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Abstract
This manuscript is devoted to an investigation of the existence, uniqueness and
stability of random differential equations with ψ -Hilfer fractional derivative. The
concerned investigation of existence and uniqueness is obtained via the Schauder
fixed point theorem and Banach contraction principle, respectively. Furthermore, for
the respective solutions, some results related to different kinds of Ulam type stability
including Hyers–Ulam, and generalized Hyers–Ulam, Hyers–Ulam–Rassias are
obtained.
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1 Introduction
In the previous few decades non-integer order differential and integral equations were
given much attentions. Because fractional differential equations (FDEs) rise up certainly
in various fields which include rheology, fractals, chaotic dynamics, control theory, signal
processing, bioengineering and biomedical applications. The theory of FDEs has been ex-
tensively studied and developed by many authors, see [6, 9, 13]. The dynamical analysis of
FDEs has been investigated very well in last few years, one can see [2, 3, 5, 7, 8, 12, 20–22,
24] for details.

Since various real world processes/phenomena have inconsistent dynamical behavior,
for instance in a powerful magnetic field communications of signals, diffusion of pollu-
tion in atmosphere, traffic networks, in financial markets the effect of speculations on the
profitability of stocks, and so on. For the aforesaid processes/phenomena, the traditional
models are not suitable to express the characteristics accurately. Therefore in such a situ-
ation FDEs play vital roles in describing the aforementioned phenomena more accurately.
On the other hand, to describe a real system involving complexities and uncertainties via
using deterministic FDEs is not a good choice. On the other hand to bring random factors
under consideration, numerous mathematical models of random differential equations
(RFDEs) were considered in the last few years. In this regard some very good results were
obtained corresponding to mathematical models by using RFDEs; see [15].
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In the last few years, many papers relating to RFDEs (stochastic differential equations)
were published; see [1, 11, 23]. In fact, RFDEs are the natural extensions of deterministic
FDEs. In many applications of real world problems, the use of the aforesaid RFDEs have
been considered by many researchers. Motivated by the above works here we discuss the
dynamical behavior of RFDEs involving a ψ-Hilfer fractional derivative (HFD) of the form

⎧
⎨

⎩

Dα,β ;ψh(t,ϑ) = g(t,ϑ ,h(t,ϑ)), t ∈ J := [0, T], T > 0,

I1–ν;ψh(t,ϑ)|t=0 = μ(ϑ),
(1)

where Dα,β ;ψ is ψ-HFD of order α ∈ (0, 1) and type β ∈ [0, 1]. Furthermore, h is a random
function, ϑ is the random variable and I1–ν is the ψ-fractional integral of order 1 – ν (ν =
α + β – αβ). Let � be the probability space with a continuous function g : J × � ×R →R

such that ϑ ∈ �. Thanks to the Schauder fixed point theorem and the Banach contraction
principle, some interesting results related to the existence and uniqueness of solutions
were established. Furthermore, as stability has become an important aspect in recent times
from the optimization and numerical points of view, some results devoted to Hyers–Ulam
(HU), Hyers–Ullam–Rassias (HUR) and generalized Hyers–Ulam (GHU) stabilities are
also discussed for the considered RFDEs with ψ-HFD.

Recently, Almeida [4] using the suggestion of the fractional derivative in the Caputo
sense, recommended a new fractional derivative called the ψ-Caputo derivative with re-
spect to another function, which simplifies a class of fractional derivatives. These integrals
and fractional derivatives have unlike kernels and this leads to a number of definitions. In
this viewpoint, we will employ the HFD idea, and we suggest a fractional differential oper-
ator of a function with respect to another ψ function, the so-called ψ-HFD. With the help
of the fractional operator suggested here, we use the freedom of choice of the standard
differential operator. Recently, Sousa et al. introduced a recent and interesting definition
of fractional integral and some applications. In this regard, there are other stabilizing jobs
that are interesting, because such definitions and stability results are indeed important
for the development and expansion of the fractional calculation and its applications in
various branches of science and technology. Numerous problems which are based on this
derivative are considered by many authors, see for instance [17–21] and the references
therein.

2 Preliminaries
Some basic definitions and results are introduced in the present section; for details see
[1, 16]. Let C be the Banach space of all continuous functions g : J × � → R with the
norm ‖g‖Cν,ψ = sup{|g(t,ϑ)| : t ∈ J}. We denote the weighted spaces of all continuous func-
tions defined by Cν,ψ (J ,R) = {g : J → R : (ψ(t) – ψ(0))νg(t) ∈ C}, 0 ≤ ν < 1, with the norm
‖g‖Cν,ψ = supt∈J |(ψ(t) – ψ(0))νg(t)|.

Definition 2.1 ([16]) Corresponding to the function ψ on J , the fractional integral of h
operating from the left side is described as

(
Iα;ψ)

h(t) =
∫ t

0
ψ ′(s)

(ψ(t) – ψ(s))α–1

�(α)
h(s) ds, t ∈ (0, T]. (2)
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Definition 2.2 ([16]) For fractional order α > 0, the Riemann–Liouville derivative of a
function h corresponding to another function ψ with ψ ′(t) �= 0 is described as

Dα;ψ
h(t) =

(
1

ψ ′(t)
d
dt

)n ∫ t

0
ψ ′(s)

(ψ(t) – ψ(s))n–α–1

�(n – α)
h(s) ds, (3)

where n – 1 = [α].

Definition 2.3 ([16]) If α > 0, and considering two functions h,ψ ∈ Cn(J ,R) in which ψ is
nondecreasing with ψ ′(t) �= 0, for all t ∈ J , then the left ψ-Caputo derivative is described
as

Dα;ψ
h(t) = In–α;ψ

(
1

ψ ′(t)
d
dt

)n

h(t), (4)

where n – 1 = [α].

Definition 2.4 ([16]) The ψ-HFD of function h of order α > 0 is provided by

D
α,β ;ψ

h(t) = Iβ(1–α);ψ
(

1
ψ ′(t)

d
dt

)

I(1–β)(1–α);ψ
h(t). (5)

The ψ-HFD as defined above can be written in the following form:

D
α,β ;ψ

h(t) = Iν–α;ψ
D

ν;ψ
h(t).

To obtain appropriate results about the HU stability and HUR stability for Eq. (1), we
describe some inequality in the sequel whose details can be found in [1, 10, 25].

Let ε > 0 be a positive real number and ϕ : J × � →R
+ be a continuous function, then

∣
∣Dα,β ;ψ

h(t,ϑ) – g
(
t,ϑ ,h(t,ϑ)

)∣
∣ ≤ ε, (6)

∣
∣Dα,β ;ψ

h(t,ϑ) – g
(
t,ϑ ,h(t,ϑ)

)∣
∣ ≤ εϕ(t), (7)

∣
∣Dα,β ;ψ

h(t,ϑ) – g
(
t,ϑ ,h(t,ϑ)

)∣
∣ ≤ ϕ(t). (8)

Definition 2.5 Equation (1) is HU stable corresponding to a real number Cg > 0 and for
every ε > 0, if for every solution h : � → C1–ν,ψ of the inequality (6) one has a unique
solution y : � → C1–ν,ψ of Eq. (1) that satisfies

∣
∣h(t,ϑ) – y(t,ϑ)

∣
∣ ≤ Cgε, t ∈ J ,ϑ ∈ �.

Definition 2.6 Equation (1) is GHU stable against ϕg ∈ C([0,∞), [0,∞)), ϕg(0) = 0 if for
every solution h : � → C1–ν,ψ of the inequality (6) one has a unique solution y : � → C1–ν,ψ

of Eq. (1) that satisfies

∣
∣h(t,ϑ) – y(t,ϑ)

∣
∣ ≤ ϕgε, t ∈ J ,ϑ ∈ �.
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Definition 2.7 Equation (1) is HUR stable corresponding to ϕ if we have a real number
Cg,ϕ > 0 such that for every ε > 0 and for each solution h : � → C1–ν,ψ of the inequality (7)
there exists a unique solution y : � → C1–ν,ψ of Eq. (1) with

∣
∣h(t,ϑ) – y(t,ϑ)

∣
∣ ≤ Cg,ϕεϕ(t), t ∈ J ,ϑ ∈ �.

Definition 2.8 Equation (1) is generalized HUR stable corresponding to a function ϕ with
Cg,ϕ ∈ (0,∞), if to every solution h : � → C1–ν,ψ of the inequality (8) there is a unique
solution y : � → C1–ν,ψ of Eq. (1) such that

∣
∣h(t,ϑ) – y(t,ϑ)

∣
∣ ≤ Cg,ϕϕ(t,ϑ), t ∈ J ,ϑ ∈ �.

Lemma 2.9 (Grönwall’s lemma [19]) Let α > 0, a(t,ϑ) > 0 be a locally integrable function
on J ×� and g(t,ϑ) be a increasing and nonnegative continuous function on J ×�, such that
|g(t,ϑ)| ≤ K for some constant K . Moreover, let h(t,ϑ) be a nonnegative locally integrable
function on J × � with

h(t,ϑ) ≤ a(t,ϑ) + g(t,ϑ)
∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1
h(s,ϑ) ds, (t,ϑ) ∈ J × �,

with some α > 0. Then

h(t,ϑ) ≤ a(t,ϑ)

+
∫ t

0

[ ∞∑

n=1

(g(t,ϑ)�(α))n

�(nα)
ψ ′(s)

(
ψ(t) – ψ(s)

)nα–1
]

a(s,ϑ) ds, (t,ϑ) ∈ J × �.

Theorem 2.10 (Schauder fixed point theorem [14]) Let B be closed, convex and nonempty
subset of a Banach space C. Let T : B → B be a continuous mapping such that T (B) is a
relatively compact subset of C. Then T has at least one fixed point in B.

3 Main results
The existence theory of solutions to Eq. (1) is presented in this section.

For our analysis the following hypotheses should be satisfied.
(H1) There exists a Carathèodory function � : J × � →R, such that

∣
∣g

(
s,ϑ ,h(s,ϑ)

)
– g

(
s,ϑ ,y(s,ϑ)

)∣
∣ ≤ �(t,ϑ)|h – y|

for every t ∈ J and ϑ ∈ �.
(H2) There exists λϕ > 0 such that, for each t ∈ J and ϑ ∈ �, we have

Iα;ψϕ(t,ϑ) ≤ λϕϕ(t,ϑ).

Lemma 3.1 A function h is the solution of Eq. (1), if and only if h satisfies the random
integral equation

h(t,ϑ) =
μ(ϑ)
�(ν)

(
ψ(t) – ψ(0)

)ν–1 +
1

�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1
g
(
s,ϑ ,h(s,ϑ)

)
ds. (9)
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Theorem 3.2 Assume that hypothesis (H1) is satisfied. Then, Eq. (1) has at least one solu-
tion.

Proof Consider the operator T (ϑ) : �×C1–ν,ψ → C1–ν,ψ . Hence h is a solution for Eq. (1) if
and only if h = (T (ϑ))h, where the equivalent integral Eq. (9) can be written in the operator
form

(
T (ϑ)

)
h =

μ(ϑ)
�(ν)

(
ψ(t) – ψ(0)

)ν–1

+
1

�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1
g
(
s,ϑ ,h(s,ϑ)

)
ds. (10)

Clearly, the fixed points of the operator T are solutions of Eq. (1). Set g̃ = g(s,ϑ , 0). For any
h ∈ J × �, we have

∣
∣
(
T (ϑ)h

)
(t)

(
ψ(t) – ψ(0)

)1–ν∣∣

≤ |μ(ϑ)|
�(ν)

+
(ψ(t) – ψ(0))1–ν

�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1∣∣g
(
s,ϑ ,h(s,ϑ)

)∣
∣ds

≤ |μ(ϑ)|
�(ν)

+
(ψ(t) – ψ(0))1–ν

�(α)

×
∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1∣∣g
(
s,ϑ ,h(s,ϑ)

)
– g(s,ϑ , 0) + g(s,ϑ , 0)

∣
∣ds

≤ |μ(ϑ)|
�(ν)

+
(ψ(t) – ψ(0))1–ν

�(α)

×
∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1∣∣g
(
s,ϑ ,h(s,ϑ)

)
– g(s,ϑ , 0)

∣
∣ +

∣
∣g(s,ϑ , 0)

∣
∣ds

≤ |μ(ϑ)|
�(ν)

+
(ψ(t) – ψ(0))1–ν

�(α)
�(t,ϑ)B(ν,α)

(
ψ(t) – ψ(0)

)α+ν–1‖h‖C1–ν,ψ

+
(ψ(t) – ψ(0))1–ν

�(α)
B(ν,α)

(
ψ(t) – ψ(0)

)α+ν–1‖g̃‖C1–ν,ψ

≤ |μ(ϑ)|
�(ν)

+
�(t,ϑ)
�(α)

B(ν,α)
(
ψ(T) – ψ(0)

)α‖h‖C1–ν,ψ

+
1

�(α)
B(ν,α)

(
ψ(T) – ψ(0)

)α‖g̃‖C1–ν,ψ

= r.

This proves that T transforms the ball Br = {h ∈ C1–ν,ψ : ‖h‖C1–ν,ψ ≤ r} into itself. We shall
show that the operator T : Br → Br satisfies all the conditions of the Schauder fixed point
theorem. The proof will be given in the following steps.

Step 1: T is continuous.
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Let hn be a sequence such that hn → h in C1–ν,ψ . Then for each t ∈ J , ϑ ∈ �,

∣
∣
((

T (ϑ)hn
)
(t) –

(
T (ϑ)h

)
(t)

)(
ψ(t) – ψ(0)

)1–ν∣∣

≤ (ψ(t) – ψ(0))1–ν

�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1∣∣gn
(
s,ϑ ,h(s,ϑ)

)
– g

(
s,ϑ ,h(s,ϑ)

)∣
∣ds

≤ (
ψ(t) – ψ(0)

)1–ν B(ν,α)
�(α)

(
ψ(t) – ψ(0)

)α+ν–1∥∥gn
(·,ϑ ,h(·,ϑ)

)
–g

(·,ϑ ,h(·,ϑ)
)∥
∥

C1–ν,ψ

≤ B(ν,α)
�(α)

(
ψ(T) – ψ(0)

)1–ν∥∥gn
(·,ϑ ,h(·,ϑ)

)
– g

(·,ϑ ,h(·,ϑ)
)∥
∥

C1–ν,ψ
,

where B(ν,α) is the Beta function. Due to continuity of g, we have

∥
∥T (ϑ)hn – T (ϑ)h

∥
∥

C1–ν,ψ
→ 0 as n → ∞.

Step 2: T (Br) is uniformly bounded.
This is clear since T (Br) ⊂ Br is bounded.
Step 3: We show that T (Br) is equi-continuous.
Let t1 > t2 ∈ J with Br a bounded set of C1–ν,ψ as in Claim 2, and h ∈ Br . Then

∣
∣
(
ψ(t1) – ψ(0)

)1–ν
T (ϑ)h(t1) –

(
ψ(t2) – ψ(0)

)1–ν
T (ϑ)h(t2)

∣
∣

≤
∣
∣
∣
∣
(ψ(t1) – ψ(0))1–ν

�(α)

∫ t1

0
ψ ′(s)

(
ψ(t1) – ψ(s)

)α–1
g
(
s,ϑ ,h(s,ϑ)

)
ds

–
(ψ(t2) – ψ(0))1–ν

�(α)

∫ t2

0
ψ ′(s)

(
ψ(t2) – ψ(s)

)α–1
g
(
s,ϑ ,h(s,ϑ)

)
ds

∣
∣
∣
∣

≤ ‖g‖C1–ν,ψ

�(α)
B(ν,α)

∣
∣
(
ψ(t1) – ψ(0)

)α –
(
ψ(t2) – ψ(0)

)α∣
∣. (11)

Keeping in mind that upon using t1 → t2 the right hand side of the inequality (11) ap-
proaches zero. Therefore by Steps 1–3 together with the Arzela–Ascoli theorem, we see
that T is continuous and compact. Hence by Schauder’s theorem, the operator T has a
fixed point h which is a solution of Eq. (1). �

Lemma 3.3 Assume that the hypothesis (H1) is satisfied. If

�(t,ϑ)
�(α)

(
ψ(T) – ψ(0)

)αB(ν,α) < 1.

Then, (1) has unique solution.

Now we are concerned with the generalized HUR stablest of Eq. (1).

Theorem 3.4 Under the hypotheses (H1) and (H2) the solution of Eq. (1) is generalized
HUR stable.

Proof Assume that for any solution h of inequality (8) and using Lemma 3.3 one has a
unique solution y for Eq. (1). Thus we have

y(t,ϑ) =
μ(ϑ)
�(ν)

(
ψ(t) – ψ(0)

)ν–1 +
1

�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1
g
(
s,ϑ ,y(s,ϑ)

)
ds.
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By differentiating inequality (8) for each t ∈ J ,ϑ ∈ �, we have

∣
∣
∣
∣h(t,ϑ) –

μ(ϑ)
�(ν)

(
ψ(t) – ψ(0)

)ν–1 –
1

�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1
g
(
s,ϑ ,h(s,ϑ)

)
ds

∣
∣
∣
∣

≤ λϕϕ(t,ϑ).

Hence it follows
∣
∣h(t,ϑ) – y(t,ϑ)

∣
∣

≤
∣
∣
∣
∣h(t,ϑ) –

μ(ϑ)
�(ν)

(
ψ(t) – ψ(0)

)ν–1

–
1

�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1
g
(
s,ϑ ,y(s,ϑ)

)
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣h(t,ϑ) –

μ(ϑ)
�(ν)

(
ψ(t) – ψ(0)

)ν–1

–
1

�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1
g
(
s,ϑ ,h(s,ϑ)

)
ds

∣
∣
∣
∣

+
1

�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1∣∣g
(
s,ϑ ,h(s,ϑ)

)
– g

(
s,ϑ ,y(s,ϑ)

)∣
∣ds

≤ λϕϕ(t,ϑ) +
�(t,ϑ)
�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1∣∣h(s,ϑ) – y(s,ϑ)
∣
∣ds

≤ λϕϕ(t) +
�(t,ϑ)
�(α)

∫ t

0
ψ ′(s)

(
ψ(t) – ψ(s)

)α–1
λϕϕ(s,ϑ) ds

:= Cg,ϕϕ(t,ϑ).

Thus, Eq. (1) is generalized HUR stable. �

4 Illustrative examples
Here in this part let ϑ = (–∞, 0) be equipped with the usual σ -algebra consisting of
Lebesgue measurable subsets of (–∞, 0). To demonstrate the established theoretical re-
sults, ψ-HFD is utilized to provide some examples.

Example 4.1 The RFDEs with generalized Riemann–Liouville fractional derivative as par-
ticular case of Eq. (1) when ψt = t is given by

⎧
⎨

⎩

Dα,β ;th(t,ϑ) = g(t,ϑ ,h(t,ϑ)), t ∈ [0, 1],

I1–ν;th(t,ϑ)|t=0 = ϑ .
(12)

Denote α = 2
3 , β = 1

2 and choose ν = 5
6 . Set g(t,ϑ ,h(t,ϑ)) = ϑ2e–t–10

1+ϑ2+|h(t,ϑ)| for t ∈ [0, 1]. More-
over, the hypothesis (H1) is satisfied,

∣
∣g

(
s,ϑ ,h(s,ϑ)

)
– g

(
s,ϑ ,y(s,ϑ)

)∣
∣ ≤ 1

e10 |h – y|.

Finally, the hypothesis (H2) is satisfied with ϕ(t,ϑ) = ϑ2t and λϕ = 1
�(α+2) . Thus Eq. (12) is

generalized HUR stable.
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Example 4.2 Consider RFDEs with the Hilfer–Hadamard fractional derivative by taking
the value ψ(t) = ln t given by

⎧
⎨

⎩

Dα,β ;ln th(t,ϑ) = 1
9et (sin |ϑ |h(t,ϑ) + 1), t ∈ J := [1, e],

I1–ν;ln th(t,ϑ)|t=1 = 0.
(13)

Denote α = 2
3 , β = 1

2 and γ = 5
6 . Thus,

∣
∣g

(
t,ϑ ,h(t,ϑ)

)
– g

(
t,ϑ ,y(t,ϑ)

)∣
∣ ≤ 1

9
∣
∣h(t,ϑ) – y(t,ϑ)

∣
∣.

Here �(t,ϑ) = 1
9 . Next, set ϕ(t,ϑ) = et+ϑ . Thus we have

I
α;ln tϕ(t,ϑ) ≤ 1

�( 5
3 )

ϕ(t,ϑ).

Thus all the hypotheses are satisfied. Thus Eq. (13) is generalized HUR stable.

Example 4.3 Consider RFDEs involving the Hilfer–Katugampola fractional derivative by
taking the value ψ(t) = tρ given by

⎧
⎨

⎩

Dα,β ;tρh(t,ϑ) = et

1+e–t ( h(t,ϑ)
1+h(t,ϑ) ), t ∈ J := [0, 1],

I1–ν;tρh(t,ϑ)|t=0 = 0.
(14)

Denote α = 1
2 , β = 2

3 and γ = 5
6 . Thus,

∣
∣g

(
t,ϑ ,h(t,ϑ)

)
– g

(
t,ϑ ,y(t,ϑ)

)∣
∣ ≤ 1

10
∣
∣h(t,ϑ) – y(t,ϑ)

∣
∣.

Finally, set ϕ(t,ϑ) = ϑ3tρ/2. Thus we have

I
α;tρ ϕ(t,ϑ) ≤ 1

�( 3
2 )

ϕ(t,ϑ).

Thus Eq. (14) is generalized HUR stable.

5 Conclusion
In this article, a class of RFDEs has been investigated. By the use of classical fixed point
theory of Schauder, we have formed some adequate results as regards the existence of at
least one solution to the proposed problem corresponding to HFD. Further an attempt
has been made to establish enough conditions for stability analysis. The concerned sta-
bility results are devoted to Ulam type which includes UH and HUR stability. The whole
analysis has been demonstrated by a suitable example. The respective results are new and
interesting to the best of our knowledge regarding stability. As a conclusion the HFD and
RFDEs can be used a powerful tools for studying the dynamical behavior of many real
world problems.
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