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Abstract
This work proposes a novel mesh free evolutionary Padé approximation (EPA)
framework for obtaining closed form numerical solution of a nonlinear dynamical
continuous model of virus propagation in computer networks. The proposed
computational architecture of EPA scheme assimilates a Padé approximation to
transform the underlying nonlinear model to an equivalent optimization problem.
Initial conditions, dynamical positivity and boundedness are dealt with as problem
constraints and are handled through penalty function approach. Differential
evolution is employed to obtain closed form numerical solution of the model by
solving the developed optimization problem. The numerical results of EPA are
compared with finite difference schemes like fourth order Runge–Kutta (RK-4), ODE45
and Euler methods. Contrary to these standard methods, the proposed EPA scheme is
independent of the choice of step lengths and unconditionally converges to true
steady state points. An error analysis based on residuals witnesses that the
convergence speed of EPA is higher than a globally convergent non-standard finite
difference (NSFD) scheme for smaller as well as larger time steps.

Keywords: Nonlinear model; Evolutionary computing; Padé approximation;
Optimization

1 Introduction
A computer virus is a malicious code which executes harmful and unauthorized activities
like erasing necessary files, accessing confidential data and personal information like pass-
words, account numbers, contact lists etc. Depending on the way of propagation, func-
tioning and damaging the systems/users, malwares are classified into various categories.
These include computational viruses, computer worms, Trojans, Rootkits, spyware, logic
bombs and so on [1, 2]. Dissemination of computer viruses to other connected systems
bears a high resemblance to the behavior of biological viruses [3–5]; therefore, various
models of computer virus propagation have been proposed by using an epidemiological
analog [6–9].

Transformation of the dynamics of computer virus propagation into mathematical lan-
guage is an effective methodology to understand and analyze the spreading behavior of
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viruses. The mathematical prototypes related to the characteristics of variables, parame-
ters and the functional relations governing the dynamics of the virus propagation classify
the model as deterministic, stochastic, continuous, discrete, global or individual [2]. Over
the years several compartmental models have been evolved. These involve susceptible-
infected-susceptible (SIS) models [10, 11], susceptible-infected-recovered (SIR) [12–14],
susceptible-infected-recovered-susceptible (SIRS) [15, 16], susceptible-exposed-infected-
recovered (SEIR) [17, 18], SEIQS (quarantined class included) [19], SEIRS [20, 21], SEIQRS
[22], SEIRS-V (including vaccinated subpopulation) [23] models and so on.

Mathematical tool-based numerical analysis of these epidemiological models is an es-
sential part of investigations for acquiring better knowledge of their evolution, impact and
the deriving mechanisms, especially when the analytical solution is not available. A pro-
found understanding of the model helps in imposing precautionary measures and evalu-
ating their effectiveness in preventing the networks from infections.

The studies conducted by Rafiq et al. [24] on a nonlinear model of virus propagation in
a computer network proposed by Mei Peng [25] have exposed the divergence behaviors of
RK-4 and Euler methods for certain step lengths. The similar behaviors of RK-4 and Euler
schemes have also been highlighted in [26] and [27]. In these studies a globally convergent
non-standard finite difference (NSFD) scheme proposed by Mickens [28] has successfully
been applied to the said model. To the best of the author’s knowledge, till date, the non-
linear model of virus propagation in a computer network has no analytical solution. The
important factors which require further research are: (i) finding an analytical solution or
constructing alternative efficient convergent numerical schemes, (ii) analysis of the con-
vergence speeds, and (iii) the error analyses of numerical schemes, at least in the common
cases when they all converge.

Over the recent years, many modern metaheuristics have been proposed to cope with
the most sophisticated problems by transforming them to optimization problems. Meta-
heuristic algorithms are inspired by natural phenomena like evolution [29, 30], swarm
behaviors [31, 32], food foraging behavior [33, 34], sport strategies [35], water dynam-
ics [36, 37] etc. For more detailed studies one may consult the survey articles [35, 38].
Metaheuristics-based approaches of solving differential equations belong to the class of
non-standard mesh free methods. The applications of these heuristics to differential equa-
tions can be found in [39–43], but their applications to epidemic models are very rare.

The present work presents an innovative numerical scheme by integrating evolutionary
computing and Padé rational functions [44–46] for numerical treatment of the model. The
proposed computational framework involves following novel aspects:

(i) Construction of an equivalent optimization problem by exploiting interpolation
and extrapolation strengths of Padé approximation.

(ii) Preservation of positivity, boundedness and initial conditions agreement by
defining problem constraints.

(iii) Construction of fitness/objective function, an essential requirement for
evolutionary computing, by use of penalty function approach.

(iv) Implementation of differential evolution (DE) to optimize the constructed fitness
function.

(v) Evolvement of unconditionally convergent closed form numerical solution of
nonlinear model of virus propagation in computer networks.

The developed method is named the evolutionary Padé approximation (EPA) scheme.
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The rest of the paper is organized as follows. In Sect. 2, relative basic concepts are revis-
ited. Section 2 elaborates the proposed framework of EPA scheme for numerical treatment
of nonlinear dynamical continuous model of virus propagation in computer networks. In
Sect. 5, analyses of the results are presented. In the end, conclusion and some future di-
rections are given.

2 Related concepts
2.1 Padé approximation
The idea of a Padé approximation was formulated at the end of the 19th century within
the classical theory of continued fractions [44]. The Padé approximation of order (N, M)
is a rational function of the form [45]

PN ,M(t) =
∑N

i=0 aiti

∑M
j=0 bjtj

.

The polynomials
∑N

i=0 aiti and
∑M

j=0 bjtj are called Padé approximants. Normalizing it by
b0 ( �= 0) the following form is obtained:

PN ,M(t) =
∑N

i=0 aiti

1 +
∑M

j=1 bjtj
.

It involves (N + M + 1) unknown coefficients which are to be determined in such a way
that the Maclaurin series expansions of PN ,M(t) coincides with some target function as far
as possible [46].

2.2 Differential evolution: the evolutionary algorithm
In evolutionary computing, differential evolution (DE) [30] is a competent population-
based stochastic global search method. Initialization, mutation, recombination and selec-
tion are the main operations of a DE algorithm. In mutation, a trial solution v for improv-
ing x is generated with the help of the other two mutually different solutions y and z:

vm = xm + F × (ym – zm), for each m = 1, 2, 3, . . . , Dimension.

Here F is a positive real number acting as an algorithmic constant.
In recombination, the coordinates of v are combined with those of x probabilistically.

A predefined positive real number CR is used as recombination probability and a random
number rand ∈ (0, 1) is generated randomly for each coordinate m. Recombination takes
place according to

um =

⎧
⎨

⎩

vm if rand < CR,

xm otherwise.

In the selection step the solution u is assigned to x if it appears to be better than x. The
iterative process of a DE algorithm carries on trying to improve until some termination
criteria are met. Upon termination, DE returns the best member of the population as an
optimal solution.
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2.3 Penalty function
Evolutionary algorithms like DE are generally designed for unconstrained optimization
problems and there is very rare existence of unconstrained real world problems. There-
fore, transforming the constrained optimization problem to an unconstrained through
suitable approach is inevitable. Penalty functions belong to the most effective methods to
handle constraints [47, 48]. A penalty function allows for accepting the feasible solution
and penalizes an infeasible solution by adding a sufficiently large positive number to the
objective function depending on degree of violation of constraints. For an objective func-
tion ψ(x) and a solution x, the penalty function H(x) defines an unconstrained penalized
function ϕ(x) by the following relation:

ϕ(x) =

⎧
⎨

⎩

ψ(x) + H(x) if x is infeasible,

ψ(x) if x is feasible.

For a minimization problem, H(x) ≥ 0 whereas for a maximization problem H(x) ≤ 0.

3 Mathematical model of virus propagation in computer networks
The considered SEIR model of virus transmission in a computer network that was pro-
posed by Mei Peng in [25] and referred to in [26] is described by Fig. 1.

At any time ‘t’ the state variables of the model are defined by:
S(t): susceptible computers; E(t): exposed computers; I(t): infected computers; R(t): re-

covered computers.
The model parameters are:

N : The total population of computers in the network.
p: Rate at which antivirus recovers susceptible computers.
k: Rate at which antivirus recovers exposed computers.
a: Rate at which antivirus cannot cure exposed computers.
β1: Contact rate of susceptible with infected computers.
β2: Contact rate of susceptible with exposed computers.
μ: Removal rate of a computer from the network.
r: Recovery rate of infected computers that are cured.

The system of governing equations for the model is given as under:

S′(t) = (1 – p)N – β1S(t)I(t) – β2S(t)E(t) – pS(t) – μS(t),
E′(t) = β1S(t)I(t) + β2S(t)E(t) – kE(t) – αE(t) – μE(t),
I ′(t) = αE(t) – rI(t) – μI(t),
R′(t) = pS(t) + kE(t) + rI(t).

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1)

Here

S(t) + E(t) + I(t) + R(t) = N(t). (2)

Figure 1 SEIR model for virus propagation in a
computer network
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Table 1 Values of the model parameters for two points of equilibriums

Equilibrium
point

Model parameters

α β1 β1 N p r k μ

VE 0.01 0.7 0.8 100 0.5 0.6 0.4 0.02
VFE 0.01 0.002 0.003 100 0.5 0.6 0.4 0.02

Suppose that

X1(t) = A – β1S(t)I(t) – β2S(t)E(t) – aS(t),

X2(t) = β1S(t)I(t) + β2S(t)E(t) – bE(t),

X3(t) = αE(t) + cI(t), A = (1 – p)N , a = p + μ, b = k + α + μ, c = r + μ.

Then, by (2) and the above suppositions, model (1) can be reduced to the following form:

S′(t) = X1(t),
E′(t) = X2(t),
I ′(t) = X3(t).

⎫
⎪⎬

⎪⎭
(3)

The initial conditions are

S0 = S(0) = 50; E0 = E(0) = 40; I0 = I(0) = 20.

The basic reproductive number defined as the average number of secondary infections
produced by a primary infection can be identified:

Ro =
A(αβ1 + cβ2)

abc
.

For Ro > 1 the virus equilibrium (VE) point is found:

(
S0, E0, I0) =

(
A

aRo
,

A(Ro – 1)
bRo

,
Aα(Ro – 1)

bcRo

)

.

For Ro < 1 the following virus free equilibrium (VFE) point is identified:

(
S∗, E∗, I∗) =

(
A
a

, 0, 0
)

.

The model related parameters used in [24, 25] are exhibited in Table 1.

4 Evolutionary Padé approximation numerical (EPA) scheme
The architecture of the proposed evolutionary computing-based Padé approximation
scheme involves the four main steps which are presented in the following.

4.1 Construct residual functional based on Padé approximation
Suppose that S(t), E(t) and I(t) are approximated by Padé rational functions according to

S(t) ≈
∑N

i=0 aiti

1 +
∑M

j=1 bjtj
; E(t) ≈

∑N
i=0 citi

1 +
∑M

j=1 djtj
; I(t) ≈

∑N
i=0 eiti

1 +
∑M

j=1 fjtj
.
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Imposing initial conditions S(t0) = S0, E(t0) = E0, I(t0) = I0, we obtain

a0 = S0, c0 = E0, e0 = I0. (4)

For each of the discrete time steps tq = t0 + qh; q = 0, 1, 2, 3, . . . , qmax, the above system (3)
reduces to the following form:

ε1(tq) = 0,
ε2(tq) = 0,
ε3(tq) = 0.

⎫
⎪⎬

⎪⎭
(5)

Here ε1, ε2 and ε3 are the residuals defined by

ε1(tq) =

(

1 +
M∑

j=1

bjtj
q

)( N∑

i=0

iaiti–1
q

)

–

( N∑

i=0

aiti
q

)( M∑

j=1

jbjtj–1
q

)

– X1(tq)

(

1 +
M∑

j=1

bjtj
q

)2

, (6)

ε2(tq) =

(

1 +
M∑

j=1

djtj
q

)( N∑

i=0

iciti–1
q

)

–

( N∑

i=0

citi
q

)( M∑

j=1

jdjtj–1
q

)

– X2(tq)

(

1 +
M∑

j=1

djtj
q

)2

, (7)

ε3(tq) =

(

1 +
M∑

j=1

fjtj
q

)( N∑

i=0

ieiti–1
q

)

–

( N∑

i=0

eiti
q

)( M∑

j=1

jfjtj–1
q

)

– X3(tq)

(

1 +
M∑

j=1

fjtj
q

)2

. (8)

The problem reduces to the problem of finding 3(M + N) coefficients of Padé ap-
proximants by solving system (5) having 3qmax nonlinear simultaneous equations. Sys-
tem (5) is highly nonlinear and may possess many solutions in general. By assuming
x = (a1, a2, . . . , aM, b1, b2, . . . , bN , c1, c2, . . . , cM, d1, d2, . . . , dN , e1, e2, . . . , eM, f1, f2, . . . , fN )T ∈
R

3(M+N), the system (5) is further converted to a minimization problem of the form:

Minimize ψ(x) =
1
3

3∑

v=1

qmax∑

q=0

[
εv(tq)

]2. (9)

4.2 Formation of problem constraints
The initial conditions (4) of the model are considered as equality constraints:

h1(t) = S(t) – S0 = 0, (10)

h2(t) = E(t) – E0 = 0, (11)

h3(t) = I(t) – I0 = 0. (12)
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The inequality constraints (13) to (15) are related to positivity whereas (16) incorporates
the boundedness of the numerical solution.

g1q =
∑N

i=0 aiti
q

1 +
∑M

j=1 bjt
j
q

≥ 0, (13)

g2q =
∑N

i=0 citi
q

1 +
∑M

j=1 djt
j
q

≥ 0, (14)

g3q =
∑N

i=0 eiti
q

1 +
∑M

j=1 fjt
j
q

≥ 0, (15)

g1q + g2q + g3q ≤ A
a

. (16)

4.3 Employing penalty function approach
An equivalent unconstrained minimization model is obtained by using the following
penalty function approach:

H(x) =
qmax∑

q=1

Lq × max

{

0, (h1)2, (h2)2, (h3)2, –g1q, –g2q, –g3q,
3∑

s=1

gsq –
A
a

}

.

The scalar Lqis a large positive real number acting as a penalty factor at qth discrete time
step. The unconstrained objective function is

Minimize ϕ(x) = ψ(x) + H(x). (17)

4.4 Use of differential evolution for optimization process
To optimize objective function (17) the iterative steps of DE are executed as follows:

1. Generate a population of K solutions (xj ∈ R
3(M+N); 1 ≤ j ≤ K ) randomly.

2. Evaluate the fitness ϕj = ϕ(xj) of each solution. Preserve the best solution with the
smallest objective function value. SetT = 0.

3. Set T = T + 1.
4. For each of j = 1, 2, 3, . . . , K , choose three distinct solutions xA, xB and xC from the

population excluding xj. Set y = xj.
5. For each of the dimensions i = 1, 2, 3, . . . , 3(M + N), alter the ith coordinate according

to

yi =

⎧
⎨

⎩

xAi + F × (xBi – xCi) if rand < CR,

xji otherwise.

6. If ϕ(y) < ϕj then xj ← y, otherwise discard y.
7. Update the best solution.
8. If T > Number of Allowed Iterations, then terminate by preserving the best solution,

otherwise start next iteration from step 3.
In step 5 the symbol rand denotes a random number in the interval (0, 1), F is a differ-

ential constant and CR is crossover fraction.
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Table 2 Optimized coefficients of Padé approximate solutions

i (sign(coefficient))× log(|coefficient|)
ai bi ci di ei fi

VE 1 20.5658 20.3369 19.696 15.817 –19.0657 –19.3137
2 21.019 20.7901 18.1203 14.2412 –18.6749 –18.923

VFE 1 36.4774 31.9115 –13.0156 –41.8388 –14.5164 –41.3819
2 –38.6245 –34.0586 –6.66374 –43.6549 –5.88668 –44.8167

5 Numerical results
Four parameters of DE algorithm have been set: population size = 50; CR = 0.9; F = 0.5
and the maximum number of iterations = 2000. The order of the Padé approximation is
set as (N , M) = (2, 2). The parameter qmax is set to be 2000. The value of each penalty factor
is set to be Lq = 1010 for all q.

The optimized coefficients of Padé approximants returned by DE optimizer are given in
Table 2.

5.1 Convergence analysis
This section presents the unconditional convergence of numerical solution found by the
proposed method. Let the optimized coefficients of Padé approximation be denoted by
a0

i , b0
i , c0

i , d0
i , e0

i , f 0
i for VE equilibrium point and a∗

i , b∗
i , c∗

i , d∗
i , e∗

i , f ∗
i for VFE steady state

point. Then for the VE point

lim
t→∞ S(t) ≈ lim

n→∞ SN ,M(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a0
N

b0
M

if N = M,

0 if N < M,

∞ if N > M.

Setting N = M = 2 and applying the reverse operation on optimized coefficients, we get

lim
t→∞ S(t) ≈ a0

N
b0

M
=

–4,731,817,317,514,237
–3,763,605,488,155,694

≈ 1.2573 = S0.

Similarly,

lim
t→∞ E(t) ≈ c0

N
d0

M
=

–5,018,532,630,836,860
–10,373,441,962,128.1

≈ 48.378653568783371 ≈ E0,

lim
t→∞ I(t) ≈ e0

N
f 0
M

=
–2,180,339,159,320,262
–2,794,228,815,931,405

≈ 0.780300864012630 ≈ I0.

For the VFE point

lim
t→∞ S(t) ≈ a∗

N
b∗

M
=

–3.457895266178034E16
–359,621,107,682,515.6

≈ 96.153846153846132 ≈ S∗.

Similarly,

lim
t→∞ E(t) ≈ c∗

N
d∗

M
≈ 2.2653E–17 ≈ E∗,
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Figure 2 Divergence behaviors of (a) Euler method, (b) Rk-4 method for VE and h = 0.08

Figure 3 Divergence behaviors of (a) Euler method, (b) RK-4 method for VFE with h = 3.5

Figure 4 Convergence curves of EPA and NSFDE to VE point for h = 0.08
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Figure 5 Convergence curves of EPA and NSFDE to VE point for h = 5

Figure 6 Convergence curves of EPA and NSFD to VE point for h = 10

lim
t→∞ I(t) ≈ e∗

N
f ∗
M

≈ 1.01293E–17 ≈ I∗.

This proves that the closed form numerical solution found by the proposed EPA approach
unconditionally converges to the steady state points.

From Figs. 2 and 3 the divergence behaviors of EULER and RK-4 methods can be ob-
served for h = 0.08 and h = 3.5.

On the other hand, from Figs. 4–10, it can observed that EPA is quickly convergent and
is in good agreement with NSFD for both of the equilibrium points and the considered
values of step length h.

5.2 Error analysis
To describe the dynamics of system (1) accurately, a necessary condition for a numerical
solution is to satisfy the system (1) for all of the time steps. This section presents the error
analysis by evaluating absolute residuals ((6) to (8)) of the numerical solutions found by
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Figure 7 Convergence curves of EPA and NSFD to VFE with h = 0.08

Figure 8 Convergence curves of EPA and NSFD to VFE point at h = 5

EPA, RK-4, Euler and NSFD. The derivatives of the EPA solution are calculated analytically
whereas a forward difference scheme is used to approximate the derivatives of numerical
solutions of EU, RK-4 and NSFD.

Table 3 and Table 4 present the absolute residuals of numerical solutions at 200 time
steps for the h = 0.01 and h = 0.1, respectively.

It can be observed from Tables 3 and 4 that the numerical solutions found by EPA
scheme for both steady state points satisfy the governing equations with high accuracies as
compared to RK-4, Euler and NSFD schemes. The convergence of RK-4, Euler and NSFD
schemes occurs at least after 200 time steps.

Since for higher values of step lengths (h = 3.5, 5, 10, 36) RK-4 and Euler methods diverge
so the comparisons of absolute residuals for EPA and NSFD are demonstrated graphically
in Figs. 10–13.

The proposed EPA scheme is also compared with an optimized version of Matlab
ODE45 algorithm. Figures 14 and 15 present the convergence curves of ODE45 for E(t)
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Figure 9 Convergence curves of EPA and NSFD to VFE point at h = 10

Figure 10 Absolute residuals of EPA and NSFD solutions for VE at h = 3.5

and I(t) at VE and VFE points, respectively. Positivity of a numerical solution is an essen-
tial property of epidemiological dynamical models as negative values of state variables do
not have any physical interpretation. It can be observed from these figures that ODE45
converges to the steady states but does not possess positivity of the numerical solutions.

Figure 16 presents the comparisons of absolute residuals of solutions of ODE45 and EPA
method for h = 0.008 at VE. It demonstrates that the residuals of solutions found by EPA
are very small as compared to those of ODE45 up to more than 3700 time steps.

Figure 17 exhibits the convergence curves of state variables for VE and VFE steady states.
One can observe from Fig. 17 that the numerical solutions determined by ODE45 at VE
steady state also converge wrongly to VFE equilibrium point.

6 Conclusion
This work proposed an evolutionary computing-based framework of Padé approximation
of numerical solution of a nonlinear dynamical continuous model of virus propagation in
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Table 3 Absolute residuals of numerical solutions for h = 0.01

Method t VE VFE

|ε1| |ε2| |ε3| |ε1| |ε2| |ε3|
RK-4 0.01 3.7E02 3.7E02 5.5E03 2.4E–02 1.5E–01 2.0E03

0.40 1.5E–04 1.4E–01 6.0E03 2.1E–02 1.0E–01 1.3E03
0.80 3.3E–04 9.5E–02 5.4E03 1.9E–02 6.9E–02 8.8E03
1.20 4.3E–04 6.3E–02 5.0E03 1.7E–02 4.7E–02 5.9E02
1.60 4.6E–04 4.2E–02 4.8E03 1.6E–02 3.3E–02 4.1E02
1.99 4.3E–04 2.8E–04 4.7E03 1.6E–02 2.4E–02 2.9E02

Euler 0.01 2.3E–13 6.8E–13 6.0E03 3.2E–13 2.2E–13 2.0E03
0.40 1.7E–15 1.4E–13 6.0E03 2.4E–13 1.1E–13 1.3E03
0.80 3.6E–15 4.3E–13 5.4E03 2.9E–13 3.2E–14 8.8E02
1.20 3.9E–15 3.3E–14 5.0E03 7.8E–14 3.6E–14 5.9E02
1.60 1.9E–15 3.0E–13 4.8E03 4.5E–13 5.7E–14 4.0E02
1.99 5.6E–16 5.0E–14 4.7E03 1.7E–13 7.9E–14 2.8E02

NSFD 0.01 7.3E02 7.3E02 4.8E03 1.1E–01 3.5E–01 1.9E03
0.40 2.0E–01 4.8E–01 6.0E03 9.0E–02 2.5E–01 1.3E03
0.80 1.6E–01 3.5E–01 5.4E03 7.7E–02 1.8E–01 8.9E02
1.20 1.2E–01 2.5E–01 5.5E03 6.5E–02 1.3E–01 6.0E02
1.60 9.6E–02 1.8E–01 4.8E03 5.6E–02 9.1E–02 4.1E02
1.99 7.3E–02 1.3E–01 4.7E03 4.8E–02 6.7E–02 2.9E02

EPA 0.01 2.2E–08 9.5E–08 1.3E–08 1.9E–09 1.2E–11 2.1E–10
0.40 1.5E–12 1.2E–12 6.6E–14 9.5E–13 7.1E–14 9.3E–14
0.80 2.3E–13 2.1E–14 2.8E–14 6.5E–13 1.3E–14 3.5E–13
1.20 1.8E–14 5.7E–14 1.1E–14 7.8E–14 2.1E–15 1.9E–15
1.60 4.6E–14 2.8E–14 4.4E–15 7.1E–15 2.2E–15 6.1E–17
1.99 5.8E–14 4.3E–14 1.7E–15 1.4E–14 3.8E–15 1.1E–15

Table 4 Absolute residuals for h = 0.1

Method t VE VFE

|ε1| |ε2| |ε3| |ε1| |ε2| |ε3|
RK–4 0.10 5.9E83 5.9E83 5.9E83 2.3E–01 1.3E00 1.6E02

4.00 NaN NaN NaN 8.0E–02 4.8E–02 5.5E00
8.00 NaN NaN NaN 1.7E–02 3.6E–03 5.0E–01
12.0 NaN NaN NaN 2.8E–03 3.4E–04 5.3E–02
16.0 NaN NaN NaN 4.1E–04 3.1E–05 5.2E–03
19.9 NaN NaN NaN 5.9E–05 3.04E–06 5.3E–04

Euler 0.10 0.0E00 0.0E00 3.8E03 2.1E–14 3.6E–15 1.6E02
4.00 NaN NaN NaN 2.8E–14 4.4E–16 4.5E00
8.00 NaN NaN NaN 2.8E–14 6.9E–17 4.1E–01
12.0 NaN NaN NaN 3.6E–14 0.0E00 4.1E–02
16.0 NaN NaN NaN 2.1E–14 2.2E–19 3.8E–03
19.9 NaN NaN NaN 7.1E–14 2.7E–20 3.6E–04

NSFD 0.10 6.0E02 6.0E02 6.4E02 9.8E–01 3.0E00 1.7E02
4.00 1.8E–01 2.6E–01 4.7E02 2.2E–01 1.7E–01 7.9E00
8.00 1.1E–02 1.2E–02 4.7E02 4.3E–02 1.5E–02 8.5E–02
12.0 8.5E–04 8.6E–03 4.8E02 7.1E–03 1.6E–03 9.8E–02
16.0 7.4E–05 7.3E–05 4.8E02 1.1E–03 1.6E–04 1.1E–02
19.9 7.1E–06 6.9E–06 4.8E02 1.7E–04 1.7E–05 1.7E–05

EPA 0.10 1.5E–11 1.3E–10 8.5E–12 1.9E–11 2.7E–13 2.0E–12
4.00 4.9E–14 1.4E–14 1.7E–16 2.1E–14 4.3E–15 1.8E–15
8.00 2.8E–14 7.1E–15 8.6E–16 1.8E–14 2.9E–15 1.2E–15
12.0 2.8E–14 3.6E–15 1.6E–15 1.1E–14 2.1E–15 8.6E–16
16.0 6.8E–15 5.3E–15 1.9E–15 1.8E–14 1.6E–15 6.7E–16
19.9 2.8E–14 8.0E–15 2.3E–15 7.1E–15 1.3E–15 5.5E–16
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Figure 11 Absolute residuals of EPA and NSFD solutions at VE for h = 5

Figure 12 Absolute residuals of EPA and NSFD solutions at VFE for h = 10

Figure 13 Absolute residuals of EPA and NSFD solutions at VFE for h = 36
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Figure 14 Convergence curves of ODE45 to VE point at h = 3.5

Figure 15 Convergence curves of ODE45 to VFE point at h = 0.08

Figure 16 Absolute residuals of EPA and ODE45 solutions at VE for h = 0.008



Ali et al. Advances in Difference Equations  (2018) 2018:214 Page 16 of 18

Figure 17 Convergence curves of ODE45 for VE (h = 2) and VFE (h = 5)

computer networks. A new consolidation of two distinguished techniques, Padé approx-
imation and differential evolution, was evolved for numerical treatment of the computer
virus propagation model. From the analyses of the related facts and figures it is concluded
that:

• The evolutionary Padé approximation technique is successfully developed and
implemented to the model of virus propagation in computer network.

• EPA yielded good approximations of state variables which satisfy the governing
equations with high accuracy.

• The initial conditions and preservation of positivity and bonded-ness of the solution
were efficiently handled through constraints and the penalty function approach.

• The EPA produced a closed form numerical solution of the model having no
analytical solution.

• The obtained solution possesses very fast convergence, surpassing NSFD.
• An advantageous aspect of the proposed framework is that the solution found by EPA

is valid for several values of step lengths and needs no re-simulation for changed step
length. It is analogous to consumption of less computational efforts.

• The comparison of the tables and figures demonstrates that the solutions obtained
from EPA are found to be in good agreement with NSFD particular.

• The error analysis shows that residual errors of EPA solution remain very low at each
time step as compared to RK-4, Euler and NSFD schemes.

• It is also observed that the Euler, RK4 and ODE45 type finite difference schemes are
not equipped with specific tools to preserve essential properties like positivity,
boundedness and dynamical consistency of real world physical models. On the other
hand EPA preserves all of these vital properties of the underlying model.

The efficiency of EPA is independent of choice of step length and unconditionally con-
verges to steady state equilibriums more consistently. The proposed framework is suit-
able for many other nonlinear models that can be formulated as optimization problems.
It is worth mentioning that the Padé approximation of order (2, 2) was used in the present
work. The accuracy of the numerical solution can be enhanced by using its higher order
and more robust optimization approach. As a future work, we intend to apply the pro-
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posed framework to stiff nonlinear ODEs and more complicated dynamical models with
integer and/or fractional orders.
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