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Abstract
We consider an SIRS epidemic model with a more generalized non-monotone
incidence: χ (I) = κ Ip

1+Iq with 0 < p < q, describing the psychological effect of some
serious diseases when the number of infective individuals is getting larger. By
analyzing the existence and stability of disease-free and endemic equilibrium, we
show that the dynamical behaviors of p < 1, p = 1 and p > 1 distinctly vary. On one
hand, the number and stability of disease-free and endemic equilibrium are different.
On the other hand, when p ≤ 1, there do not exist any closed orbits and when p > 1,
by qualitative and bifurcation analyses, we show that the model undergoes a
saddle-node bifurcation, a Hopf bifurcation and a Bogdanov–Takens bifurcation of
codimension 2. Besides, for p = 2, q = 3, we prove that the maximal multiplicity of
weak focus is at least 2, which means at least 2 limit cycles can arise from this weak
focus. And numerical examples of 1 limit cycle, 2 limit cycles and homoclinic loops are
also given.

Keywords: Epidemic model; Non-monotone incidence; Hopf bifurcation;
Bogdanov–Takens bifurcation

1 Introduction
When it comes to modeling of infectious diseases, such as measles, encephalitis, influenza,
mumps et al., there are many factors that affect the dynamical behaviors of epidemic mod-
els greatly. Recently, many investigations have demonstrated that the incidence rate is a
primary factor in generating the abundant dynamical behaviors (such as bistability and
periodicity phenomena, which are very important dynamical features) of epidemic mod-
els [1–8].

In classical epidemic models [9], the bilinear incidence rate describing the mass-action
form i.e. βSI , where β is the probability of transmission per contact and S and I are the
number of susceptible and infected individuals, respectively, is often used. Epidemic mod-
els with such bilinear incidence usually show a relatively simple dynamical behavior, that is
to say, these models usually have at most one endemic equilibrium, do not have periodicity
and whether the disease will die out or not is often determined by the basic reproduction
number being less than zero or not [9, 10]. However, in practical applications, it is nec-
essary to introduce the nonlinear contact rates, though the corresponding dynamics will
become much more complex [11].

Actually, there are many reasons to introduce a nonlinear incidence rate into epidemic
models. In [12], Yorke and London showed that the model with nonlinear incidence rate
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β(1 – cI)IS with positive c and time-dependent β accorded with the results of the simu-
lations for measles outbreak. Moreover, in order to incorporate the effect of behavioral
changes, nonlinear incidence function of the form H1(S, I) = λSpIq and a more general
form H2(S, I) = λSpIq

1+νIp–1 were proposed and investigated by Liu, Levin, and Iwasa in [13, 14].
They found that the behaviors of epidemic model with the nonlinear incidence rate H1(S, I)
were determined mainly by p and λ, and secondarily by q. Besides, they also explained how
such a nonlinearity arise.

Based on the work of Liu in [13], Hethcote and van den Driessche [15] used a nonlinear
incidence rate of the form

H(S, I) =
κSIp

1 + αIq ,

where κIp represents the infection force of the disease, 1/(1 + αIq) is a description of the
suppression effect from the behavioral changes of susceptible individuals when the in-
fective population increases, p > 0, q > 0 and α ≥ 0. They investigated the number and
stability of disease-free and endemic equilibria of an SEIRS epidemic model for p = q and
p > q and did not analyze the case of p < q.

To describe the psychological effect of certain serious diseases, such as SARS (see [16,
17]), Ruan in [18] investigated an SIRS epidemic model of incidence rate H(S, I) with p = 1,
q = 2, i.e.,

g(I) =
κI

1 + αI2 .

By carrying out a global analysis of the model and studying the stability of the disease-free
equilibrium and the endemic equilibrium, they showed that either the number of infective
individuals tends to zero or the disease persists as time evolves.

Recently, in [19, 20], Ruan et al. studied the bifurcation of an SIRS epidemic model of
incidence rate H(S, I) with p = q = 2, i.e.,

g(I) =
κI2

1 + αI2 .

In particular, they referred to the nonlinear incidence H(S, I) in [20] and classified it into
three classes. (i) Unbounded incidence function: p > q; (ii) Saturated incidence function:
p = q; (iii) non-monotone incidence function: p < q. They also noted that the nonlinear
function can be used to interpret the “psychological effects” when p < q. More importantly,
they conjectured that the dynamics of SIRS models with non-monotone incidence rates
are similar to those observed by Xiao and Ruan [18] (i.e. when p = 1, q = 2), which has not
been proved yet.

Thus, in this paper, we endeavor to discuss an SIRS model

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = A – dS – Sχ (I) + γ R,
dI
dt = Sχ (I) – (d + μ)I,
dR
dt = μI – (d + γ )R,

(1.1)

where S, I , R are the number of susceptible, infectious and recovered individuals at time
t, respectively, A > 0 is the recruitment of the population, d > 0 is the natural death rate
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Figure 1 Non-monotone incidence function χ (I)

of the population, μ > 0 is the recovery rate of infectious individuals, γ > 0 is the rate of
losing immunity and return to the susceptible class, and

χ (I) =
κIp

1 + αIq ,

where p, q are positive constants with p < q (see Fig. 1).

Remark 1.1 Actually, we will study model (1.1) in a different way and get better results
compared with [21], such as the existence of equilibria, the order of Lyapunov value and
Bogdanov–Takens bifurcation. In [21], the author only got the first order Lyapunov value
and we get second, and they added two conditions in Theorem 4.2 to make sure the exis-
tence of Bogdanov–Takens bifurcation but we will prove these conditions are unnecessary.

The organization of this paper is as follows. In Sect. 2, we analyze the existence and
stability of disease-free and endemic equilibria and show that the behavior of p < 1, p =
1 and p > 1 are distinctly different. When p < 1, there always exist an unstable disease-
free equilibrium and a globally stable endemic equilibrium. When p = 1, there exists a
unique endemic globally stable equilibrium under certain conditions. And when p > 1,
there exist at most two endemic equilibria for some parameter values. Then we prove that
the model exhibits a Hopf bifurcation when p > 1 and that the maximal multiplicity of the
weak focus is at least 2 if we take p = 2, q = 3. Also, numerical examples of 1 limit cycle,
2 limit cycles, and a homoclinic loop are given. In Sect. 4, we show that the system will
possess a Bogdanov–Takens bifurcation of codimension 2 under some conditions. Finally,
we will give a brief discussion.

2 Existence and types of equilibria
Summing up the three equations in (1.1), we get dN/dt = A – dN , with N = S + I + R. And
it is obvious that all solutions of this differential equation tend to A/d as t → +∞. Thus,
all important dynamical behaviors of system (1.1) occur on the plane S + I + R = A/d, and
then model (1.1) is equivalent to the restricted two dimensional system:

⎧
⎨

⎩

dS
dt = A – dS – κIpS

1+αIq + γ ( A
d – S – I),

dI
dt = κIpS

1+αIq – (d + μ)I.
(2.1)

For convenience, we scale the phase variables and parameters as follows:

(S, I, t) =
(

p

√
d + μ

κ
x, p

√
d + μ

κ
y,

1
d + μ

τ

)

,
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(
A′, d′,α′,γ ′) =

(
A(d + γ )
d(d + μ)

p

√
κ

d + μ
,

d + γ

d + μ
,
(

d + μ

κ

) p
q

,
γ

d + μ

)

.

To avoid the abuse of mathematical notations, the parameters (A′, d′,α′,γ ′) are still de-
noted by (A, d,α,γ ). Thus, system (2.1) reads

⎧
⎨

⎩

dx
dt = A – dx – xyp

1+αyq – γ y � P,
dy
dt = xyp

1+αyq – y � Q.
(2.2)

2.1 Existence of equilibria
Obviously, system (2.2) always has the disease-free equilibrium E0 = ( A

d , 0). Also, there may
exist an endemic equilibrium (x, y), where y satisfies the equation

f (y) = d, (2.3)

with f (y) = –αdyq – (1 + γ )yp + Ayp–1. And the derivative of f (y) on y is

f ′(y) = –yp–2[αdqyq–p+1 + p(1 + γ )y – A(p – 1)
]
.

Actually, the sign of f ′(y) is determined by

h(y) = αdqyq–p+1 + p(1 + γ )y – A(p – 1).

Then we will discuss the existence of positive real solution of Eq. (2.3) in three cases.
Case I. p < 1.
When p < 1, then h(y) is always positive, which indicates f (y) is decreasing on y for any

y > 0. On the other hand,

lim
y→0+

f (y) = +∞, lim
y→+∞ f (y) = –∞.

Thus, we can get the diagram for f (y) with 0 < p < 1 (Fig. 2(a)). Therefore, if 0 < p < 1, then
system (2.3) has a unique positive solution for any permissible parameters, which shows
that system (2.2) has a unique endemic equilibrium.

Case II. p = 1.

Figure 2 The sketch map for function f (y). (a) 0 < p < 1; (b) p = 1; (c) p > 1
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When p = 1, then h(y) is always positive, which indicates f (y) is decreasing on y for any
y > 0. On the other hand,

f (0) = A, lim
y→+∞ f (y) = –∞.

Thus, we can get the diagram for f (y) with p = 1 (Fig. 2(b)). Therefore, if p = 1, system
(2.2) has a unique positive solution for d < A, which shows that system (2.3) has a unique
endemic equilibrium.

Case III. p > 1.
When p > 1, then h(0) = –A(p – 1) < 0, h(+∞) = +∞ and h′(y) = αdq(q – p + 1)yq–p + p(1 +

γ ) > 0. Thus function h(y) always has a positive real solution ym, which is the maximal
value point of f (y) for y > 0 (see Fig. 2(c)).

Define

dm = f (ym). (2.4)

Then the number of solutions of (2.3) depends on the relation between the maximal value
of polynomial function f (y) for y > 0 (i.e. dm) and parameter d.

Summarizing discussions above, the following theorem can be obtained.

Theorem 2.1 Model (2.2) always has a disease-free equilibrium E0 and the following con-
clusions hold.

(a) When 0 < p < 1, then system (2.2) has a unique endemic equilibrium Ê(x̂, ŷ).
(b) When p = 1, we have:

(1) if d < A, then system (2.2) has a unique endemic equilibrium Ē(x̄, ȳ);
(2) if d ≥ A, then system (2.2) has no endemic equilibrium.

(c) When p > 1, we have:
(1) if d < dm, then system (2.2) has two endemic equilibria E1 = (x1, y1) and

E2 = (x2, y2), with y1 < y2 and xi = 1+αyq
i

yp–1
i

(i = 1, 2);

(2) if d = dm, then system (2.2) has a unique endemic equilibrium E∗(x∗, y∗), where
x∗ = 1+αyq∗

yp–1∗
;

(3) if d > dm, then system (2.2) has no endemic equilibrium.

Remark 2.2 Theorem 2.1 indicates that the number of positive equilibrium of model (2.2)
is mainly determined by parameter p and secondarily by the other parameters.

2.2 Stability of equilibria
Firstly, we can obtain the nonexistence of periodic orbits in system (2.2) when p ≤ 1.

Theorem 2.3 For p ≤ 1, system (2.2) does not have endemic periodic orbits.

Proof Consider system (2.2) for x > 0 and y > 0. Take the following Dulac function:

D =
1 + αyq

yp .
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Then we have

∂(DP)
∂x

+
∂(DQ)

∂y
=

–1 – d + p – yp – α(1 + d + q – p)yq

yp ,

which is clearly negative when p ≤ 1. This leads to the conclusion. �

In the following, we will also discuss the stability of equilibria in three cases.
Case I. p < 1.
When p < 1, the linearization methods cannot be used to determine the stability of the

disease-free equilibrium directly, because the linear system is discontinuous at E0. In this
case, replace y by a new variable ς = y1–p, which does not change the existence of equilib-
rium theoretically, then (2.2) turns into

⎧
⎪⎪⎨

⎪⎪⎩

dx
dt = A – dx – xς

p
1–p

1+ας

q
1–p

– γ ς
1

1–p ,

dς

dt = (1–p)x

1+ας

q
1–p

– ς .

However, E0 is not even an equilibrium of the above system, which implies that the disease-
free equilibrium E0 in (2.2) must be unstable.

In general, for any p, the stability of an endemic equilibrium E(x, y) is determined by the
eigenvalues of the Jacobian matrix of system (2.2)

J =

⎛

⎝
–d – yp

1+αyq –γ + xyp–1(–p+α(q–p)yq)
(1+αyq)2

yp

1+αyq –1 + xyp–1(p–α(q–p)yq)
(1+αyq)2

⎞

⎠ .

Computing the trace and determinant at equilibrium E(x, y) directly, we get

tr J(E) = –
ρ(y)

1 + αy1+p , det(E) =
–yf ′(y)
1 + αyq ,

where

ρ(y) = d + 1 – p + yp + α(1 + d + q – p)yq.

Then the sign of tr J(E), det(E) is opposite to ρ(y) and f ′(y), respectively. In addition, the
signs of the eigenvalues are determined by f ′(y) and ρ(y). When p < 1, then f ′(ŷ) < 0 and
ρ(ŷ) > 0, thus Ê is an attracting node.

Recall that the ω-limit set of a bounded planar flow can consist only (i) equilibria, (ii) pe-
riodic orbits, (iii) orbits connecting equilibria (heteroclinic or homoclinic orbits) (see
[22]). Because there are neither limit cycles nor heterclinic or homoclinic orbits, the local
asymptotic stability of the endemic equilibrium guarantees the global stability. Thus, we
can obtain the global stability of Ê.

Case II. p = 1.
When p = 1, the eigenvalues of E0 of the Jacobian matrix are A

d – 1 and –d. Besides,
when p = 1 and d < A, then f ′(ȳ) < 0 and ρ(ȳ) > 0, thus, Ē is an attracting node. Similarly,
the locally asymptotically stable of the endemic equilibrium guarantees the global stability.
Thus, we get the following theorem.
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Theorem 2.4
(I) Assume p < 1. Then we have:

(a) the disease-free equilibrium E0 of system (2.2) is unstable;
(b) the unique endemic equilibrium Ê is globally asymptotically stable.

(II) Assume p = 1, we have:
(a) the disease-free equilibrium E0 of system (2.2) is a stable hyperbolic focus if

d > A; a hyperbolic saddle if d < A; a saddle-node if d = A;
(b) if d ≥ A, then the disease-free equilibrium E0 is globally asymptotically stable;
(c) if d < A, then the unique endemic equilibrium Ē is globally asymptotically stable.

Remark 2.5 Actually, when p = 1, we can define the reproduction number R0 = A
d . Accord-

ing to Theorem 2.4, we see that when R0 ≤ 1, then there is no endemic equilibrium and
the disease-free equilibrium is globally stable and that when R0 > 1, then there is a unique
endemic equilibrium which is globally stable. Particularly, when p = 1, q = 2, which has
been studied in [18]. They defined the basic reproduction number R0 = κA

d(d+μ) for model
(1.1) (p = 1, q = 2) and got the same results.

Case III. p > 1.
When p > 1 and d < dm, it can be seen from Fig. 2(b) that f ′(y1) > 0, f ′(y2) < 0, so E1

is a hyperbolic saddle and E2 is an anti-saddle. Besides, E2 is an attracting node or focus
if ρ(y2) > 0; E2 is a repelling node or focus if ρ(y2) < 0; E2 is a weak focus or center if
tr J(E2) = 0.

Define

d̄ =
p – 1 – yp

2 – α(1 + q – p)yq
2

1 + αyq
2

, d∗ =
p – 1 – yp

∗ – α(1 + q – p)yq
∗

1 + αyq
∗

, (2.5)

then obviously, ρ(y2) > 0 if and only if d > d̄, ρ(y2) < 0 if and only if d < d̄, ρ(y2) = 0 if and
only if d = d̄ and ρ(y∗) > 0 if and only if d > d∗, ρ(y∗) < 0 if and only if d < d∗, ρ(y∗) = 0,
ρ(y∗) = 0 if and only if d = d∗.

Obviously, when p > 1, then the eigenvalues of E0 are –1 and –d. Thus, equilibrium E0

is always locally asymptotically stable for all parameters allowable when p > 1.

Theorem 2.6 When p > 1, E0 is always locally asymptotically stable.

Theorem 2.7 When p > 1 and d < dm, system (2.2) has two endemic equilibria E1 and E2.
Then the equilibrium E1 is a hyperbolic saddle, and the equilibrium E2 is an anti-saddle.
Moreover,

(1) equilibrium E2 is attracting if d̄ < d < dm;
(2) equilibrium E2 is repelling if d < min{dm, d̄};
(3) equilibrium E2 is a weak focus or center if d = d̄ < dm.

According to Theorem 2.7, the following corollary is obtained.

Corollary 2.8 When d > p – 1, then E2 is always an attracting node.

When d = dm, the equilibria E1 and E2 coalesce at E∗, which is degenerate because the
Jacobian matrix of the linearized system of (2.2) at E∗ has determinant 0. Then we get the
following result.
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Theorem 2.9 When p > 1 and d = dm, E∗ is a saddle-node if d �= d∗.

Proof When d = dm, system (2.2) has only one endemic equilibrium E∗. If d �= d∗, we have
tr J(E∗) �= 0.

Let u = x – x∗, v = y – y∗, system (2.2) becomes

⎧
⎨

⎩

du
dt = f10u + f01v + f11uv + f02v2 + O(|(u, v)|3),
dv
dt = g10u + g01v + g11uv + g02v2 + O(|(u, v)|3),

(2.6)

where

f10 = –d –
yp
∗

1 + αyq
∗

, f01 = –γ +
x∗yp–1

∗ (–p + α(q – p)yq
∗)

(1 + αyq
∗)2

,

f11 =
yp–1
∗ (–p + α(q – p)yq

∗)
(1 + αyq

∗)2
,

f02 =
x∗y–2+p

∗ (–(p + αpyq
∗)2 – αqyq

∗(1 – q + α(1 + q)yq
∗) + p(1 + αyq

∗)(1 + α(1 + 2q)yq
∗))

2(1 + αyq
∗)3

,

g10 =
yp
∗

1 + αyq
∗

, g01 = –1 +
x∗y–q

∗ (p – α(q – p)yq
∗)

(1 + αyq
∗)2

, g11 =
y–q
∗ (p – α(q – p)yq

∗)
(1 + αyq

∗)2
,

g02 =
x∗y–2+p

∗ ((p + αpyq
∗)2 + αqyq

∗(1 – q + α(1 + q)yq
∗) – p(1 + αyq

∗)(1 + α(1 + 2q)yq
∗))

2(1 + αyq
∗)3

.

When d = dm, we have det(E∗) = f10g01 – f01g10 = 0. Since f10 < 0 and g10 > 0, the signs of f01

and g01 are different, otherwise, f01 = g01 = 0. Actually, when g01 = 0, then f01 = –1 – γ �= 0.
Therefore, we get g01 �= 0. With the change of variables (u, v) → (x, y) defined by

x = –
f10g01

f01(f10 + g01)
u +

f 10
f10 + g01

v, y =
f 10

f10 + g01
u +

f 01
f10 + g01

v,

system (2.6) is rewritten as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt = – dy–1+p

2 ((p–1)p+α(q–p+1)(q–p)yq
2)

2g10(1+αyq
2)(1+d–p+yp

2+α(1+d+q–p)yq
2)

x2

+ b11xy + b02y2 + O(|(x, y)|3) � X(x, y),
dy
dt = (f10 + g01)y + c20x2 + c11xy + c02y2 + O(|(x, y)|3) � Y (x, y),

(2.7)

where

b11 =
–2f02f10g2

01 + f01g01(–f10f11 + f11g01 + 2f10g02) + f 2
01(f10 – g01)g11

f 2
01(f10 + g01)

,

b02 =
f10g01(–f02g2

01 + f01g01(–f11 + g02) + f 2
01g11)

f 3
01(f10 + g01)

,

c20 =
(f02f 2

10 – f01(f10(f11 – g02) + f01g11))
f10(f10 + g01)

,

c11 =
2f02f 2

10g01 + f01f10(f10f11 – f11g01 + 2g01g02) + f 2
01(f10 – g01)g11

f01f10(f10 + g01)
,
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c02 =
g01(f01f10f11 + f02f10g01 + f01g01g02 + f 2

01g11)
f 2
01(f10 + g01)

.

And obviously, f10 + g01 �= 0 if d �= d∗. By the implicit function theorem, there exists a
unique function y = ν(x) such that ν(0) = 0 and Y (x,ν(x)) = 0. Obviously, we can solve
by Y (x,ν(x)) = 0:

ν(x) = –
(f02f 2

10 – f01(f10(f11 – g02) + f01g11))
f10(f10 + g01)2 x2 + O

(|x|3).

Substituting y = ν(x) into the first equation of (2.7), we can obtain

dx
dt

= –
dy–1+p

2 ((p – 1)p + α(q – p + 1)(q – p)yq
2)

2g10(1 + αyq
2)(1 + d – p + yp

2 + α(1 + d + q – p)yq
2)

x2 + O
(|x|3).

Theorem 7.1 in Chap. 2 of [23] indicates that E∗ is a saddle-node of system (2.2). �

The number of endemic equilibria and the corresponding stability for three cases p < 1,
p = 1 and p > 1 discussed in this section and they are summarized in Table 1. In addition,
for p < 1, we take p = 1/2, q = 3 and give the phase portrait (see Fig. 3). For p = 1, we take
q = 3 and present the corresponding phase portrait of d > A and d < A, respectively (see
Fig. 4). Also, p > 1, we take q = 3 and show the phase portrait of d < dm (see Fig. 5).

Remark 2.10 Summarizing the three cases discussed above, one can easily observe that
the dynamical behaviors of system (2.2) are completely different for these three cases.

Table 1 Number and stability of endemic equilibria

p Condition Number Stability

p < 1 d > 0 1 globally stable

p = 1 d < A 1 globally stable
d ≥ A 0

p > 1 d < dm 2 a saddle and an anti-saddle
d = dm 1 degenerate sigularity
d > dm 0

Figure 3 The global stability of Ê when p = 1/2, q = 3, A = 1, d = 0.1, α = 1, γ = 0.1
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Figure 4 p = 1, q = 3, A = 1, α = 1, γ = 0.1. (a) d = 1.1, the disease-free equilibrium E0 is global stable;
(b) d = 0.8, E0 is unstable and endemic equilibrium Ē is globally stable

Figure 5 p = 2, q = 3, A = 1, γ = 0.1, equilibrium E0 is locally stable, E1 is a saddle and (a) d = 0.2, α = 0.1, E2 is
an attracting node; (b) d = 0.1, α = 1, E2 is a repelling node

3 Hopf bifurcation
In this section, assume that p > 1 and 0 < d < dm, then system (2.2) has two endemic equi-
libria, E1(x1, y1), E2(x2, y2). From the above discussion, we can see that equilibrium E1 is
always a saddle and that tr J(E2) = 0 if and only if d = d̄, and det J(E2) > 0. Therefore, the
eigenvalues of J(E2) are a pair of pure imaginary roots if d = d̄. From direct calculations
we have

d(tr J(y2))
dρ(y2)

∣
∣
∣
∣
d=d̄

= –
1

1 + αyq
2

�= 0.

Thus, d = d̄ is the Hopf bifurcation point for (2.2), according to Theorem 3.4.2 in [24]
Then one may want to get the maximal multiplicity of the weak focus E2 when d = d̄.

Since the normal form of (2.2) is very complex for an unfixed constants p, q, thus, in the
following, we take p = 2, q = 3 for an example and prove the maximal multiplicity is at
least 2. If p = 2, q = 3, system (2.2) turns into

⎧
⎨

⎩

dx
dt = A – dx – xy2

1+αy3 – γ y,
dy
dt = xy2

1+αy3 – y,
(3.1)
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and we can get the corresponding expressions of f (y), ym, dm, d̄ for model (3.1),

f (y) = –αdy3 – (1 + γ )y2 + Ay,

ym =
–(1 + γ ) +

√
(1 + γ )2 + 3αdA
3dα

,

dm = –αdy3
2 – (1 + γ )y2

2 + Ay2,

d̄ =
1 – y2

2 – 2αy3
2

1 + αy3
2

.

We can see easily from d̄ > 0 that y2 < 1. In the following, we will study when d = d̄ < dm,
which implies E2(x2, y2) is a weak focus, the multiplicity of E2.

For convenience, define

γ ∗(y2,α)

= 3 + y2(–4y2 + α(18 + y2
2(–39 + y2(12y2 + α(–54 + y2

2(54 + y2(–9y2 + α(81 + 2y2
2(–30 + y2

2 + 3αy2(–15 + y2
2))))))))))

y2
2(1 + αy3

2)(1 + αy2(9 + y2
2(–7 + αy2(–18 + y2

2))))
,

for 0 < y2 < 1 and α > 0. We need to find suitable values of y2, α that make γ ∗(y2,α) > 0.
Unfortunately, we cannot determine the sign of that, but when y2 = 1

5 , α = 1, then d = 59
63 ,

γ ∗ = 13,676,102
247,485 > 0 and when y2 = 1

5 , α = 60, then γ ∗ = –1 < 0. Thus, define the following set:

� =
{

(y2,α)|α > 0, 0 < y2 < 1,γ ∗(y2,α) > 0
}

.

Theorem 3.1 When d = d̄ < dm, then model (3.1) undergoes a Hopf bifurcation at equilib-
rium E2. Moreover,

(1) if γ �= γ ∗ or (y2,α) /∈ �, then E2 is a multiple focus of multiplicity 1;
(2) if γ = γ ∗ for (y2,α) ∈ �, then E2 is a multiple focus of multiplicity at least 2.

Proof Introducing the new time by dτ = dt/(1 + αy3). By rewriting τ as t, we have

⎧
⎨

⎩

dx
dτ

= A(1 + αy3) – dx(1 + αy3) – xy2 – γ y(1 + αy3),
dy
dτ

= xy2 – y(1 + αy3).
(3.2)

Set u = x – x2, v = y – y2, then system (3.2) becomes

⎧
⎨

⎩

du
dτ

= a10u + a01v + a11uv + a02v2 + a03y3 + a12uv2 – αduv3 – dγ v4,
dv
dτ

= y2
2u + b01v + 2y2uv + b02v2 – 4αy2y3 + uv2 – αv4,

where

a10 = y2(γ y2 – A), a01 = –2 – γ + (α + 3αγ – 4dγ )y3
2, a11 = –2y2 – 3αdy2

2,

a02 = –x2 + 3(α + αγ – 2dγ )y2
2, a03 = Aα – αdx2 – 4dγ y2, a12 = –1 – 3αdy2,

b01 = 1 – 2αy3
2, b02 = x2 – 6αy2

2.
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Let Ẽ denote the origin of x – y plane. Then we obtain

det J(Ẽ) = a10b01 – y2
2a01 = –y2f ′(y2) > 0,

and it is easy to verify that a10 + b01 = 0 if and only if d = d̄. Let w = (det J(Ẽ)) 1
2 , and x = –u

and y = a10
w u + a01

w v, we obtain the normal form of system (3.2),

⎧
⎨

⎩

dx
dτ

= –wy + H1(x, y),
dy
dτ

= wx + H2(x, y),

where

H1(x, y) =
a10(a01a11 – a02a10)x2

a2
01

+
w(a01a11 – 2a02a10)xy

a2
01

–
a02w2y2

a2
01

+
a2

10(a01a12 – a03a10)x3

a3
01

–
a03w3y3

a3
01

+
w2(a01a12 – 3a03a10)xy2

a3
01

+
a10w(2a01a12 – 3a03a10)x2y

a3
01

+
a3

10(a10dγ – a01αd)x4

a4
01

+
dγ w4y4

a4
01

+
w3(4a10dγ – a01αd)xy3

a4
01

+
3a10w2(2a10dγ – a01αd)x2y2

a4
01

+
a2

10w(4a10dγ – 3a01αd)x3y
a4

01
,

H2(x, y) =
a10(a02a2

10 – a01(2a01y2 + a10(a11 – b02)))x2

a2
01w

+
(2a02a2

10 – a01(2a01y2 + a10(a11 – 2b02)))xy
a2

01
+

w(a01b02 + a02a10)y2

a2
01

+
a2

10(a03a2
10 – a01(a01 + a10(a12 + 4αy2)))x3

a3
01w

+
w(3a03a2

10 – a01(a01 + a10(a12 + 12αy2)))xy2

a3
01

+
a10(a01(–2a01 – 2a10a12 – 12a10αy2) + 3a03a2

10)x2y
a3

01

+
w2(a03a10 – 4a01αy2)y3

a3
01

a4
10(a01(αd – α) – a10dγ )x4

a4
01w

+
a3

10(3a01αd – 4a01α – 4a10dγ )x3y
a4

01

+
3a2

10w(a01αd – 2a01α – 2a10dγ )x2y2

a4
01

+
a10w2(a01αd – 4a01α – 4a10dγ )xy3

a4
01

+
w3(–a01α – a10dγ )y4

a4
01

.

Using polar coordinates, x = r cos θ , y = r sin θ , we obtain

dr
dθ

= R2(θ )r2 + R3(θ )r3 + R4(θ )r4 + R5(θ )r5 + h.o.t. (3.3)
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For the differential equation (3.3), any solution r(θ , r0) from initial value (0, r0) can be an-
alyzed, where |r0| 
 1. Thus, r(θ , r0) can be written as follows:

r(θ , r0) = r1(θ )r0 + r2(θ )r2
0 + · · · . (3.4)

It can be seen easily that r1(0) = 1, r2(0) = r3(0) = · · · = 0. Substituting the series (3.4) into
(3.3) and comparing the coefficients of r0, we can obtain the following differential equa-
tions on rj(θ ), j = 1, 2, . . . :

dr1

dθ
= 0,

dr2

dθ
= R2r2

1,

dr3

dθ
= 2R2r1r2 + R3r3

1,

dr4

dθ
= R2

(
r2

2 + 2r1r3
)

+ 3R3r2
1r2 + R4r4

1,

dr5

dθ
= 2R2(r2r3 + r1r4) + 3R3

(
r1r2

2 + r2
1r3

)
+ 4R4r3

1r2 + R5r5
1, . . . .

With the help of Mathematica 9.0, we get the first Lyapunov value as follows:

L3 =
1

2π
r3(2π ) =

η

96a6
01w7

,

where

η = w4(a12 – 12αy2) + w2(a10
(
a2

11 + a11b02 – 2
(
a01 + b2

02
))

+ 2a01b02y2

+ a02(a11 + 2b02)y2
2 + a2

10(a12 – 12αy2)
)

+ a10
(
a10(a11 + 2b02) – 2a01y2

)

× (
a10(a11 – b02) + y2(2a01 + a02y2)

)
.

Simplifying η by d = d̄ and f (y2) = d, then

η =
y2

2H(y2,α,γ )
(1 + αy3

2)3 ,

where

H(y2,α,γ ) =
(
2 + γ + α(1 + 2γ )y3

2 – 3α2γ y2y4
2 + α2(–1 + 4γ )y6

2
){

3 + y2
[
–(4 + γ )y2

+ α
(
18 – 39y2

2 – 9γ y2
2 – 54αy3

2 + 12y4
2 + 6γ y4

2 + 54αy5
2 + 9αγ y5

2 + 81α2y6
2

– 9αy7
2 + 6αγ y7

2 – 60α2y8
2 + 18α2γ y8

2 – 90α3y9
2

+ 2α2y10
2 – α2γ y10

2 + 6α3y11
2

)]}

and H(y2,α,γ ) = 0 if and only if

γ =
(–2 + αy3

2)(1 + αy3
2)

1 + αy3
2(2 + αy3

2))
� γ0, γ = γ ∗.
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Figure 6 The phase portrait of p = 2, q = 3, A = 15.0804, α = 1. (a) d = 0.92, γ = 51.2025 an unstable limit
cycle; (b) d = 0.910386, γ = 50.8022 2 limit cycles

In fact, γ0 is negative, since according to d = d̄ we have –2 + αy3
2 = –(d + y2

2 + α(1 + dy3
2)) –

1 < 0. Thus, η = 0 if and only if γ = γ ∗ for (y2,α) ∈ �.
When γ �= γ ∗ or (y2,α) /∈ �, then E2 is a multiple focus of multiplicity 1. When γ = γ ∗

for (y2,α) ∈ �, then we can compute the second Lyapunov value L5,

L5 =
1

2π
r5(2π ).

Because of the complexity of L5, we omit its expressions here. Actually, we cannot deter-
mine whether there exist parameters that make L5 equal to zero, but there exist parameter
values that make L5 �= 0. For example, take y2 = 1

5 and α = 1 then L5 = 1.8435 × 10–5 �= 0.
Therefore, E2 is a multiple focus of multiplicity at least 2 when γ = γ ∗ for (y2,α) ∈ �. �

Remark 3.2 As shown above, the Lyapunov value of order 2 is very small, thus, there may
exist other parameter values that make L5 equal to zero, which means the equilibrium E2

is a multiple focus of multiplicity at least 3.

Next, we present phase portraits for p = 2, q = 3 and d = d̄ < dm to show that there
may exist 1 or 2 limit cycles under small perturbations of some parameters. Firstly, take
A = 15.0804, α = 2, d = 0.92, γ = 51.2025, then there exist two endemic equilibria E1, which
is a saddle and E2, which is an attracting stable node and there exists an unstable limit cycle
around E2, shown in Fig. 6(a). After that we change the parameter d and γ to 0.910386
and 50.8022, respectively, then there exist 2 limit cycles around E2 and the small one is
unstable, the big one is stable from inside and unstable from outside, shown in Fig. 6(b).

Remark 3.3 It is should be emphasized that, for some parameter values when p = 2, q = 3,
an unstable homoclinic loop arises, which is shown in Fig. 7.

4 Bogdanov–Takens bifurcation
The purpose of this section is to study the Bogdanov–Takens bifurcation of system (2.2),
when there is a unique degenerate endemic equilibrium. Since when p < 1, the equilib-
rium Ê of system (2.2) is globally stable for any allowable parameter values, when p = 1
and d < A, the equilibrium Ē of system (2.2) is globally stable for any allowable parameter
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Figure 7 When p = 2, q = 3, A = 15.0804, d = 0.9222, α = 2, γ = 51.2024, equilibrium E2 is stable and there
exists an unstable homoclinic loop

values and when p > 1, we get system (2.2) has a unique endemic equilibrium E∗(x∗, y∗) of
multiplicity 2 if d = dm, according to Theorem 2.1. Thus, for system (2.2), when p > 1 and
d = dm, there may exist a Bogdanov–Takens singularity.

Lemma 4.1 is from Perko [25], it will be used in the proof of Theorem 4.2.

Lemma 4.1 The system

⎧
⎨

⎩

dx
dt = y + Ax2 + Bxy + Cy2 + O(|(X, Y )|3),
dy
dt = Dx2 + Exy + Fy2 + O(|(X, Y )|3),

is equivalent to the system

⎧
⎨

⎩

dx
dt = y,
dy
dt = Dx2 + (E + 2A)xy + O(|(X, Y )|3),

in some small neighborhood of (0, 0) after changes of coordinates.

Theorem 4.2 Assume p > 1. Suppose that d = dm = d∗, then the only interior equilibrium
E∗ of system (2.2) is a cusp of codimension 2.

Proof Let u = x – x∗, v = y – y∗, system (2.2) becomes

⎧
⎨

⎩

du
dt = f10u + f01v + f11uv + f02v2 + O(|(u, v)|3),
dv
dt = g10u + g01v + g11uv + g02v2 + O(|(u, v)|3),

(4.1)

where

f10 = –d –
yp
∗

1 + αyq
∗

, f01 = –γ +
x∗y–q

∗ (–p + α(q – p)yq
∗)

(1 + αyq
∗)2

,
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f11 =
y–q
∗ (–p + α(q – p)yq

∗)
(1 + αyq

∗)2
,

f02 =
x∗y–2+p

∗ (–(p + αpyq
∗)2 – αqyq

∗(1 – q + α(1 + q)yq
∗) + p(1 + αyq

∗)(1 + α(1 + 2q)yq
∗))

2(1 + αyq
∗)3

,

g10 =
yp
∗

1 + αyq
∗

, g01 = –1 +
x∗y–q

∗ (p – α(q – p)yq
∗)

(1 + αyq
∗)2

, g11 =
y–q
∗ (p – α(q – p)yq

∗)
(1 + αyq

∗)2
,

g02 =
x∗y–2+p

∗ ((p + αpyq
∗)2 + αqyq

∗(1 – q + α(1 + q)yq
∗) – p(1 + αyq

∗)(1 + α(1 + 2q)yq
∗))

2(1 + αyq
∗)3

.

Applying the non-singular linear transformation T : (x, y) → (u, v), defined by x = v, y =
g10u – f10v, system (4.1) is transformed into

⎧
⎨

⎩

dx
dt = y + b1x2 + b2xy,
dy
dt = b3x2 + b4xy + Q2(x, y),

(4.2)

where Q2(x, y) is a smooth function in (x, y) at least of the third order and

b1 = g02 –
g11f10

g10
, b2 = –

g11

g10
,

b3 = f10f11 – f10g02 + f02g10 –
f 2
10g11

g10
, b4 =

f11g10 – f10g11

g10
.

By Lemma 4.1, we obtain a topologically equivalent system of (4.2).

⎧
⎨

⎩

dx
dt = y,
dy
dt = b3x2 + (b4 + 2b1)xy + Q3(x, y),

where

b3 =
dR0(y∗)

2y∗(1 + αyq
∗)2

, b4 + 2b1 =
R(y∗)

y∗(1 + αyq
∗)2

,

where

R0(y) =
(
p + αpyq)2 + αqyq(1 + 2d – q + 2yp + αyq + α(2d + q)yq)

– p
(
1 + αyq)(1 + 2d + 2yp + α(1 + 2d + 2q)yq),

R(y) =
(
p + αpyq)2 + αqyq(1 + d – q + 2yp + αyq + α(d + q)yq)

– p
(
1 + αyq)(1 + d + 2yp + α(1 + d + 2q)yq).

According to d = d∗, the expressions of R0(y∗) and R(y∗) can be simplified as follows:

R0(y∗) = –
(
1 + αyq

∗
)(

(p – 1)p + α(1 + q – p)(q – p)yq
∗
)
,

R(y∗) = αqyq
∗
(
–q + yp

∗
)

– pyp
∗
(
1 + αyq

∗
)
.
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In addition, from the expression of d∗ in (2.5), we see that d∗ > 0 if and only if

yp
∗ < p – 1 – α(1 + q – p)yq

∗.

Simplifying R(y∗) once more by the above inequality, we obtain

R(y∗) < –
(
1 + αyq)(pyp + αq(1 – p + q)yq

∗
)
,

which indicates that b3 < 0 and b4 + 2b1 < 0. Thus, E∗ is cusp of codimension 2. �

Suppose that parameters (A0, d0,α0,γ0) make the condition d = dm = d∗ satisfied, where
dm and d∗ are defined in (2.4) and (2.6), respectively. We choose A and d as the bifurcation
parameters and study whether system (2.2) can undergo a Bogdanov–Takens bifurcation
under a small perturbation of (A0, d0) or not. Now we study

⎧
⎨

⎩

dx
dt = (A0 + ε1) – (d0 + ε2)x – xyp

1+α0yq – γ0y,
dy
dt = xyp

1+α0yq – y,
(4.3)

where (ε1, ε2) are parameters in the neighborhood of (0,0). Applying a linear transforma-
tion T1 : (x, y) → (u, v), defined by u = x – x∗, v = y – y∗, we can reduce system (4.3) further
to the form

⎧
⎨

⎩

du
dt = U + a10u + a01v + a11uv + a02v2 + �1(u, v, ε1, ε2),
dv
dt = b10u + b01v + b11uv + b02v2 + �2(u, v, ε1, ε2),

(4.4)

where

U = ε1 – x∗ε2, a10 = –d0 –
yp
∗

1 + α0yq
∗

– ε2,

a01 = –γ +
x∗y–q

∗ (–p + α0(q – p)yq
∗)

(1 + α0yq
∗)2

, a11 =
y–q
∗ (–p + α0(q – p)yq

∗)
(1 + α0yq

∗)2
,

a02 =
x∗y–2+p

∗ (–(p + α0pyq
∗)2 – α0qyq

∗(1 – q + α0(1 + q)yq
∗) + p(1 + α0yq

∗)(1 + α0(1 + 2q)yq
∗))

2(1 + α0yq
∗)3

,

b10 =
yp
∗

1 + α0yq
∗

, b01 = –1 +
x∗y–q

∗ (p – α0(q – p)yq
∗)

(1 + α0yq
∗)2

, b11 =
y–q
∗ (p – α0(q – p)yq

∗)
(1 + α0yq

∗)2
,

b02 =
x∗y–2+p

∗ ((p + α0pyq
∗)2 + α0qyq

∗(1 – q + α0(1 + q)yq
∗) – p(1 + α0yq

∗)(1 + α0(1 + 2q)yq
∗))

2(1 + α0yq
∗)3

,

and �1, �2 are C∞ functions of (u, v) at least of the third order in the neighborhood of
the origin. Another transformation T2 : (u, v) → (x, y), defined by x = v, y = b10u + b01v,
reduces system (4.4) to

⎧
⎨

⎩

dx
dt = y + ã20x2 + ã11xy + �̃1(x, y, ε1, ε2),
dy
dt = b10U + b̃10x + b̃01y + b̃20x2 + b̃11xy + �̃2(x, y, ε1, ε2),

(4.5)
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where

ã11 =
b11

b10
, ã20 =

(b02b10 – b01b11)
b10

, b̃10 = –ε2b01, b̃01 = ε2,

b̃11 = a11 +
b01b11

b10
, b̃20 =

(–a11b01b10 + b01b02b10 + a02b2
10 – b2

01b11)
b10

,

and �̃1, �̃2 are C∞ functions of (x, y) at least of the third order in the neighborhood of
the origin. Making the affine transformation: u = x, v = y + ã20x2 + ã11xy + �̃1(x, y, ε1, ε2),
system (4.5) can be reduced to

⎧
⎨

⎩

du
dt = v,
dv
dt = b10U + b̂10u + b̂01v + b̂20u2 + b̂11uv + b̂02v2 + �̂2(u, v, ε1, ε2),

where

b̂10 = b̃10 + ã11b10U + φ1(ε1, ε2), b̂01 = –ε2 + φ2(ε1, ε2),

b̂11 = b̃11 + 2ã20 + φ4(ε1, ε2),

b̂20 = –ã20b̃01 + b̃20 + a11b10 + φ3(ε1, ε2), b̂02 = ã20 + ã11,

and �̂2 is a smooth function in (u, v) at least of the third order, φ1, φ2 are smooth functions
in (ε1, ε2) at least of the second order, φ3, φ4 are smooth functions in (ε1, ε2) at least of the
first order. Making the affine transformation x = u – b̂02

2 u2, y = v – b̂02uv, we can obtain

⎧
⎨

⎩

dx
dt = y,
dy
dt = b10U + b̄10x + b̄01y + b̄20x2 + b̄11xy + �̄2(x, y, ε1, ε2),

where

b̄10 =
(–1 + p + α(–1 + p – q)yq)ε2

1 + αyq + φ̃1, b̄01 = ε2, φ̃2,

b̄11 =
αqyq(–q + yp) – pyp(1 + αyq)

y(1 + αyq)2 + φ̃3,

b̄20 = –
(1 + γ0)yp

2(d0 + 1 + yp
2 + α(1 + d)yq

2)
2y2(1 + α0yq

2)2
+ φ̃4,

and �̄2 is a smooth function in (x, y) at least of the third order, φ̃1, φ̃2 are smooth functions
in (ε1, ε2) at least of the second order, φ̃3, φ̃4 are smooth functions in (ε1, ε2) at least of the
first order. Besides, from d∗ > 0 we see that yp

2 < p – 1 – α0(1 + q – p)yq
2, which ensures

b̄11 < 0 in a small neighborhood of (0, 0) for (ε1, ε2). And clearly, b̄20 < 0 for (ε1, ε2) in a
small neighborhood of (0, 0). Setting u = x + b̄01

2b̄20
, v = y, we have

⎧
⎨

⎩

du
dt = v,
dv
dt = K + Lv + Mu2 + Nuv + �2(u, v, ε1, ε2),
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where

K = –
b̄2

10

4b̄20
+ b̄10U , L =

b̄01 – b̄10b̄11

2b̄20
, M = b̄20, N = b̄11,

and �2 is a smooth function in (u, v) at least of the third order. Notice that M < 0, N < 0 in
a small neighborhood of (0,0) for parameters (ε1, ε2). Making the final change of variables
by x = N2

M u, y = N3

M2 v, τ = M
N t, we obtain

⎧
⎨

⎩

dx
dt = y,
dy
dt = μ1 + μ2y + x2 + xy + �̄2(x, y, ε1, ε2),

(4.6)

where �̄2 is a smooth function in (u, v) at least of the third order,

μ1 = –
N4(ε2y2 – ε1yp

2 + α0ε2y1+q
2 )

M3(1 + α0yq
2)

+ θ1(ε1, ε2),

μ2 =
ε2N(N(1 – p) + 2M + α0(2M + N(1 – p + q))yq

2)
2M2(1 + α0yq

2)
+ θ2(ε1, ε2),

(4.7)

and θ1, θ2 are smooth functions in (ε1, ε2) at least of the second order.
Note that

J =

(
∂μ1(ε1,ε2)

∂ε1
∂μ1(ε1,ε2)

∂ε2
∂μ2(ε1,ε2)

∂ε1
∂μ2(ε1,ε2)

∂ε2

)

(0,0)

=
N5yp

2((2M – d0)(1 + α0yq) – yp
2)

2M5(1 + α0yq
2)2

.

It can be seen that J > 0, since M < 0, N < 0. Thus, the parameter transformation (4.7) is
a homeomorphism in a small neighborhood of the origin, and ε1 and ε2 are independent
parameters.

By the theorems in [26–28], we know that system (4.6) undergoes a Bogdanov–Takens
bifurcation for (ε1, ε2) in a small neighborhood of (0, 0). And the local representations of
the bifurcation curves are as follows.

(i) The saddle-node bifurcation curve:

SN =
{

(ε1, ε2)|μ1(ε1, ε2) = 0
}

.

(ii) The Hopf bifurcation curve:

H =
{

(ε1, ε2)|μ1(ε1, ε2) = –μ2
2(ε1, ε2),μ2 > 0

}
.

(iii) The homoclinic bifurcation curve:

H =
{

(ε1, ε2)
∣
∣
∣μ1(ε1, ε2) = –

49
25

μ2
2(ε1, ε2) + O

(
μ

5
2
2
)
,μ2 > 0

}

.

On the basis of the bifurcation curves, the dynamics of system (4.3) in a small neighbor-
hood of E∗ as parameters (A, d) vary in a small neighborhood of (A0, d0) can be concluded
as the following theorem.
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Theorem 4.3 There exists a small neighborhood of E∗ such that system (4.3) undergoes a
Bogdanov–Takens bifurcation as (ε1, ε2) are in a small neighborhood of (0, 0). Moreover,

(i) system (4.3) has a unique positive equilibrium if (ε1, ε2) are on the SN curve;
(ii) system (4.3) has two positive equilibria (a saddle and a weak focus) if parameters

(ε1, ε2) are on the H curve;
(iii) system (4.3) has two positive equilibria (a saddle and a hyperbolic focus) and a

homoclinic loop if the parameters (ε1, ε2) are on the HL curve;
(iv) system (4.3) has two positive equilibria (a saddle and a hyperbolic focus) and a limit

cycle if parameters (ε1, ε2) are in the region between the H curve and the HL curve.

Remark 4.4 The existence of a Hopf bifurcation and a Bogdanov–Takens bifurcation when
p > 1 further shows that the dynamical behaviors tend to be more complex with the in-
creasing of p.

5 Conclusions
In this paper, we study an SIRS epidemic model with a more generalized non-monotone
incidence rate κSIp/(1 +αIq) with 0 < p < q, which describes the psychological effect when
there are a large number of infective individuals. We prove that the behavior of the model
can be classified into three various cases: p < 1, p = 1 and p = 1. When p < 1, there is
a unique globally asymptotically stable endemic equilibrium and the disease-free equi-
librium is unstable; when p = 1, there is a unique globally asymptotically stable endemic
equilibrium provided by d < A and no endemic equilibrium when d ≥ A; and when p > 1,
there exist two endemic equilibria if d < dm, a unique equilibrium if d = dm and no endemic
equilibrium if d > dm. By qualitative and bifurcation analysis, we prove that a saddle-node
bifurcation, a Hopf bifurcation, and a Bogdanov–Takens bifurcation can happen for the
system when p > 1. Moreover, for p = 2, q = 3, we calculate the first and second order
Lyapunov values and prove that the maximal multiplicity of weak focus E2 is at least 2,
which implies that at least 2 limit cycles can appear from the weak focus with suitable
parameters. And we present numerical examples about 1 limit cycle, 2 limit cycles and a
homoclinic loop for p = 2, q = 3.

In fact, we show that the model exhibits multi-stable states. This interesting phe-
nomenon indicates that the beginning states of an epidemic can determine the final states
of an epidemic to go extinct or not. Moreover, the periodical oscillation signifies that the
trend of the disease may be affected by the behavior of susceptible population.
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