, |zn – z| < ε for n ∈N.
(b) An equilibrium point (x, y, z) of system (7) is called unstable if it is not stable.
(c) An equilibrium point (x, y, z) of system (7) is called locally asymptotically stable if it

is stable and if, in addition, there exists γ > 0 such that

0∑

i=–k

|xi – x| < γ ,
0∑

i=–k

|yi – y| < γ ,
0∑

i=–k

|zi – z| < γ

and (xn, yn, zn) → (x, y, z) as n → ∞.
(d) An equilibrium point (x, y, z) of system (7) is called a global attractor if

(xn, yn, zn) → (x, y, z) as n → ∞.
(e) An equilibrium point (x, y, z) of system (7) is called globally asymptotically stable if it

is stable and a global attractor.

Definition 3 Let (x, y, z) be an equilibrium point of the map F where f1, f2, and f3 are
continuously differentiable functions at (x, y, z). The linearized system of system (7) about
the equilibrium point (x, y, z) is

Xn+1 = F(Xn) = BXn,
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where

Xn =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xn
...

xn–k

yn
...

yn–k

zn
...

zn–k

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and B is a Jacobian matrix of system (7) about the equilibrium point (x, y, z).

Definition 4 Assume that Xn+1 = F(Xn), n = 0, 1, . . . , is a system of difference equations
such that X is a fixed point of F . If no eigenvalues of the Jacobian matrix B about X have
absolute value equal to one, then X is called hyperbolic. Otherwise, X is said to be nonhy-
perbolic.

Theorem 5 (The linearized stability theorem [8], p. 11) Assume that

Xn+1 = F(Xn), n = 0, 1, . . . ,

is a system of difference equations such that X is a fixed point of F .
(a) If all eigenvalues of the Jacobian matrix B about X lie inside the open unit disk

|λ| < 1, that is, if all of them have absolute value less than one, then X is locally
asymptotically stable.

(b) If at least one of them has a modulus greater than one, then X is unstable.

A positive solution {(xn, yn, zn)}∞n=–k of system (7) is bounded and persists if there exist
positive constants M, N such that

M ≤ xn, yn, zn ≤ N , n = –m, –m + 1, . . . .

A positive solution {(xn, yn, zn)}∞n=–k of system (7) is periodic with period p if

xn+p = xn, yn+p = yn, zn+p = zn for all n ≥ –1.

3 Main results
In this section, we prove our main results.

Theorem 6 The following statements are true:
(i) If (x, y, z) is a positive equilibrium point of system (6), then

(x, y, z) =

⎧
⎨

⎩
(A + 1, A + 1, A + 1), if A �= 1,

(μ,μ, μ

μ–1 ), μ ∈ (1,∞) if A = 1.
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(ii) If A > 1, then the equilibrium point of system (6) is locally asymptotically stable.
(iii) If 0 < A < 1, then the equilibrium point of system (6) is locally unstable.
(iv) If A = 1, then for every μ ∈ (1,∞) there exist positive solutions {(xn, yn, zn)} of system

(6) which tend to the positive equilibrium point (μ,μ, μ

μ–1 ).

Proof (i) It is easily seen from the definition of equilibrium point that the equilibrium
points of system (6) are the nonnegative solutions of the equations

x = A +
x
z

, y = A +
y
z

, z = A +
z
y

.

From this, we get

x.z = Az + x, y.z = Az + y, z.y = Ay + z

⇒ x.z – x = y.z – y, Az + y = Ay + z

⇒ x(z – 1) = y(z – 1), z(A – 1) = y(A – 1).

From which it follows that if A �= 1,

x = y = z = A + 1 ⇒ (x, y, z) = (A + 1, A + 1, A + 1).

Also, we have

x.z – x
z

= A,
y.z – y

z
= A,

z.y – z
y

= A

⇒ x.z – x
z

=
y.z – y

z
,

y.z – y
z

=
z.y – z

y

⇒ x.z – x = y.z – y, y2z – y2 = z2y – z2

⇒ x(z – 1) = y(z – 1), y.z(y – z) = (y – z)(y + z).

From which it follows that if A = 1,

x = y and y.z = y + z

⇒ (x, y, z) =
(

μ,μ,
μ

μ – 1

)
, μ ∈ (1,∞).

In that case, we have a continuum of positive equilibria which lie on the hyperboloid

y.z = y + z. (8)

(ii) We consider the following transformation to build the corresponding linearized form
of system (6):

(xn, xn–1, yn, yn–1, zn, zn–1) → (f , f1, g, g1, h, h1),
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where

f = A +
xn–1

zn
,

f1 = xn,

g = A +
yn–1

zn
,

g1 = yn,

h = A +
zn–1

yn
,

h1 = zn.

The Jacobian matrix about the equilibrium point (x, y, z) under the above transformation
is given by

B(x, y, z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
z 0 0 – x

z2 0
1 0 0 0 0 0
0 0 0 1

z – y
z2 0

0 0 1 0 0 0
0 0 – z

y2 0 0 1
y

0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

Hence, the linearized system of system (6) about the equilibrium point (x, y, z) = (A + 1,
A + 1, A + 1) is

Xn+1 = B(x, y, z)Xn,

where

Xn =
(
(xn, xn–1, yn, yn–1, zn, zn–1)

)T

and

B(x, y, z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
A+1 0 0 – 1

A+1 0
1 0 0 0 0 0
0 0 0 1

A+1 – 1
A+1 0

0 0 1 0 0 0
0 0 – 1

A+1 0 0 1
A+1

0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then the characteristic equation of B(x, y, z) about (x, y, z) = (A + 1, A + 1, A + 1) is

λ6 –
(3A + 4)
(A + 1)2 λ4 +

(3A + 4)
(A + 1)3 λ2 –

1
(A + 1)3 = 0. (10)

From this, the roots of characteristic equation (10) are

λ1 =
1√

A + 1
,
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λ2 = –
1√

A + 1
,

λ3 =
1
2

√
4A + 5 – 1

A + 1
,

λ4 = –
1
2

√
4A + 5 + 1

A + 1
,

λ5 =
1
2

√
4A + 5 + 1

A + 1
,

λ6 = –
1
2

√
4A + 5 – 1

A + 1
.

From the linearized stability theorem, since A > 1, all roots of the characteristic equation
lie inside the open unit disk |λ| < 1. Therefore, the positive equilibrium point of system (6)
is locally asymptotically stable.

(iii) From the proof of (ii), it is true.
(iv) From (9), the linearized system of system (6) about the equilibrium point (x, y, z) =

(μ,μ, μ

μ–1 ) is

Xn+1 = B(x, y, z)Xn,

where

Xn =
(
(xn, xn–1, yn, yn–1, zn, zn–1)

)T

and

B(x, y, z) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 μ–1
μ

0 0 – (μ–1)2

μ
0

1 0 0 0 0 0
0 0 0 μ–1

μ
– (μ–1)2

μ
0

0 0 1 0 0 0
0 0 – 1

μ(μ–1) 0 0 1
μ

0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, the characteristic equation of the matrix B is

λ6 –
(

2μ2 – 1
μ2

)
λ4 +

(
μ3 + μ2 – 3μ + 1

μ

)
λ2 –

(μ – 1)2

μ3 = 0. (11)

Therefore, the roots of equation (11) are:

λ1 = –1,

λ2 = 1,

λ3 =
√

μ – 1
μ

,

λ4 = –
√

μ – 1
μ

,
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λ5 =

√
μ – 1

μ
,

λ6 = –

√
μ – 1

μ
.

Then the modulus of four of the roots of (11) is less than 1. So, there exist positive solutions
of system (6) which tend to the positive equilibrium point (μ,μ, μ

μ–1 ) of system (6) (this
follows from the following proposition). This completes the proof.

In the following proposition we find positive solutions of system (6) which tend to (x, y, z)
as n → ∞. �

Proposition 7 Let {(xn, yn, zn)} be a positive solution of system (6). Then, if there exists
s ∈ {–1, 0, . . .} such that, for n ≥ s, xn ≥ x, yn ≥ y, zn ≥ z (resp., xn < x, yn < y, zn < z), the
solution {(xn, yn, zn)} tends to the positive equilibrium (x, y, z) of system (6) as n → ∞.

Proof Let {(xn, yn, zn)} be a positive solution of system (6) such that

xn ≥ x, yn ≥ y, zn ≥ z, n ≥ s, (12)

where s ∈ {–1, 0, . . .}. Then from (6) and (12) we have

xn+1 = A +
xn–1

zn
≤ A +

xn–1

z
, n ≥ 1. (13)

Set

un+1 = A +
un–1

z
, n ≥ 1 (14)

such that

us = xs, us+1 = xs+1, s ∈ {–1, 0, 1, . . .}, n ≥ s. (15)

Then the solution un of the difference equation (14) is as follows:

un = c1

(
1√
z

)n

+ c1

(
–

1√
z

)n

+
Az

Az – 1
= c1

(
1√
z

)n

+ c1

(
–

1√
z

)n

+ x, (16)

where c1, c2 depend on xs, xs+1. In addition, relations (13) and (14) imply that

xn+1 – un+1 ≤ xn–1 – un–1

z
, n > s. (17)

Then, by using (15) and (17) and induction, we have

xn ≤ un, n ≥ s. (18)

Therefore, from (12), (16), and (18), it is clear that

lim
n→∞ xn = x. (19)
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Similarly, we can prove that

lim
n→∞ yn = y and lim

n→∞ zn = z. (20)

Thus, from (19) and (20), the solution {(xn, yn, zn)} tends to (x, y, z) as n → ∞.
Arguing as above, we can show that if xn < x, yn < y, zn < z for n ≥ s, then {(xn, yn, zn)}

tends to (x, y, z) as n → ∞. The proof of the proposition is completed. �

Theorem 8 Assume that 0 < A < 1 and {(xn, yn, zn)} is an arbitrary positive solution of
system (6). Then the following statements are true.

(i) If

x–1 < 1, y–1 < 1, z–1 < 1, x0 >
1

1 – A
,

y0 >
1

1 – A
, z0 >

1
1 – A

,
(21)

then

lim
n→∞ x2n+1 = A, lim

n→∞ y2n+1 = A, lim
n→∞ z2n+1 = A,

lim
n→∞ x2n = ∞, lim

n→∞ y2n = ∞, lim
n→∞ z2n = ∞.

(ii) If

x0 < 1, y0 < 1, z0 < 1, x–1 >
1

1 – A
,

y–1 >
1

1 – A
, z–1 >

1
1 – A

,
(22)

then

lim
n→∞ x2n+1 = ∞, lim

n→∞ y2n+1 = ∞, lim
n→∞ z2n+1 = ∞,

lim
n→∞ x2n = A, lim

n→∞ y2n = A, lim
n→∞ z2n = A.

Proof (i) From (6) and (21), we get

x1 = A +
x–1

z0
< A +

1
z0

< A + (1 – A) = 1,

y1 = A +
y–1

z0
< A +

1
z0

< A + (1 – A) = 1,

z1 = A +
z–1

y0
< A +

1
y0

< A + (1 – A) = 1,

x2 = A +
x0

z1
> x0 >

1
1 – A

,

y2 = A +
y0

z1
> y0 >

1
1 – A

,

z2 = A +
z0

y1
> z0 >

1
1 – A

.
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By induction, for n = 0, 1, 2, . . . , we obtain

x2n–1 < 1, y2n–1 < 1, z2n–1 < 1,

x2n >
1

1 – A
, y2n >

1
1 – A

, z2n >
1

1 – A
.

(23)

Thus, relations (6) and (23) imply that

x2n = A +
x2n–2

z2n–1
> A + x2n–2 > 2A +

x2n–4

z2n–3
> 2A + x2n–4,

y2n = A +
y2n–2

z2n–1
> A + y2n–2 > 2A +

y2n–4

z2n–3
> 2A + y2n–4,

z2n = A +
z2n–2

y2n–1
> A + z2n–2 > 2A +

z2n–4

y2n–3
> 2A + z2n–4.

From which we get

lim
n→∞ x2n = ∞, lim

n→∞ y2n = ∞, lim
n→∞ z2n = ∞.

Noting that (23) and taking limits on both sides of three equations

x2n+1 = A +
x2n–1

z2n
, y2n+1 = A +

y2n–1

z2n
, z2n+1 = A +

z2n–1

y2n
,

we have

lim
n→∞ x2n+1 = A, lim

n→∞ y2n+1 = A, lim
n→∞ z2n+1 = A.

(ii) The proof is similar to the proof of (i), so we leave it to readers. �

Theorem 9 Assume that A = 1. Then every positive solution of system (6) is bounded and
persists.

Proof Let {(xn, yn, zn)} be a positive solution of system (6).
Obviously, xn > 1, yn > 1, zn > 1, for n ≥ 1. So, we have

xi, yi, zi ∈
[

K ,
K

K – 1

]
, i = 1, 2, . . . , m + 1,

where

K = min

{
α,

β

β – 1

}
> 1, α = min

1≤i≤m+1
{xi, yi, zi},β = max

1≤i≤m+1
{xi, yi, zi}.

Then we obtain

K = 1 +
K

K/(K – 1)
≤ xm+2 = 1 +

x1

zm+1
≤ 1 +

K/(K – 1)
K

=
K

K – 1
,

K = 1 +
K

K/(K – 1)
≤ ym+2 = 1 +

y1

zm+1
≤ 1 +

K/(K – 1)
K

=
K

K – 1
,

K = 1 +
K

K/(K – 1)
≤ zm+2 = 1 +

z1

ym+1
≤ 1 +

K/(K – 1)
K

=
K

K – 1
.
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By induction, we get

xi, yi, zi ∈
[

K ,
K

K – 1

]
, i = 1, 2, . . . .

The proof of the following theorem is seen easily and will be omitted. �

Theorem 10 Assume A = 1. Then every positive solution of system (6) is periodic of pe-
riod 2.

Theorem 11 Assume A > 1. Then every positive solution of system (6) is bounded.

Proof Let {(xn, yn, zn)} be a positive solution of system (6). Clearly,

xn, yn, zn > A > 1 for n ≥ 1. (24)

From (24), we have

xn+1 = A +
xn–1

zn
≤ A +

xn–1

A
, n ≥ 1. (25)

Set

un+1 = A +
un–1

A
, n ≥ 1, (26)

such that

us = xs, us+1 = xs+1, s ∈ {–1, 0, 1, . . .}, n ≥ s. (27)

Then the solution un of the difference equation (26) is as follows:

un = c1

(
1√
A

)n

+ c1

(
–

1√
A

)n

+
A2

A – 1
. (28)

Indeed, from (26) we get

un+1 –
1
A

un–1 = 0 ⇒ λ2 –
1
A

= 0

⇒ λ1,2 = ± 1√
A

.

The homogeneous solution of difference equation (26) is given by

uh = c1

(
1√
A

)n

+ c2

(
–

1√
A

)n

.

Also, from (26), the equilibrium solution of difference equation (26) is as follows:

x –
1
A

x = A ⇒ x =
A2

A – 1
.
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In addition, relations (25) and (28) imply that

xn+1 – un+1 ≤ xn–1 – un–1

A
, n > s. (29)

Then, by using (27) and (29) and induction, we have

xn ≤ un, n ≥ s. (30)

Therefore, from (24), (28), and (30), we obtain

A < xn ≤ c1

(
1√
A

)n

+ c2

(
–

1√
A

)n

+
A2

A – 1
,

where

c1 =
1
2

(
x0 +

√
Ax1 –

A2

A – 1
(1 +

√
A)

)
,

c2 =
1
2

(
x0 –

√
Ax1 –

A2

A – 1
(1 –

√
A)

)
.

Similarly, we can prove that

A < yn ≤ c3

(
1√
A

)n

+ c4

(
–

1√
A

)n

+
A2

A – 1
,

A < zn ≤ c5

(
1√
A

)n

+ c6

(
–

1√
A

)n

+
A2

A – 1
,

where

c3 =
1
2

(
y0 +

√
Ay1 –

A2

A – 1
(1 +

√
A)

)
,

c4 =
1
2

(
y0 –

√
Ay1 –

A2

A – 1
(1 –

√
A)

)
,

c5 =
1
2

(
z0 +

√
Az1 –

A2

A – 1
(1 +

√
A)

)
,

c6 =
1
2

(
z0 –

√
Az1 –

A2

A – 1
(1 –

√
A)

)
. �

Theorem 12 Suppose that A > 1. Then the positive equilibrium point of system (6) is glob-
ally asymptotically stable.

Proof By means of Theorem 11, we set

L1 = lim
n→∞ sup xn, L2 = lim

n→∞ sup yn, L3 = lim
n→∞ sup zn,

m1 = lim
n→∞ inf xn, m2 = lim

n→∞ inf yn, m3 = lim
n→∞ inf zn.

(31)
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Then, from (6) and (31), we have

L1 ≤ A +
L1

m3
, L2 ≤ A +

L2

m3
, L3 ≤ A +

L3

m2
,

m1 ≥ A +
m1

L3
, m2 ≥ A +

m2

L3
, m3 ≥ A +

m3

L2
.

(32)

Relations (32) imply that

AL2 + m3 ≤ m3L2 ≤ Am3 + L2, AL3 + m2 ≤ m2L3 ≤ Am2 + L3,

from which we have

(A – 1)(L2 – m3) ≤ 0, (A – 1)(L3 – m2) ≤ 0.

Since A > 1, we get

L2 ≤ m3 ≤ L3, L3 ≤ m2 ≤ L2,

from this it is obvious that

L2 = L3 = m2 = m3. (33)

Moreover, from (32) it follows that

L1m3 ≤ Am3 + L1, m1L3 ≤ AL3 + m1,

from which

L1(m3 – 1) ≤ Am3, AL3 ≤ m1(L3 – 1).

Using (33), we have

L1(L3 – 1) ≤ m1(L3 – 1),

then

L1 ≤ m1.

Since xn is bounded, it implies that

L1 = m1.

Hence, every positive solution {(xn, yn, zn)} of system (6) tends to the positive equilibrium
system (6). So, the proof is completed. �
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4 Future works
We will concentrate on the dynamical behavior of the following system of difference equa-
tions:

xn+1 = A +
xn–m

zn
, yn+1 = A +

yn–m

zn
, zn+1 = A +

zn–m

yn
, n = 0, 1, . . . ,

where A ∈ (0,∞) and xi, yi, zi ∈ (0,∞), i = 0, 1, . . . , m, and the following cyclic system of
difference equations:

x(i)
n+1 = Ai +

x(i)
n–1

x(i+1)
n

, i = 1, 2, . . . , k.

Acknowledgements
We are thankful to the referees for their careful reading of the manuscript and for valuable comments and suggestions
that greatly improved the presentation of this work.

Funding
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 23 February 2018 Accepted: 29 May 2018

References
1. Akın, E., Öztürk, Ö.: Limiting behaviors of nonoscillatory solutions for two-dimensional nonlinear time scale systems.

Mediterr. J. Math. 14, 34 (2017)
2. Bao, H.: Dynamical behavior of a system of second-order nonlinear difference equations. Int. J. Differ. Equ. 2015,

Article ID 679017 (2015)
3. Camouzis, E., Ladas, G.: Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjecture.

Chapman & Hall, London (2008)
4. Camouzis, E., Papaschinopoulos, G.: Global asymptotic behavior of positive solutions on the system of rational

difference equations xn+1 = 1 + xn
yn–m

, yn+1 = 1 + yn
xn–m

. Appl. Math. Lett. 17(6), 733–737 (2004)
5. Elaydi, S.: An Introduction to Difference Equations. Springer, New York (2015)
6. Göcen, M., Cebeci, A.: On the periodic solutions of some systems of higher order difference equations. Rocky Mt. J.

Math. (2018) To appear
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