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Abstract
In this paper, we propose a new convex variational model for segmentation of vector
valued images. The data term of the proposed model is based on the coefficient of
variation, which works well in vector valued images having intensity inhomogeneity.
Due to convexity of the model, it is independent of the placement of initial contour.
Better performance of the proposed model can be seen from experimental results
qualitatively and quantitatively. Images in practice are of large sizes, which makes
numerical methods more important. In this paper, we also develop fast and stable
numerical methods for solution of partial differential equation arisen from the
minimization of the proposed model. We have developed a novel multigrid method
based on a locally supported smoother. The proposed method is compared with the
existing methods in terms of iterations and CPU time for vector valued images having
large sizes.
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1 Introduction
Segmentation of images refers to dividing an image into disjoint subdomains, which are
homogeneous in some sense, i.e., of the same intensity, color, or texture. To detect objects
of interest in an image is the basic objective of image segmentation. Many variational mod-
els, like edge-based [1], region-based [2], and active contour models [3–5], have already
been developed in connection to image segmentation. Our main focus in this paper is
on active contour models. The concept of active contours has been applied for detection
of objects in a given image F0 by applying the techniques of curve evolution. In this ap-
proach, an initial curve C is evolved towards the edges of objects in a given image under
some conditions/constraints.

In classical snake and active contours models [6], gradient of the given image F0 is used to
locate edges. The evolving curve is stopped at the object’s boundary by using edge detector
function defined in Eq. (1). The function gives minimum value on the edges and maximum
value in homogeneous or similar regions. The most common edge detector function is

g
(|∇F0|

)
=

1
1 + |∇(Gσ ∗ F0)|2 , (1)

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1669-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1669-9&domain=pdf
http://orcid.org/0000-0002-0916-4728
mailto:noor2knoor@gmail.com


Badshah et al. Advances in Difference Equations  (2018) 2018:221 Page 2 of 16

where Gσ (x, y) = 1
2πσ 2 e– x2+y2

2σ2 is a Gaussian filter. In the case when there is noise in the
image, the given image F0 is convolved first with Gaussian filter Gσ (x, y) to make it smooth.
Although the function g as given in Eq. (1) is clearly a positive and decreasing function, it
cannot be zero on the edges in practice. It may not be possible, therefore, to stop the curve
on edges.

To resolve this problem, Chan et al. [4, 7] proposed region based models that do not
apply the edge detector function g to detect edges. Instead, the stopping term of the evolv-
ing curve depends on the Mumford Shah [2] region-based energy functional. The energy
functional of the Chan et al. [4] active contour model (CV model) uses region information
which is based on the variance of each region. This model can detect objects in an image
whose boundaries are not defined by gradient. It also works well in noisy images and can
handle different types of topologies. This model is non-convex, so it may be stuck at local
minima for some initial guess. Also this model uses variance as a statistic, so it may not
work in images having intensity inhomogeneity. To avoid local extreme of the CV model,
Bresson et al. [8] proposed a convex model, which also uses variance as a region statistic.
Due to the convexity of the model, it is independent of the initialization and can lead to
the global minima. The proposed model of Bresson et al. [8] is given by

EFGM(c1, c2, ξ ) = μ

∫

�

|∇ξ |dx dy + γ

∫

�

r1
(
(x, y), c1, c2

)
ξ dx dy, (2)

where ξ ∈ [–1, 1] is an extra constraint. Eq. (2) is homogeneous in ξ of degree 1, so it has
no stationary point. As a region statistic of this model is variance, so it may not work well
in images having intensity inhomogeneity. For segmentation of images having intensity
inhomogeneity, Badshah et al. [9] proposed a model that uses a squared coefficient of
variation as a region statistic. This model is specially designed for selective segmentation
of images having intensity inhomogeneity. Energy functional of Badshah et al. model is
given as follows:

E(ξ , c1, c2) = μ

∫

�

d(x, y)g
(|∇F0|

)∣∣∇H(ξ )
∣
∣

+ γ1

∫

�

|F0 – c1|2
c12 H(ξ ) + γ2

∫

�

|F0 – c2|2
c22 H(–ξ ), (3)

where d(x, y) is the distance metric which incorporates the geometrical constraints and
g(|∇F0|) is the edge detector function defined in Eq. (1). All the models discussed above
have been developed for segmentation of gray level images (for scalar valued images). In
this paper, we propose a convex model based on the coefficient of variation for segmenta-
tion of vector valued images.

Minimization of the above discussed model leads towards a highly nonlinear partial dif-
ferential equation, whose solution is always challenging. Most of the methods for solution
of these PDEs are based on explicit discretization, which is conditionally stable (see [10]
and the references therein). This method requires very small time step, which in result
increases the number of iterations and consequently causes the increase of computational
cost. Another approach for solution of these PDEs is the semi-implicit (SI) scheme which
is unconditionally stable. The SI method works well in 1D problems, while in higher di-
mension problems it becomes very slow in convergence and computational cost increases.
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Additive Operator Splitting (AOS) method was developed in [10] for diffusion problem
and was implemented for segmentation models in [9, 11, 12]. The AOS method is fast in
convergence as compared to the SI method. However, real images (medical images) are
usually of large sizes and in such a case these methods are very slow in convergence. To
overcome this problem, the multigrid method based on novel smoothers was proposed in
[11] for a two-phase segmentation model (CV model) of gray valued images and in [12]
for a multi-phase segmentation model of gray valued images. In this paper, we develop
AOS and multigrid methods for solution of PDEs arisen from minimization of the pro-
posed model for two-phase segmentation of vector valued images. The multigrid method
is based on a new smoother which is supported locally by freezing the differential coeffi-
cients locally. Results of the proposed methods are compared with the existing methods
(explicit and implicit), and our methods outperformed the existing methods.

Organization of the rest of the paper is as follows: In Sect. 2, related work is discussed.
In Sect. 3, our proposed model is described in detail. In Sect. 4, details of the proposed
numerical methods for the solution of partial differential equations are given. In Sect. 5,
experimental results and comparison with the existing literature are discussed, and in the
last section the conclusion of the paper is given.

2 Related work
In this section, we discuss image segmentation models for vector valued images.

2.1 Chan–Vese model for vector valued images (M1)
Segmentation of vector valued images is always challenging. To address this, Chan et al.
[7] proposed the following functional:

E(C, c1, c2) = μ.length(C) +
1
N

N∑

l=1

∫

inside(C)
γ +

l |F0,l – c1,l|2

+
1
N

N∑

l=1

∫

outside(C)
γ –

l |F0,l – c2,l|2, (4)

where C is an evolving curve. F0,l : � → �2 is the lth channel of the given image, where l =
1, 2, . . . , N denotes the number of channels. c1 = (c11, c12, . . . , c1N ) and c2 = (c21, c22, . . . , c2N )
are the average intensity vectors of both sides, i.e., inner and outer of contour C, respec-
tively. μ ≥ 0, ν ≥ 0, γ +

l > 0, γ –
l > 0 are parameters for each channel.

In a level set formulation, the above functional in Eq. (4) may be written as

E(ξ , c1, c2) = μ

∫

�

δ
(
ξ (x, y)

)|∇ξ | +
∫

�

1
N

N∑

l=1

γ +
l |F0,l – c1,l|2H(ξ )

+
∫

�

1
N

N∑

l=1

γ –
l |F0,l – c2,l|2

(
H(–ξ )

)
, (5)

where H(ξ ) and δ(ξ ) are Heaviside and Dirac-delta functions, respectively. As H(ξ ) is not
differentiable at the origin, we consider the regularized Hε(ξ ) and corresponding δε(ξ ) as
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given in [4, 11–13] and defined by

Hε(x) =
π + 2 arctan( x

ε
)

2π
, δε(x) =

ε

π (ε2 + x2)
. (6)

Thus the regularized form of Eq. (5) becomes

Eε(ξ , c1, c2) = μ

∫

�

δε(ξ )|∇ξ | +
1
N

N∑

l=1

∫

�

γ +
l |F0,l – c1,l|2Hε(ξ )

+
1
N

N∑

l=1

∫

�

γ –
l |F0,l – c2,l|2

(
Hε(–ξ )

)
. (7)

For optimal values of c1,l and c2,l , Eq. (7) is minimized with respect to c1,l and c2,l by keeping
ξ fixed to get the following:

c1,l =
∫
�

F0,lHε(ξ ) dx dy
∫
�

Hε(ξ ) dx dy
, c2,l =

∫
�

F0,l(Hε(–ξ )) dx dy
∫
�

(Hε(–ξ )) dx dy
.

Minimization of Eq. (7) with respect to ξ is obtained by keeping c1,l and c2,l fixed, we get
the following Euler–Lagrange equation:

μδε(ξ )∇ ·
( ∇ξ

|∇ξ |
)

– δε(ξ )
1
N

N∑

l=1

{
γ +

l |F0,l – c1,l|2 – γ –
l |F0,l – c2,l|2

}
= 0, (8)

with Neumann boundary conditions. For implementation of a time marching scheme
(semi-implicit scheme), the following unsteady evolution equation is considered:

∂ξ

∂t
= δε(ξ )

{

μ∇ ·
( ∇ξ

|∇ξ |
)

–
1
N

N∑

l=1

γ +
l |F0,l – c1,l|2 +

1
N

N∑

l=1

γ –
l |F0,l – c2,l|2

}

. (9)

This model can segment vector valued images having homogeneous intensities in different
regions and may not give satisfactory results in images having intensity inhomogeneity.

2.2 X. Cai joint model for image restoration and segmentation (M2)
In [14], X. Cai proposed a joint model for restoration and segmentation of vector valued
images. For an observed vector valued image F0 = (F0,1, F0,2, . . . , F0,N ), they proposed the
following functional (we consider in particular a two-phase case):

E(νl, cl, gl) = μ

N∑

l=1

∫

�

|Algl – F0,l|2ω dx dy +
2∑

k=1

∫

�

|∇νk|dx dy

+
2∑

k=1

N∑

l=1

γl

∫

�

|gl – ck,l|2ωνk dx dy, (10)

with the constraint that

2∑

k=1

νk(x) = 1, νk(x) ∈ {0, 1}, and ω(x) =

⎧
⎨

⎩
1, if x ∈ �\�′,

0, otherwise,
(11)
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gl = (g1, g2, . . . , gN ) ∈ L2(�) and A is a blur operator. For denoising, A = I is the identity
operator. This model is solved by using an alternating minimization algorithm in the fol-
lowing way: To find ck,l as a minimizer of Eq. (10) by keeping gl and νk fixed:

ck,l =
∫
�

glωνk dx
∫
�

ωνk
, where l = 1, 2, . . . , N and k = 1, 2.

Further, minimization of Eq. (10) with respect to νk will give an optimal value of νk , where
k = 1, 2, details can be found in [14]. Minimization of Eq. (10) with respect to gl gives us
the following optimal value of gl :

gl =
(
μAtA + λ

)–1
(

μAtF0,l + λ

2∑

k=1

ck,lνk

)

, where k = 1, 2.

This model jointly restores the noisy image and then segments it. Due to non usage of TV
norm, in restoration of intensity inhomogeneous vector valued images, we may loose some
information, due to which segmentation results will be affected. From experimental results
it can be seen that this model may not give satisfactory segmentation results in images
having intensity inhomogeneity. In this paper, we propose a model which will segment
vector valued images having intensity inhomogeneity without prior restoration.

3 Proposed model
For segmentation of vector valued images having intensity inhomogeneity, we propose
a novel model based on the coefficient of variation. To discuss the proposed model in
detail, we first define coefficient of variation (CoV). Data terms based on CoV are used for
segmentation of gray images [9, 15]. We first define CoV as follows.

Definition 1 (Coefficient of variation) Coefficient of variation can be defined as

CoV =
variance

mean
.

The coefficient of variation gives high values at the edges and low values in the homoge-
neous regions. Therefore, based on squared CoV, we propose the following energy func-
tional:

E(C, c1, c2) = μlength(C) +
1
N

N∑

l=1

∫

inside(C)
γ +

l
|F0,l – c1,l|2

c2
1,l

dx dy

+
1
N

N∑

l=1

∫

outside(C)
γ –

l
|F0,l – c2,l|2

c2
2,l

dx dy. (12)

For the regularized functional in terms of a level set function ξ , we have

Eε(ξ , c1, c2) = μ

∫

�

δε(ξ )|∇ξ | +
1
N

N∑

l=1

∫

�

γ +
l

|F0,l – c1,l|2
c2

1,l
Hε(ξ )

+
1
N

N∑

l=1

∫

�

γ –
l

|F0,l – c2,l|2
c2

2,l

(
Hε(–ξ )

)
. (13)
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Optimal values of c1,l and c2,l will be the solution of minimization of Eq. (13) with respect
to c1,l and c2,l and keeping ξ fixed respectively. The values of c1,l and c2,l can be updated
in the following way:

c1,l =
∫
�

F2
0,lHε(ξ ) dx dy

∫
�

F0,lHε(ξ ) dx dy
,

c2,l =
∫
�

F2
0,l(Hε(–ξ )) dx dy

∫
�

F0,l(Hε(–ξ )) dx dy
.

An optimal value of ξ is the solution of the following partial differential equation:

μδε(ξ )∇ ·
( ∇ξ

|∇ξ |
)

– δε(ξ )
1
N

N∑

l=1

{
γ +

l
|F0,l – c1,l|2

c2
1,l

– γ –
l

|F0,l – c2,l|2
c2

2,l

}
= 0, (14)

with Neumann boundary conditions. The corresponding unsteady state evolution equa-
tion is of the form

∂ξ

∂t
= δε(ξ )

{

μ∇ ·
( ∇ξ

|∇ξ |
)

–
1
N

N∑

l=1

γ +
l

|F0,l – c1,l|2
c2

1,l
+

1
N

N∑

l=1

γ –
l

|F0,l – c2,l|2
c2

2,l

}

. (15)

The partial differential equations (14) and 15) are solved by using different numerical
methods which are discussed in section (4).

Convex formulation of the model
The proposed model is non-convex. To develop an alternate convex model, let us con-

sider Eq. (14):

μδε(ξ )∇ ·
( ∇ξ

|∇ξ |
)

– δε(ξ )
1
N

N∑

l=1

{
γ +

l
|F0,l – c1,l|2

c2
1,l

– γ –
l

|F0,l – c2,l|2
c2

2,l

}
= 0. (16)

Since δε(ξ ) is a non-compactly supported strictly monotonic smooth function [8], we have
the following steady state evolution equation:

μ∇ ·
( ∇ξ

|∇ξ |
)

–
1
N

N∑

l=1

{
γ +

l
|F0,l – c1,l|2

c2
1,l

– γ –
l

|F0,l – c2,l|2
c2

2,l

}
= 0. (17)

This is the Euler–Lagrange equation of the following functional:

E(ξ , c1, c2) = μ

∫

�

∣
∣∇ξ (x, y)

∣
∣dx dy

+
1
N

N∑

l=1

∫

�

γl

( |F0,l – c1,l|2
c2

1,l
–

|F0,l – c2,l|2
c2

2,l

)
ξ dx dy. (18)

This functional is homogeneous in ξ of degree one, so it has no stationary point, so we
restrict the minimization to –1 ≤ ξ ≤ 1. Thus we have the following constrained mini-
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mization problem:

min
–1≤ξ≤1

E(ξ , c1, c2) = μ

∫

�

∣∣∇ξ (x, y)
∣∣dx dy

+
1
N

N∑

l=1

∫

�

γl

( |F0,l – c1,l|2
c2

1,l
–

|F0,l – c2,l|2
c2

2,l

)
ξ dx dy. (19)

Minimizers of the constraint functional in Eq. (19) have the same minimizers as of the
following unconstraint functional:

min
ξ

E(ξ , c1, c2) = μ

∫

�

|∇ξ |d� + λ1

∫

�

p(ξ ) d�

+
1
N

N∑

l=1

∫

�

γl

( |F0,l – c1,l|2
c2

1,l
–

|F0,l – c2,l|2
c2

2,l

)
ξ d�, (20)

where p(ξ ) = max{0, 2|ξ – 0.5| – 1} is an exact penalty function and d� = dx dy. Minimiza-
tion of the unconstraint functional with respect to ξ gives the following unsteady state
evolution equation:

∂ξ

∂t
= μ∇ ·

( ∇ξ

|∇ξ |
)

–
1
N

N∑

l=1

γl

( |F0,l – c1,l|2
c2

1,l
–

|F0,l – c2,l|2
c2

2,l

)
+ q(ξ ), (21)

where q(ξ ) is the gradient of p(ξ ). In the next section we discuss numerical methods for
solution of PDEs (15) and (21). These methods are not used for solution of PDE arisen
from minimization of models for vector valued images.

4 Numerical methods
In this section we discuss numerical methods for solution of partial differential equa-
tions (15) and (21). We describe semi-implicit and additive operator splitting methods
for Eq. (15) and the same can be extended to Eq. (21).

4.1 Semi-implicit method
Equation (15) can be written as

∂ξ

∂t
= δε(ξ )

(
μ∇ ·

( ∇ξ

|∇ξ |
)

+ f (x, y)
)

, (22)

where

f (x, y) = –
1
N

N∑

l=1

γ +
l

|F0,l – c1,l|2
c2

1,l
+

1
N

N∑

l=1

γ –
l

|F0,l – c2,l|2
c2

2,l
. (23)

Consider m1 × n1 as size of the given image F0,l and h1 × h2 as size of the pixel where
h1 = 1/m1 and h2 = 1/n1. A pixel position is represented as (xi, yj) = ((i – 1

2 )h1, (j – 1
2 )h2).
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The corresponding difference equation for Eq. (22) is

ξ
(k+1)
i,j – ξ

(k)
i,j

t
= δε

(
ξ

(k)
i,j

)
{
μ

1
h2

1

x

–

( 
x
+ξ

(k+1)
i,j√

(
x
+ξ

(k)
i,j /h1)2 + (
y

+ξ
(k)
i,j /h2)2 + ε1

)

+ μ
1
h2

2

y

–

( 
y
+ξ

(k+1)
i,j√

(
x
+ξ

(k)
i,j /h1)2 + (
y

+ξ
(k)
i,j /h2)2 + ε1

)}
+ δε

(
ξ

(k)
i,j

)
fi,j, (24)

where the spatial forward and backward operators are defined as follows:


x
+ξ

(k)
i,j = ξ

(k)
i+1,j – ξ

(k)
i,j , 
x

–ξ
(k)
i,j = ξ

(k)
i,j – ξ

(k)
i–1,j,


y
+ξ

(k)
i,j = ξ

(k)
i,j+1 – ξ

(k)
i,j , 
y

–ξ
(k)
i,j = ξ

(k)
i,j – ξ

(k)
i,j–1.

(25)

The matrix form of the difference equation (24) is

ξ (k+1) = ξ (k) + t
∑

l={x,y}
Al

(
ξ (k))ξ (k+1) + tb, (26)

where Al(ξ (k)) are coefficient matrices for l = {x, y} and b = δε(ξ (k)
i,j )fi,j. To solve Eq. (26) for

ξ (k+1), this equation can be written as

(
I – t

∑

l={x,y}
Al

(
ξ (k))

)
ξ (k+1) = ξ (k) + tb, (27)

where I is the identity matrix. The system matrix is strictly diagonally dominant, so we
have

ξ (k+1) =
(

I – t
∑

l={x,y}
Al

(
ξ (k))

)–1[
ξ (k) + tb

]
. (28)

This method is unconditionally stable, i.e., it converges for large time step (t). Firstly,
increasing the time step also increases the condition number of the system matrix, which
results in slow convergence. Secondly, in images of higher dimensions, the bandwidth of
the system matrix increases, which results in slow convergence and high computational
cost. This method also converges very slowly in images of large sizes or in some cases does
not converge.

4.2 Additive Operator Splitting (AOS) method
Semi-implicit method for one-dimensional problem results in a tri-diagonal system of
equations, which can be easily solved by any iterative method. The Additive Opera-
tor Splitting (AOS) method divides an m-dimensional differential operator into m one-
dimensional problems, then each one is solved by using a semi-implicit method, and final
solution is obtained by taking their average. In this method we solve m one-dimensional
problems through the semi-implicit method. Mathematically, this can be written as fol-
lows:

ξ (k+1) =
1
m

∑

l={x,y}

(
I – tmAl

(
ξ (k)))–1[

ξ (k) + tb
]
. (29)
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The AOS method is more efficient than the semi-implicit method in higher dimension
and is unconditionally stable. This method works well in images of moderate size, but in
images having large size it converges very slowly. To overcome this problem, we develop
a multigrid method for solution of PDE (14).

4.3 Multigrid (MG) method
In this section we discuss the multigrid method [11, 12, 16, 17] for solution of PDE given
in Eq. (21). The steady state of Eq. (21) can be written as

μ∇ ·
( ∇ξ

|∇ξ |
)

–
1
N

N∑

l=1

γl

( |F0,l – c1,l|2
c2

1,l
–

|F0,l – c2,l|2
c2

2,l

)
+ q(ξ ) = 0, (30)

which may be written as

μ∇ ·
( ∇ξ

|∇ξ |
)

=
1
N

N∑

l=1

γl

( |F0,l – c1,l|2
c2

1,l
–

|F0,l – c2,l|2
c2

2,l

)
+ q(ξ ). (31)

The corresponding difference equation is as follows:

1
h2

1

x

–

( 
x
+ξi,j√

(
x
+ξi,j/h1)2 + (
y

+ξi,j/h2)2 + ε1

)

+
1
h2

2

y

–

( 
y
+ξi,j√

(
x
+ξi,j/h1)2 + (
y

+ξi,j/h2)2 + ε1

)
= f̄i,j, (32)

where

f̄i,j =
1
μ

(
1
N

N∑

l=1

γl

( |F0,l – c1,l|2
c2

1,l
–

|F0,l – c2,l|2
c2

2,l

)
+ q(ξ )

)

i,j

.

Freezing coefficients as done in [11, 12], we have the following system of equations:

N(ξ ) = b, (33)

where N(ξ ) is the coefficient matrix of the left-hand side of Eq. (32) after it is lin-
earized.

V-cycle of a multigrid algorithm
For the system of equations given in (33), the V-cycle multigrid is described in Algo-

rithm 1. The smoother is performed ν1 and ν1 number of pre- and post-smoothing steps
respectively, I2h

h is the restriction operator, Ih
2h is the prolongation operator, N2h is the

coarse grid operator.
Choice of smoother
In the multigrid method, a smoother is the main ingredient, so it is important to discuss

it. As discussed above, to get Eq. (33), the coefficients in Eq. (32) are frozen. In detail,
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Algorithm 1 V-cycle multigrid algorithm
ξh = V-cycle(Nh, ξ0, f̄ h)

• ξh := smoother((Nh, ξ0, f̄ h) for pre-smoothing.
• Find residual rh = f̄ h – Nhξh.
• Restriction to coarse grid by r2h = I2h

h .
• On coarse grid solve the residual equation as e2h = (N2h)–1r2h.
• Correct the solution through prolongation i.e. ξh = ξh + Ih

2he2h.
• ξh := smoother(Nh, ξh, f̄ h) post-smoothing.

Eq. (32) can be written as follows:
( 
x

+ξi,j√
(
x

+ξi,j)2 + γ (
y
+ξi,j)2 + ε1

–

x

+ξi–1,j√
(
x

+ξi–1,j)2 + γ (
y
+ξi–1,j)2 + ε1

)

+ γ 2
( 
y

+ξi,j√
(
x

+ξi,j)2 + γ (
y
+ξi,j)2 + ε1

–

y

+ξi,j–1√
(
x

+ξi,j–1)2 + γ (
y
+ξi,j–1)2 + ε1

)
= f̄i,j, (34)

where γ = h1/h2, ε1 = h2
1ε1. The coefficients that are frozen in the local linearization are

given below:

D(ξi,j) =
1

√
(
x

+ξi,j)2 + γ (
y
+ξi,j)2 + ε1

,

D(ξi–1,j) =
1

√
(
x

+ξi–1,j)2 + γ (
y
+ξi–1,j)2 + ε1

, (35)

D(ξi,j–1) =
1

√
(
x

+ξi,j–1)2 + γ (
y
+ξi,j–1)2 + ε1

.

The following form is thus obtained:

{
D(ξi,j)(ξi+1,j – ξi,j) – D(ξi–1,j)(ξi,j – ξi–1,j)

}

+ γ 2{D(ξi,j)(ξi,j+1 – ξi,j) – D(ξi,j–1)(ξi,j – ξi,j–1)
}

= f̄i,j. (36)

Let ζ be an approximation to ξ in the previous iteration, then Eq. (36) has only one local
unknown ξi,j. For clarity, we have shown it in bold.

{
D(ζi,j)(ζi+1,j – ξi,j) – D(ζi–1,j)(ξi,j – ζi–1,j)

}

+ γ 2{D(ζi,j)(ζi,j+1 – ξi,j) – D(ζi,j–1)(ξi,j – ζi,j–1)
}

= f̄i,j. (37)

Our proposed method solves the above equation for ξi,j to update ζi,j, which leads us to
updated coefficients (35) and further iterations. See Algorithm 2.

Here, the coefficients are first updated locally and are stored for relaxation use. In this
way Eq. (37) becomes linear and easy to solve.

5 Experimental results and discussion
In this section, we give experimental comparison of the proposed model and method with
the existing models and methods qualitatively and quantitatively.
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Algorithm 2 Smoother
ξ ← Smoother(ξ , f (k), maxit, tol)
for i = 1 : m1

for j = 1 : n1

for iter = 1 : maxit
ζ ← ξ

ξi,j =
D(ζi,j)(ζi+1,j + γ 2ζi,j+1) + D(ζi–1,j)ζi–1,j + γ 2D(ζi,j–1)ζi,j–1 – f̄i,j

D(ζi,j)(1 + γ 2) + D(ζi–1,j) + γ 2D(ζi,j–1)

if |ξi,j – ζi,j| < tol stop for (i, j)
end

end
end

(a) Initial contour (b) Result after 360 iterations

(c) Result after 180 iterations (d) Result after 8 iterations

Figure 1 (a) Given image with initial contour, (b) Result of model M1 [7], Jaccard similarity index (JSI) =
0.7883, (c) Result of Cai model M2 [14], JSI = 0.7882, (d) Result of the proposed model, JSI = 1

Qualitative comparison
We first give qualitative comparison of the proposed model by testing it on different

synthetic and real images having intensity inhomogeneity. It can be seen from the experi-
mental results that the proposed model outperforms the existing models.

In Fig. 1, the experimental results of CV model for vector valued images (M1), Cai model
(M2), and proposed model are presented. All the models are tested on a synthetic color
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(a) Initial contour (b) Result after 500 iterations

(c) Result after 500 iterations (d) Result after 33 iterations

Figure 2 (a) Given image with initial contour, (b) Result of model M1 [7], JSI = 0.8842, (c) Result of Cai model
M2 [14], JSI = 0.6785, (d) Result of the proposed model, JSI = 1

image having different objects with different levels of intensities. The proposed model has
outperformed the other two models. In Fig. 1(a), the original image with initial contour is
given. Figure 1(b) is the segmented result of M1, Fig. 1(c) is the final segmented result of
M2, and Fig. 1(d) is the final segmented result of the proposed model.

In Fig. 2, the experimental results of M1, M2, and the proposed model are given. All
models are implemented on a color image with multi objects having different intensity
variations. Segmentation results of the proposed model are far better than the results of
other two existing models. Fig. 2(a) is the original image with initial contour. Figure 2(b)
is the final segmented result of M1 after 500 iterations, and clearly the results are not sat-
isfactory; Fig. 2(c) is the final result of M2 after 500 iterations, the image is not properly
segmented; and Fig. 2(d) is the final segmented result of the proposed model after 33 iter-
ations, clearly the image is properly segmented.

In Fig. 3, the experimental results of M1, M2, and the proposed model are given. All
models are implemented on a real biological color cell image which has multi objects hav-
ing inhomogeneous intensities within the objects. Figure 3(a) is the original image with
initial contour. Final segmented result of M1 is given in Fig. 3(b), which is obtained after
700 iterations, and the results are not satisfactory. Figure 3(c) shows final segmented result
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(a) Initial contour (b) Result after 700 iterations

(c) Result after 500 iterations (d) Result after 33 iterations

Figure 3 (a) Given image with initial contour, (b) Result of model M1 [7], JSI = 0.7684, (c) Result of Cai model
M2 [14], JSI = 0.6828, (d) Result of the proposed model JSI = 1

Table 1 Quantitative comparison of the proposed model with CV vector valued [7] (M1) and Cai
model [14] (M2). The solution method used for PDE is Additive Operator Splitting (AOS). Size of each
image used here is (256× 256)

Image CV modelM1 Cai modelM2 Proposed Model

No. of Itr. CPU JSI No. of Itr. CPU JSI No. of Itr. CPU JSI

1 360 386 0.7883 180 94 0.7882 8 8 1
2 190 204 0.8842 180 93 0.6785 33 31 1
3 550 642 0.7682 180 95 0.6828 33 30 1

of M2 after 500 iterations, which are better than the results of M1 but not that much sat-
isfactory. The final segmented result of the proposed model is given in Fig. 3(d), where the
image is segmented properly. From all these results it can be seen that the proposed model
works well in color images having intensity inhomogeneity. We remark that the proposed
model may not work very well in noisy images with intensity inhomogeneity.

Quantitative comparison
Here we give quantitative comparison of our proposed model through Jaccard similarity

index (JSI) with the existing CV model (M1) and Cai model (M2). In Table 1, quantitative
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Table 2 Comparison of the proposed multigrid method (4.3) with SI (4.1), AOS (4.2) in terms of
iterations and CPU time for an image with different sizes

Image Size SI Method AOS Method MG Method

Itr CPU Itr CPU Cycle CPU

Real Image Fig. 4(c) 128× 128 138 51.28 115 15.13 2 6.38
256× 256 150 408.42 125 39.02 2 13.18
512× 512 168 4016.75 135 160.18 2 24.04
1024× 1024 194 26,767.43 195 938.00 2 69.23
2048× 2048 – – 500 9948.70 2 261.11
4096× 4096 – – – – 2 1086.83

results of the proposed model are given in terms of the number of iterations, CPU time,
and JSI. Clearly the proposed model is taking fewer iterations and converges fast with
better JSI. Image size used in all experiments is 256 × 256 and the numerical method used
for the solution of PDE in the table is additive operator splitting (AOS).

We observe that all the methods become slow in convergence as we increase the size of
an image. To tackle this issue, we have proposed multigrid (MG) method, whose results
are given in Table 2. In Table 2, we have given the number of iterations and corresponding
CPU time for images having different sizes and different methods. A real color image given
in Fig. 4(c) is used for all computations given in Table 2. From the table, it can be observed
that the MG method has produced very good results in terms of the number of cycles and
CPU time.

Furthermore, in Fig. 4, we have tested the proposed model on different types of synthetic
and real images. These results show effectiveness of the proposed model in different types
of synthetic and real images. Fig. 4(b), (d) are final segmented results of natural images,
Fig. 4(f ), (h) are segmented results of synthetic or artificial images, Fig. 4(j), (l) are seg-
mented results of biological cell images, and Fig. 4(n), (p) are segmented results of med-
ical MR images. We observe that our model segments images with intensity variation or
inhomogeneity efficiently in the objects like in Fig. 4(e), (g), (p). It can also segment images
having inhomogeneity in their background as in Fig. 4(k).

6 Conclusion
The proposed model is based on the coefficient of variation, which works well in images
having intensity inhomogeneity. The model is then formulated in convex framework to
make it independent of initial contour. The model is minimized through variation to get a
partial differential equation which is solved by using AOS method for images of moderate
sizes. For images of large sizes, we have proposed a multigrid method based on locally sup-
ported smoother. The proposed convex model and multigrid method are compared with
the exiting models and methods, and it was found that the proposed model and method
outperformed the exiting models and methods.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4 Original images are in column 1 and column 3 and their respective segmented results using our
proposed model are given in column 2 and column 4. Results of real images are given in 1st row, while those
of synthetic, biological cells, and medical images are given in 2nd, 3rd, and 4th rows, respectively
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