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Abstract
In this paper, we propose a new method called the inverse fractional natural
transform method (IFNTM). We present theoretical results and apply them to obtain
approximate solutions of linear fractional ordinary differential equations (LFODEs) and
partial differential equations (LFPDEs). The fractional derivatives are described in the
Caputo sense. The algorithm described in this study is expected to be further
employed to solve similar linear problems in fractional calculus.
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1 Introduction
In recent years, interest in the fractional differential equations has been stimulated due
to their wide applications [1–4] in various fields of engineering and science [7, 8, 12, 17,
20]. Various vital phenomena in electromagnetics, viscoelasticity, fluid mechanics, elec-
trochemistry, biological population models, and signal processing are well described by
fractional differential equations [5, 6]. Also, they are employed in social sciences such as
food supplement, climate, finance, and economics [9, 11, 13, 21, 25, 28]. As a result, the
importance of obtaining exact or approximate solutions of fractional linear and nonlinear
differential equations in physics and applied mathematics is still a significant problem that
needs new methods.

Also, a considerable interest has been shown in the so-called fractional calculus [20, 22],
which allows us to consider integration and differentiation of any order, not necessarily
integer. To a large extent, this is due to applications of the fractional calculus to problems in
different areas of physics and engineering [26]. Moreover, in many applications, fractional
calculus provides more accurate models of physical systems than ordinary calculus does.

The backward Kolmogorov equations in fractal space-time are based on the construc-
tion of a model for dynamic trajectories. The telegraph equation is a linear partial differ-
ential equation that describes the voltage and current on an electrical transmission line
with distance and time.

Recently, many robust and efficient methods have been proposed to obtain approxi-
mate analytical solutions of fractional differential equations such as the fractional complex
transform method [19], fractional Adomian decomposition method (FADM) [10, 30], frac-
tional natural decomposition method (FNDM) [26, 29], the FRDTM [23, 24, 27], fractional
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Laplace decomposition method (FLDM) [15], and fractional Sumudu transform method
(FSTM) [14, 18]. Finally, the natural transform method (NTM) was introduced by Khan et
al. [16], who gave some properties and applications of the natural transform, which they
called the N-transform.

In this paper, we give approximate analytical and exact solutions to two linear fractional
differential equations: First, consider the linear fractional initial value problem of the form
[19]

D1/2f (t) + f (t) = 0, (1.1)

subject to the initial condition

[
D–1/2f (t)

]
t=0 = 2. (1.2)

Second, consider the linear fractional initial value problem of the form [19]

Dαy(t) – λy(t) = h(t), t > 0, (1.3)

where λ is a constant, subject to the initial conditions

[
Dα–k–1y(t)

]
t=0 = bk (1.4)

for k = 0, 1, . . . , n – 1. Also, we give solutions to linear partial differential equations such as
time fractional backward Kolmogorov equation and time fractional-order linear telegraph
equation.

The rest of this paper is organized as follows. In Sect. 2, we give some preliminaries and
definitions of fractional calculus, some background on the theory of the natural transform,
including definitions and important properties of the natural transform, the fractional nat-
ural transform method (FNTM), and we present theorems with detailed proofs. In Sect. 3,
we present an analysis method of the FNTM and we implement the FNTM to some ap-
plications of LFODE and LFPDE. In Sect. 4, we present tables for different values of α, x,
and t. Section 5 is for discussion and conclusions of this paper.

2 Background of fractional calculus
In this section, we give some of the main definitions and notations related to fractional
calculus [7, 8, 12, 17, 20, 22].

Definition 2.1 A real function f (x), x > 0, is said to be in the space Cμ, μ ∈ R, if there
exists a real number q (> μ) such that f (x) = xqg(x), where g(x) ∈ C[0,∞), and it is said to
be in the space Cm

μ if f (m) ∈ Cμ, m ∈N.

Definition 2.2 For an integrable function f ∈ Cμ, the Riemann–Liouville fractional inte-
gral operator of order α ≥ 0 is defined as

⎧
⎨

⎩
Jαf (x) = 1

�(α)
∫ x

0 (x – t)α–1f (t) dt when α > 0, x > 0,

J0f (x) = f (x).
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Caputo and Mainardi [8] presented a modified fractional differential operator Dα in
their work on the theory of viscoelasticity to overcome the disadvantages of the Riemann–
Liouville derivative when someone tries to model real-world problems.

Definition 2.3 The fractional derivative of f ∈ Cm
–1, m ∈N, in the Caputo sense is defined

as

Dαf (x) = Jm–αDmf (x)

=
1

�(m – α)

∫ x

0
(x – t)m–α–1f (m)(t) dt, m – 1 < α ≤ m, x > 0.

Definition 2.4 ([21]) A one-parameter function of the Mittag-Leffler type is defined by
the series expansion:

Eα(z) =
∞∑

k=0

zk

�(αk + 1)
, α > 0, z ∈ C. (2.1)

Definition 2.5 ([21]) A two-parameter function of the Mittag-Leffler type is defined by
the series expansion

Eα,β (z) =
∞∑

k=0

zk

�(αk + β)
, α > 0,β > 0, z ∈C. (2.2)

Lemma 2.1 ([17]) If m – 1 < α ≤ m, m ∈N, and f ∈ Cm
μ , μ ≥ –1, then

⎧
⎨

⎩
DαJαf (x) = f (x) if x > 0,

JαDαf (x) = f (x) –
∑m–1

k=0 f (k)(0+) xk

k! if m – 1 < α < m.

We would like to mention here that the Caputo fractional derivative is used because it
allows traditional initial and boundary conditions to be included in the formulation of our
problem.

Now we present some background about the nature of the natural transform method
(NTM). Given a function f (t), t ∈R, the general integral transform is defined by [5, 16]

�[
f (t)

]
(s) =

∫ ∞

–∞
K(s, t)f (t) dt, (2.3)

where K(s, t) represents the kernel of the transform, and s is the real (complex) number
independent of t. Note that when K(s, t) is e–st , tJn(st), and ts–1(st), Eq. (2.3) gives, re-
spectively, the Laplace transform, Hankel transform, and Mellin transform. Now, for f (t),
t ∈ (–∞,∞), consider the integral transforms defined by

�[
f (t)

]
(u) =

∫ ∞

–∞
K(t)f (ut) dt (2.4)

and

�[
f (t)

]
(s, u) =

∫ ∞

–∞
K(s, t)f (ut) dt. (2.5)
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It is worth mentioning that when K(t) = e–t , Eq. (2.4) gives the integral Sumudu trans-
form, where the parameter s is replaced by u. Moreover, for any value of n, the generalized
Laplace and Sumudu transforms are respectively defined by [5, 16]

�
[
f (t)

]
= F(s) = sn

∫ ∞

0
e–sn+1t f

(
snt

)
dt (2.6)

and

S
[
f (t)

]
= G(u) = un

∫ ∞

0
e–untf

(
tun+1)dt. (2.7)

Note that when n = 0, Eq. (2.6) and Eq. (2.7) are the Laplace and Sumudu transforms,
respectively. The natural transform of the function f (t) for t ∈R is defined by [5, 16]

N
[
f (t)

]
= R(s, u) =

∫ ∞

–∞
e–stf (ut) dt, s, u ∈ (–∞,∞), (2.8)

where the variables s and u are the natural transform variables. Note that Eq. (2.8) can be
written in the form [16]

N
[
f (t)

]
= R–(s, u) + R+(s, u).

It is worth mentioning that if the function f (t)H(t) is defined on the positive real axis
(0,∞), where f is in the functional space, and

A =
{

f (t) : ∃M, τ1, τ2 > 0, with
∣∣f (t)

∣∣ < Me
|t|
τj for t ∈ (–1)j × [0,∞), j ∈ Z

+}
.

Then, we define the natural transform (N-transform) as

N
[
f (t)H(t)

]
= N

+[
f (t)

]
= R+(s, u) =

∫ ∞

0
e–stf (ut) dt, s, u ∈ (0,∞). (2.9)

Note that if u = 1, then Eq. (2.9) can be reduced to the Laplace transform, and if s = 1, then
Eq. (2.9) can be reduced to the Sumudu transform.

Some basic properties of the N-transforms are given as follows [5, 16].

Property 1 If α > –1, then the natural transform of tα is given by N
+[tα] = �(α+1)uα

sα+1 .

Property 2 If f (n)(t) is the nth derivative of the function f (t), then its natural transform is
given by N

+[f (n)(t)] = sn

un R(s, u) –
∑n–1

k=0
sn–(k+1)

un–k f (k)(0).

Property 3 (Natural Sumudu duality (NSD)) If R(s, u) and G(u) are the natural and
Sumudu transforms of f (t) ∈ A, respectively, then

N
+[

f (t)
]

= R(s, u) =
1
s

∫ ∞

0
e–t f

(
ut
s

)
dt =

1
s

G
(

u
s

)
.

Property 4 (Convolution property) Suppose F(s, u) and G(s, u) are the natural transforms
of f (t) and g(t), respectively, both defined in the set A. Then the natural transform of their
convolution is given by N

+[(f ∗ g)] = uF(s, u)G(s, u).
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Remark 2.1 The convolution of two functions is defined by f ∗ g =
∫ t

0 f (τ )g(t – τ ) dτ .

We now give the proof of Theorems 2.2–2.4.

Theorem 2.2 If α,β > 0, a ∈ R, and sα
uα > |a|, then we have the inverse natural transform

formula

N
–1

[
uβ–1sα–β

sα + auα

]
= tβ–1Eα,β

(
–atα

)
. (2.10)

Proof First, we take the N-transform of the right-hand side of Eq. (2.10) to get

N
+[

tβ–1Eα,β
(
–atα

)]
=

1
u

∫ ∞

0
e

–st
u tβ–1Eα,β

(
–atα

)
dt

=
1
u

∫ ∞

0
e

–st
u tβ–1

∞∑

k=0

(–atα)k

�(αk + β)
dt

=
∞∑

k=0

1
u

(–a)k

�(αk + β)

∫ ∞

0
e

–st
u tαk+β–1 dt. (2.11)

Now we use integration by parts on
∫ ∞

0 e –st
u tαk+β–1 dt to get

∫ ∞

0
e

–st
u tαk+β–1 dt =

(
u
s

)αk+β

�(αk + β). (2.12)

Now substitute Eq. (2.12) into Eq. (2.11) to get

N
+[

tβ–1Eα,β
(
–atα

)]
=

∞∑

k=0

1
u

(–a)k

�(αk + β)

(
u
s

)αk+β

�(αk + β)

=
∞∑

k=0

(–a)k

sαk+β
uαk+β–1

=
uβ–1

sβ

∞∑

k=0

(
–auα

uα

)k

=
uβ–1

sβ

1
1 – ( –auα

uα )

=
uβ–1

sβ

sα

sα + auα
. (2.13)

Now the inverse natural transform of Eq. (2.13) is given by

N
–1

[
uβ–1sα–β

sα + auα

]
= tβ–1Eα,β

(
–atα

)
. �

Theorem 2.3 If α ≥ β > 0, a ∈ R, and ( u
s )α–β > |a|, then

N
–1

[
u(n+1)(α+β)–1

(sαuβ + auαsβ )n+1

]
= tα(n+1)–1

∞∑

k=0

(–a)k(n+k
k )

�(k(α – β) + (n + 1)α)
tk(α–β). (2.14)
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Proof Similarly to the proof of Theorem 2.2, we take the N-transform of the right-hand
side of Eq. (2.14) to get

N
+

[

tα(n+1)–1
∞∑

k=0

(–a)k(n+k
k )

�(k(α – β) + (n + 1)α)
tk(α–β)

]

=
u(n+1)(α+β)–1

(sαuβ + auαsβ )n+1 . (2.15)

Taking the inverse natural transform of Eq. (2.15), we get

N
–1

[
u(n+1)(α+β)–1

(sαuβ + auαsβ )n+1

]
= tα(n+1)–1

∞∑

k=0

(–a)k(n+k
k )

�(k(α – β) + (n + 1)α)
tk(α–β). �

Theorem 2.4 If α ≥ β , α > γ , a ∈R, ( u
s )α–β > |a|, and | buα+β

sαuβ +asβ uα | < 1, then

N
–1

[
uα–(γ +1)+βsγ

sαuβ + auαsβ + buα+β

]

= tα–(γ +1)
∞∑

n=0

∞∑

k=0

(–b)n(–a)k(n+k
k )

�(k(α – β) + (n + 1)α – γ )
tk(α–β)+nα . (2.16)

Proof Take the N-transform of the right-hand side of Eq. (2.16) to get

N
+

[

tα–(γ +1)
∞∑

n=0

∞∑

k=0

(–b)n(–a)k(n+k
k )

�(k(α – β) + (n + 1)α – γ )
tk(α–β)+nα

]

=
sγ uα–(γ +1)+β

sαuβ + asβuα + buα+β
. (2.17)

Taking the inverse N-transform of Eq. (2.17), we get

N
–1

[
uα–(γ +1)+βsγ

sαuβ + auαsβ + buα+β

]

= tα–(γ +1)
∞∑

n=0

∞∑

k=0

(–b)n(–a)k(n+k
k )

�(k(α – β) + (n + 1)α – γ )
tk(α–β)+nα . �

Remark 2.2 We should mention that the proof of Theorems 2.5–2.7 can be found in [25].

Theorem 2.5 If R(s, u) is the natural transform of f (t), then the natural transform of the
Riemann–Liouville fractional integral for the function f (t) of order α denoted by Jα[f (t)] is
given by

N
+[

Jαf (t)
]

=
uα

sα
R(s, u).

Theorem 2.6 If n is any positive integer, n – 1 ≤ α < n, and R(s, u) is the natural transform
of a function f (t), then the natural transform Rα(s, u) of the Riemann–Liouville fractional
derivative of the function f (t) of order α denoted by Dαf (t) is given by

N
+[

Dαf (t)
]

= Rα(s, u) =
sα

uα
R(s, u) –

n–1∑

k=0

sk

uk+1

(
Dα–k–1f (t)

)
t=0.
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Theorem 2.7 If n is any positive integer, n – 1 ≤ α < n, and R(s, u) is the natural transform
of a function f (t), then the natural transform Rc

α(s, u) of the Caputo fractional derivative of
the function f (t) of order α denoted by cDαf (t) is given by

N
+[cDαf (t)

]
= Rc

α(s, u) =
sα

uα
R(s, u) –

n–1∑

k=0

sα–(k+1)

uα–k

[
Dkf (t)

]
t=0.

3 Analysis of the IFNTM
In this section, we illustrate the fractional natural transform method (IFNTM) algorithm.

Methodology of IFNTM for LFODE:
Consider the linear fractional ordinary differential equation (LFODE) of the form

Dαy(t) = y′′(t) + y′(t) + y(t) + k, n – 1 < α ≤ n, (3.1)

where k is a constant, subject to the initial condition

y(0) = y0, (3.2)

where Dαy(t) is the Caputo fractional derivative of the function y(t).
Now we apply the N-transform and Theorem 2.7 to Eq. (3.1) to get

N
+[

Dαy(t)
]

= N
+[

y′′(t) + y′(t) + y(t) + k
]
. (3.3)

Apply Theorem 2.7 and Property 2 to Eq. (3.3) and Eq. (3.2) to get

sα

uα

[

N
+[

y(t)
]

–
n–1∑

k=0

sk–α

uk+1–α

[
Dα–k–1y(t)

]
t=0

]

=
s2

u2 N
+[

y(t)
]

–
sy(0)

u2 –
y′(0)

u
+

s
u
N

+[
y(t)

]
–

y(0)
u

+ N
+[

y(t)
]

+
k
s

. (3.4)

Then Eq. (3.4) becomes

N
+[

y(t)
]

–
n–1∑

k=0

sk–α

uk+1–α

[
Dα–k–1y(t)

]
t=0

=
uα–2

sα–2 N
+[

y(t)
]

–
uα–2y0

sα–1 –
uα–1y′(0)

sα
+

uα–1

sα–1 N
+[

y(t)
]

–
uα–1y0

sα
+

uα

sα
N

+[
y(t)

]
+

uαk
sα+1 . (3.5)

Thus

N
+[

y(t)
]

–
uα–2

sα–2 N
+[

y(t)
]

–
uα–1

sα–1 N
+[

y(t)
]

–
uα

sα
N

+[
y(t)

]

=
n–1∑

k=0

sk–α

uk+1–α

[
Dα–k–1y(t)

]
t=0 –

uα–2y0

sα–1 –
uα–1y′(0)

sα
–

uα–1y0

sα
+

kuα

sα+1 . (3.6)
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This implies

N
+[

y(t)
]

=
sα

sα – s2uα–2 – suα–1 – uα

[
g(u, s) –

uα–2y0

sα–1 –
uα–1y0

sα
+

kuα

sα+1

]
, (3.7)

where g(u, s) is described by

n–1∑

k=0

sk–α

uk+1–α

[
Dα–k–1y(t)

]
t=0 –

uα–1y′(0)
sα

.

Taking the natural transform inverse of Eq. (3.7), the solution of Eq. (3.1) is given by

y(t) = N
–1

[
sα

sα – s2uα–2 – suα–1 – uα

[
g(u, s) –

uα–2y0

sα–1 –
uα–1y0

sα
+

kuα

sα+1

]]
.

Methodology of IFNTM for LFPDE:
Consider the linear fractional partial differential equation (LFPDE) of the form

Dα
t v(x, t) + Rv(x, t) = g(x, t) (3.8)

with 0 < α ≤ 1, subject to the initial condition

v(x, 0) = h(x), (3.9)

where R is a linear differential operator, and g(x, t) is a nonhomogeneous term.
We apply the N-transform and Theorem 2.7 to Eq. (3.8) to get

N
+[

v(x, t)
]

=
uα

sα

n–1∑

k=0

uk–α

sk+1–α

[
Dkv(x, t)

]
t=0 +

uα

sα
N

+[
g(x, t)

]
–

uα

sα
N

+[
Rv(x, t)

]
. (3.10)

By substituting Eq. (3.9) into Eq. (3.10) and taking the inverse of N-transform of Eq. (3.10)
we get

v(x, t) = N
–1

[
1
s

h(x, t)
]

+ N
–1

[
uα

sα
N

+[
g(x, t)

]]
– N

–1
[

uα

sα
N

+[
Rv(x, t)

]]

= G(x, t) – N
–1

[
uα

sα
N

+[
Rv(x, t)

]]
. (3.11)

Note that G(x, t) arises from the nonhomogeneous term and the prescribed initial condi-
tions. We assume an infinite series solution of the unknown function v(x, t) of the form

v(x, t) =
∞∑

n=0

vn(x, t). (3.12)

Now, we substitute Eq. (3.12) into Eq. (3.11) to get

∞∑

n=0

vn(x, t) = G(x, t) – N
–1

[
uα

sα
N

+

[

R
∞∑

n=0

vn(x, t)

]]

. (3.13)
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Comparing both sides of Eq. (3.13), we have:

v0(x, t) = G(x, t),

v1(x, t) = –N–1
[

uα

sα
N

+[
Rv0(x, t)

]
]

,

v2(x, t) = –N–1
[

uα

sα
N

+[
Rv1(x, t)

]
]

,

v3(x, t) = –N–1
[

uα

sα
N

+[
Rv2(x, t)

]
]

.

Eventually, we have the general recursive relation

vn+1(x, t) = –N–1
[

uα

sα
N

+[
Rvn(x, t)

]
]

, n ≥ 1. (3.14)

Finally, the approximate solution is given by

v(x, t) =
∞∑

n=0

vn(x, t).

Now, we implement the IFNTM to two applications of LFODE and two examples of LF-
PDE. Then we compare our solutions to the known exact solutions.

Example 3.1 Consider the linear fractional initial value problem of the form [19]

D1/2f (t) + f (t) = 0, (3.15)

subject to the initial condition

[
D–1/2f (t)

]
t=0 = 2. (3.16)

Solution: Applying the N-transform to both sides of Eq. (3.15), we obtain

N
+[

D1/2f (t)
]

+ N
+[

f (t)
]

= 0. (3.17)

Thus

s1/2

u1/2 N
+[

f (t)
]

–
n–1∑

k=0

sk

uk+1

[
D–k–1/2f (t)

]
t=0 + N

+[
f (t)

]
= 0. (3.18)

Substitute Eq. (3.16) into Eq. (3.18) to get

s1/2

u1/2 N
+[

f (t)
]

–
2
u

+ N
+[

f (t)
]

= 0. (3.19)

Now we take the inverse N-transform of Eq. (3.19) and use Theorem 2.7 when α = 1
2 , β = 1

2 ,
and a = 1 to get

f (t) = 2t–1/2E 1
2 , 1

2

(
–t1/2).
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Example 3.2 Consider the linear fractional initial value problem of the form [19]

Dαy(t) – λy(t) = h(t), t > 0, (3.20)

where λ is a constant, subject to the initial conditions

[
Dα–k–1y(t)

]
t=0 = bk for k = 0, 1, . . . , n – 1. (3.21)

Solution: Applying the N-transform to both sides of Eq. (3.20), we obtain

N
+[

Dαy(t)
]

– λN+[
y(t)

]
= N

+[
h(t)

]
. (3.22)

Applying Theorem 2.7 to Eq. (3.22), we get

sα

uα
N

+[
y(t)

]
–

n–1∑

k=0

sk

uk+1

[
Dα–k–1y(t)

]
t=0 – λN+[

f (t)
]

= N
+[

h(t)
]
. (3.23)

Substituting Eq. (3.21) into Eq. (3.23), we get

[
sα

uα
– λ

]
N

+[
y(t)

]
–

n–1∑

k=0

sk

uk+1 bk = N
+[

h(t)
]
. (3.24)

Then Eq. (3.24) becomes

N
+[

y(t)
]

=
uα

N
+[h(t)]

sα – λuα
+

n–1∑

k=0

skuα

uk+1(sα – λuα)
bk . (3.25)

Simplify the first and second terms of Eq. (3.25):

uα
N

+[h(t)]
sα – λuα

= uN+[
h(t)

] uα–1

sα – λuα
. (3.26)

Thus

n–1∑

k=0

skuα

uk+1(sα – λuα)
bk =

n–1∑

k=0

N
+[

bktα–k–1Eα,α–k
(
λtα

)]

=
n–1∑

k=0

bkN
+[

tα–k–1Eα,α–k
(
λtα

)]
. (3.27)

Substituting Eq. (3.26) and Eq. (3.27) into Eq. (3.25), we get

N
+[

y(t)
]

= N
+[

h(t) ∗ tα–1Eα,α
(
λtα

)]
+

n–1∑

k=0

bkN
+[

tα–k–1Eα,α–k
(
λtα

)]
. (3.28)

Now we take the inverse N-transform of Eq. (3.28) to obtain

y(t) =
∫ ∞

0
(t – τ )α–1Eα,α

(
λ(t – τ )α

)
h(τ ) dτ +

n–1∑

k=0

bktα–k–1Eα,α–k
(
λtα

)
.

This is the exact solution of Eq. (3.20).
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Applications of LFPDE:
Now we consider two applications of LFPDE, namely the backward Kolmogorov equa-

tions in fractal space-time and the time-fractional-order linear telegraph equation.

Example 3.3 Consider the time-fractional backward Kolmogorov equation of the form
[13]

Dα
t v(x, t) = –x2etvxx(x, t) + (x + 1)vx(x, t) + tx, t > 0, 0 < α ≤ 1, (3.29)

subject to the initial condition

v(x, 0) = x + 1. (3.30)

Solution:
Applying the N-transform to Eq. (3.29), we obtain

N
+[

Dα
t v(x, t)

]
= N

+[
–x2etvxx(x, t) + (x + 1)vx(x, t) + tx

]
. (3.31)

Using Theorem 2.7 and Eq. (3.30), we get

N
+[

v(x, t)
]

=
n–1∑

k=0

uk

sk+1

[
Dk

t v(x, t)
]

t=0 +
uα

sα
N

+[tx] +
uα

sα
N

+[
–x2etvxx(x, t) + (x + 1)vx(x, t)

]

=
1
s

v(x, 0) +
xuα+1

sα+2 +
uα

sα
N

+[
–x2etvxx(x, t) + (x + 1)vx(x, t)

]

=
x + 1

s
+

xuα+1

sα+2 +
uα

sα
N

+[
–x2etvxx(x, t) + (x + 1)vx(x, t)

]
. (3.32)

Now we apply the inverse N-transform to Eq. (3.32) to obtain

v(x, t) = (x + 1) +
xtα+1

�(α + 2)
+ N

–1
[

uα

sα
N

+[
–x2etvxx(x, t) + (x + 1)vx(x, t)

]
]

. (3.33)

We assume an infinite series solution of the unknown function v(x, t) of the form

v(x, t) =
∞∑

n=0

vn(x, t). (3.34)

Using Eq. (3.33), we rewrite Eq. (3.34) in the form

∞∑

n=0

vn(x, t) = (x + 1) +
xtα+1

�(α + 2)

+ N
–1

[
uα

sα
N

+

[

–x2et
∞∑

n=0

vnxx(x, t) + (x + 1)
∞∑

n=0

vnx(x, t)

]]

. (3.35)

Comparing both sides of Eq. (3.35), we conclude:

v0(x, t) = (x + 1) +
xtα+1

�(α + 2)
,
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v1(x, t) = N
–1

[
uα

sα
N

+[
–x2etv0xx(x, t) + (x + 1)v0x(x, t)

]]
,

v2(x, t) = N
–1

[
uα

sα
N

+[
–x2etv1xx(x, t) + (x + 1)v1x(x, t)

]]
,

v3(x, t) = N
–1

[
uα

sα
N

+[
–x2etv2xx(x, t) + (x + 1)v2x(x, t)

]
]

.

We continue in this manner to get

vn+1(x, t) = N
–1

[
uα

sα
N

+[
–x2etvnxx(x, t) + (x + 1)vnx(x, t)

]
]

. (3.36)

Then, using Eq. (3.36), we can easily compute the remaining components of the unknown
function as follows:

v1(x, t) = N
–1

[
uα

sα
N

+[
–x2etv0xx(x, t) + (x + 1)v0x(x, t)

]
]

= N
–1

[
uα

sα
(x + 1)N+

[
1 +

tα+1

�(α + 2)

]]

= N
–1

[
uα

sα
(x + 1)

(
1
s

+
uα+1

sα+2

)]
= (x + 1)

[
tα

�(α + 1)
+

t2α+1

�(2α + 2)

]
.

Similarly,

v2(x, t) = N
–1

[
uα

sα
N

+[
–x2etv1xx(x, t) + (x + 1)v1x(x, t)

]
]

= N
–1

[
uα

sα
(x + 1)N+

[
tα

�(α + 1)
+

t2α+1

�(2α + 2)

]]

= N
–1

[
uα

sα
(x + 1)

(
uα

sα+1 +
u2α+1

s2α+2

)]
= (x + 1)

[
t2α

�(2α + 1)
+

t3α+1

�(3α + 2)

]
,

v3(x, t) = N
–1

[
uα

sα
N

+[
–x2etv2xx(x, t) + (x + 1)v2x(x, t)

]
]

= N
–1

[
uα

sα
(x + 1)

(
u2α

s2α+1 +
u3α+1

s3α+2

)]
= (x + 1)

[
t3α

�(3α + 1)
+

t4α+1

�(4α + 2)

]
,

v4(x, t) = (x + 1)
[

t4α

�(4α + 1)
+

t5α+1

�(5α + 2)

]
,

and

v5(x, t) = (x + 1)
[

t5α

�(5α + 1)
+

t6α+1

�(6α + 2)

]
.

Hence, the approximate solution of the unknown function v(x, t) is given by

v(x, t) =
∞∑

n=0

vn(x, t)

= v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · ·
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= (x + 1) +
xtα+1

�(α + 2)
+ (x + 1)

[
tα

�(α + 1)
+

t2α+1

�(2α + 2)

]

+ (x + 1)
[

t2α

�(2α + 1)
+

t3α+1

�(3α + 2)

]
+ (x + 1)

[
t3α

�(3α + 1)
+

t4α+1

�(4α + 2)

]

+ · · · . (3.37)

Choosing α = 1 and using Taylor series expansion, Eq. (3.37) becomes:

v(x, t) = (x + 1) +
xt2

�(3)
+ (x + 1)

[
t

�(2)
+

t3

�(4)

]
+ (x + 1)

[
t2

�(3)
+

t4

�(5)

]

+ (x + 1)
[

t3

�(4)
+

t5

�(6)

]
+ (x + 1)

[
t4

�(5)
+

t6

�(7)

]
+ · · ·

= (x + 1) +
xt2

2!
+ (x + 1)

[
t +

t3

3!

]
+ (x + 1)

[
t2

2!
+

t4

4!

]
+ (x + 1)

[
t3

3!
+

t5

5!

]
+ · · ·

=
xt2

2!
+ (x + 1)

[
1 + t +

t2

2!
+

2t3

3!
+

2t4

4!
+

2t5

5!
+ · · ·

]

=
xt2

2!
+ (x + 1)

[

1 + t +
t2

2!
+ 2

∞∑

k=3

tk

k!

]

=
xt2

2!
+ (x + 1)

[

1 + t +
t2

2!
+ 2

∞∑

k=0

tk

k!
– 2

(
1 + t +

t2

2

)]

= (x + 1)
[
2et – 1 – t

]
–

t2

2
.

This is in fact the exact solution of Eq. (3.29) as in [13].
It is clear from Figs. 1 and 2, the FNTM approximation and the exact solution are in

excellent agreement.

Example 3.4 Consider the time-fractional-order linear telegraph equation of the form
[27]

D2α
t v(x, t) + 2Dα

t v(x, t) + v(x, t) = vxx(x, t), 0 < α ≤ 1, (3.38)

subject to the initial conditions

v(x, 0) = ex; vt(x, 0) = –2ex. (3.39)

Figure 1 The approximate solutions for Example 3.3 when α = 0.25, α = 0.5, α = 0.75, respectively
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Figure 2 Approximate solutions for Example 3.3 for different values of α when –2 < x < 2

Solution:
Apply the N-transform to Eq. (3.38) to obtain:

N
+[

D2α
t v(x, t)

]
+ N

+[
2Dα

t v(x, t) + v(x, t)
]

= N
+[

vxx(x, t)
]
. (3.40)

Applying Theorem 2.7 to Eq. (3.39), we get

s2α

u2α
N

+[
v(x, t)

]
–

n–1∑

k=0

uk–2α

sk+1–2α

[
Dk

t v(x, t)
]

t=0 + 2
sα

uα
N

+[
v(x, t)

]

– 2
n–1∑

k=0

uk–α

sk+1–α

[
Dk

t v(x, t)
]

t=0 = N
+
[

∂2

∂t2 v(x, t) – v(x, t)
]

. (3.41)

Note that since 0 < 2α ≤ 2, we have two cases.
Case (1): If 0 < 2α ≤ 1, then Eq. (3.41) becomes

N
+[

v(x, t)
]

=
1
s

ex – 2
uα

sα
N

+[
v(x, t)

]
+ 2

uα

sα+1 ex +
u2α

s2α
N

+[
vxx(x, t) – v(x, t)

]
. (3.42)

Now we apply the inverse N-transform to Eq. (3.42) to obtain:

v(x, t) = ex + 2ex tα

�(α + 1)
+ N

–1
[

u2α

s2α
N

+[
vxx(x, t) – v(x, t)

]
– 2

uα

sα
N

+[
v(x, t)

]]
. (3.43)

We assume an infinite series solution of the unknown function v(x, t) of the form

v(x, t) =
∞∑

n=0

vn(x, t). (3.44)

Using Eq. (3.44), we rewrite Eq. (3.43) in the form

∞∑

n=0

vn(x, t) = ex
[

1 +
2tα

�(α + 1)

]
+ N

–1

[
u2α

s2α
N

+

[ ∞∑

n=0

vnxx(x, t) –
∞∑

n=0

vn(x, t)

]

– 2
uα

sα
N

+

[ ∞∑

n=0

vn(x, t)

]]

. (3.45)
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Comparing both sides of Eq. (3.45), we get

v0(x, t) = ex
(

1 +
2tα

�(α + 1)

)
,

v1(x, t) = N
–1

[
u2α

s2α
N

+[
v0xx(x, t) – v0(x, t)

]
– 2

uα

sα
N

+[
v0(x, t)

]]
,

v2(x, t) = N
–1

[
u2α

s2α
N

+[
v1xx(x, t) – v1(x, t)

]
– 2

uα

sα
N

+[
v1(x, t)

]]
.

We continue in this manner to get

vn+1(x, t) = N
–1

[
u2α

s2α
N

+[
vnxx(x, t) – vn(x, t)

]
– 2

uα

sα
N

+[
vn(x, t)

]]
. (3.46)

Then, using Eq. (3.46), we can easily compute the remaining components of the unknown
function as follows:

v1(x, t) = N
–1

[
u2α

s2α
N

+[
v0xx(x, t) – v0(x, t)

]
– 2

uα

sα
N

+[
v0(x, t)

]]

= N
–1

[
–2

uα

sα
ex
N

+
[

1 +
2tα

�(α + 1)

]]

= –2ex
(

tα

�(α + 1)
+

2t2α

�(2α + 1)

)
.

Similarly,

v2(x, t) = N
–1

[
u2α

s2α
N

+[
v1xx(x, t) – v1(x, t)

]
– 2

uα

sα
N

+[
v1(x, t)

]
]

= –2N–1
[

–2
uα

sα
ex
N

+
[

tα

�(α + 1)
+

2t2α

�(2α + 1)

]]

= 4ex
(

t2α

�(2α + 1)
+

2t3α

�(3α + 1)

)
,

v3(x, t) = N
–1

[
u2α

s2α
N

+[
v2xx(x, t) – v2(x, t)

]
– 2

uα

sα
N

+[
v2(x, t)

]]

= –2N–1
[

uα

sα
4ex

N
+
[

t2α

�(2α + 1)
+

2t3α

�(3α + 1)

]]

= –8ex
(

t3α

�(3α + 1)
+

2t4α

�(4α + 1)

)
,

v4(x, t) = 16ex
(

t4α

�(4α + 1)
+

2t5α

�(5α + 1)

)
,

and

v5(x, t) = –32ex
(

t5α

�(5α + 1)
+

2t6α

�(6α + 1)

)
.
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Hence, the approximate solution of the unknown function v(x, t) is given by

v(x, t) =
∞∑

n=0

vn(x, t)

= v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · ·

= ex
(

1 +
2tα

�(α + 1)

)
– 2ex

(
tα

�(α + 1)
+

2t2α

�(2α + 1)

)

+ 4ex
(

t2α

�(2α + 1)
+

2t3α

�(3α + 1)

)

– 8ex
(

t3α

�(3α + 1)
+

2t4α

�(4α + 1)

)
+ 16ex

(
t4α

�(4α + 1)
+

2t5α

�(5α + 1)

)
– · · ·

= ex. (3.47)

Case (2): If 1 < 2α ≤ 2, then Eq. (3.41) becomes

N
+[

v(x, t)
]

=
1
s

ex +
s–2

u
(
–2ex) – 2

uα

sα
N

+[
v(x, t)

]
+ 2

uα

sα+1 ex

+
u2α

s2α
N

+[
vxx(x, t) – v(x, t)

]
. (3.48)

Now we apply the inverse N-transform to Eq. (3.48) to obtain:

v(x, t) = ex – 2ext + 2ex tα

�(α + 1)

+ N
–1

[
u2α

s2α
N

+[
vxx(x, t) – v(x, t)

]
– 2

uα

sα
N

+[
v(x, t)

]
]

. (3.49)

We assume an infinite series solution of the unknown function v(x, t) of the form

v(x, t) =
∞∑

n=0

vn(x, t). (3.50)

Using Eq. (3.50), we rewrite Eq. (3.49) in the form

∞∑

n=0

vn(x, t) = ex
[

1 – 2t +
2tα

�(α + 1)

]
+ N

–1

[
u2α

s2α
N

+

[ ∞∑

n=0

vnxx(x, t) –
∞∑

n=0

vn(x, t)

]

– 2
uα

sα
N

+

[ ∞∑

n=0

vn(x, t)

]]

. (3.51)

Comparing both sides of Eq. (3.51), we conclude:

v0(x, t) = ex
(

1 – 2t +
2tα

�(α + 1)

)
,

v1(x, t) = N
–1

[
u2α

s2α
N

+[
v0xx(x, t) – v0(x, t)

]
– 2

uα

sα
N

+[
v0(x, t)

]]
,

v2(x, t) = N
–1

[
u2α

s2α
N

+[
v1xx(x, t) – v1(x, t)

]
– 2

uα

sα
N

+[
v1(x, t)

]]
.
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We continue in this manner to get

vn+1(x, t) = N
–1

[
u2α

s2α
N

+[
vnxx(x, t) – vn(x, t)

]
– 2

uα

sα
N

+[
vn(x, t)

]]
. (3.52)

Then, using Eq. (3.52), we can easily compute the remaining components of the unknown
function as follows:

v1(x, t) = N
–1

[
u2α

s2α
N

+[
v0xx(x, t) – v0(x, t)

]
– 2

uα

sα
N

+[
v0(x, t)

]]

= N
–1

[
–2

uα

sα
ex
N

+
[

1 – 2t +
2tα

�(α + 1)

]]

= –2ex
(

tα

�(α + 1)
–

2tα+1

�(α + 2)
+

2t2α

�(2α + 1)

)
.

Similarly,

v2(x, t) = N
–1

[
u2α

s2α
N

+[
v1xx(x, t) – v1(xt)

]
– 2

uα

sα
N

+[
v1(x, t)

]
]

= –2N–1
[

–2
uα

sα
ex
N

+
[

tα

�(α + 1)
–

2tα+1

�(α + 2)
+

2t2α

�(2α + 1)

]]

= 4ex
(

t2α

�(2α + 1)
–

2t2α+1

�(2α + 2)
+

2t3α

�(3α + 1)

)
,

v3(x, t) = N
–1

[
u2α

s2α
N

+[
v2xx(x, t) – v2(x, t)

]
– 2

uα

sα
N

+[
v2(x, t)

]
]

= –2N–1
[

uα

sα
4ex

N
+
[

t2α

�(2α + 1)
–

2t2α+1

�(2α + 2)
+

2t3α

�(3α + 1)

]]

= –8ex
(

t3α

�(3α + 1)
–

2t3α+1

�(3α + 2)
+

2t4α

�(4α + 1)

)
,

v4(x, t) = 16ex
(

t4α

�(4α + 1)
–

2t4α+1

�(4α + 2)
+

2t5α

�(5α + 1)

)
,

and

v5(x, t) = –32ex
(

t5α

�(5α + 1)
–

2t5α+1

�(5α + 2)
+

2t6α

�(6α + 1)

)
.

Hence, the approximate solution of the unknown function v(x, t) is given by

v(x, t) =
∞∑

n=0

vn(x, t)

= v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · ·

= ex
(

1 – 2t +
2tα

�(α + 1)

)
– 2ex

(
tα

�(α + 1)
–

2tα+1

�(α + 2)
+

2t2α

�(2α + 1)

)

+ 4ex
(

t2α

�(2α + 1)
–

2t2α+1

�(2α + 2)
+

2t3α

�(3α + 1)

)
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Figure 3 The approximate solutions for Example 3.4 when α = 0.25, α = 0.5, α = 0.75, respectively

Figure 4 Approximate solutions for Example 3.4 for different values of α when 0 < x < 2

– 8ex
(

t3α

�(3α + 1)
–

2t3α+1

�(3α + 2)
+

2t4α

�(4α + 1)

)

+ 16ex
(

t4α

�(4α + 1)
–

2t4α+1

�(4α + 2)
+

2t5α

�(5α + 1)

)
– · · ·

= ex
(

1 – 2t +
4tα+1

�(α + 2)
–

8t2α+1

�(2α + 2)
+

16t3α+1

�(3α + 2)
–

32t4α+1

�(4α + 2)
+ · · ·

)
. (3.53)

Choosing α = 1 and using Taylor series expansion, Eq. (3.53) becomes

v(x, t) = ex
(

1 – 2t +
4t2

�(3)
–

8t3

�(4)
+

16t4

�(5)
–

32t5

�(6)
+ · · ·

)

= ex–2t .

Hence, this solution is equivalent to the exact solution when α = 1 in [27].
It is clear from Figs. 3 and 4 that the FNTM approximation and the exact solution are in

excellent agreement.

4 Tables of numerical calculations
In this section, we calculate the numerical of approximate solutions for Example 3.3 and
Example 3.4 for different values of α and different values of x and t. In Table 1, we consider
different values of x and t and for the same values of α. Similarly, in Table 2, we consider
different values of x and t for the same values of α.

5 Conclusion
In this paper, we proved three theorems related to the fractional natural transform method
(FNTM), and we successfully applied the new method to obtain solutions to two lin-
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Table 1 The results obtained for Example 3.3 for different values of α

x t α = 0.25 α = 0.5 α = 0.75 α = 1

Numerical Exact

–2 0.02 –1.67532 –1.1864 –1.06139 –1.0206 –1.0206
0.04 –1.91317 –1.28553 –1.10818 –1.04242 –1.04242
0.06 –2.1113 –1.37373 –1.15302 –1.06547 –1.06547
0.08 –2.29181 –1.45781 –1.19766 –1.08977 –1.08977

0 0.02 1.66204 1.18214 1.06007 1.0202 1.0202
0.04 1.8816 1.2735 1.10373 1.04082 1.04082
0.06 2.05888 1.35162 1.14398 1.06187 1.06187
0.08 2.21671 1.42376 1.1827 1.08337 1.08337

2 0.02 4.9994 3.55068 3.18154 3.06101 3.06101
0.04 5.67637 3.83253 3.31564 3.12406 3.12406
0.06 6.22907 4.07698 3.44098 3.18922 3.18922
0.08 6.72523 4.30534 3.56306 3.25652 3.25652

Table 2 The results obtained for Example 3.4 for different values of α

x t α = 0.25 α = 0.5 α = 0.75 α = 1

Numerical Exact

0.5 0.001 1.64621 1.64557 1.64545 1.64543 1.64543
0.003 1.63568 1.6396 1.63898 1.63886 1.63886
0.005 1.62066 1.63386 1.63261 1.63232 1.63232

1 0.001 2.71414 2.71309 2.71288 2.71285 2.71285
0.003 2.69678 2.70324 2.70223 2.70202 2.70202
0.005 2.67201 2.69379 2.69172 2.69123 2.69123

1.5 0.001 4.47487 4.47314 4.47279 4.47273 4.47273
0.003 4.44623 4.45688 4.45522 4.45488 4.45488
0.005 4.4054 4.4413 4.4379 4.4371 4.4371

2 0.001 7.37781 7.37495 7.37438 7.37429 7.37429
0.003 7.3306 7.34816 7.34542 7.34485 7.34485
0.005 7.26328 7.32247 7.31686 7.31553 7.31553

ear fractional ordinary differential equations and two linear fractional partial differential
equations. We also found exact solutions to all physical models in the case α = 1. The
FNTM introduces a significant improvement in the fields over existing techniques. Our
goal in the future is to apply the FNTM to other fractional linear ODEs and PDEs that
arise in other areas of science.
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