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1 Introduction
Nonlinear fractional differential equations can be observed in many areas such as popula-
tion dynamics, heat conduction in materials with memory, seepage flow in porous media,
autonomous mobile robots, fluid dynamics, traffic models, electro magnetic, aeronautics,
economics, and so on [1–10]. Controllability results for linear and nonlinear integer or-
der differential systems were studied by several authors (see [11–21]). In Sect. 2, we shall
present some basic definitions and lemmas concerning fractional calculus. In Sect. 3, we
shall study the existence and controllability results for nonlinear Hilfer fractional differ-
ential equations. In Sect. 4, we shall investigate the sufficient conditions for existence and
approximate controllability for Sobolev-type impulsive fractional differential equations.
In Sect. 5, we consider an example for Sobolev-type Hilfer fractional delay partial differ-
ential equation with impulsive condition.

2 Preliminaries
In order to study the existence, controllability, and approximate controllability for delay
Hilfer fractional differential equations with impulsive condition, we need the following
basic definitions and lemmas.

Definition 2.1 (see [22]) The fractional integral operator of order μ > 0 for a function f
can be defined as

Iμf (t) =
1

�(μ)

∫ t

0

f (s)
(t – s)1–μ

ds, t > 0,

where �(·) is the gamma function.
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Definition 2.2 (see [23, 24]) The Hilfer fractional derivative of order 0 ≤ ν ≤ 1 and
0 < μ < 1 is defined as

Dν,μ
0+ f (t) = Iν(1–μ)

0+
d
dt

I(1–ν)(1–μ)
0+ f (t).

Through this paper, let E be a Banach space with ‖ · ‖, and let PC(J , E) be the Banach
space of all continuous maps from J = (0, b] into E.

Define Y = {x : t(1–ν)(1–μ)x(t) ∈ PC(J , E)}, with the norm ‖ · ‖Y defined by ‖ · ‖Y =
supt∈J ‖t(1–ν)(1–μ)x(t)‖. Obviously, Y is a Banach space.

Introduce the set Br = {x ∈ Y : ‖x‖Y ≤ r}, where r > 0.
For x ∈ E, we define two families of operators {Sν,μ(t) : t > 0} and {Pμ(t) : t > 0} by

Sν,μ(t) = Iν(1–μ)
0+ Pμ(t), Pμ(t) = tμ–1Tμ(t),

Tμ(t) =
∫ ∞

0
μθ�μ(θ )S

(
tμθ

)
dθ ,

(2.1)

where

�μ(θ ) =
∞∑

n=1

(–θ )n–1

(n – 1)!�(1 – nμ)
, 0 < μ < 1, θ ∈ (0,∞) (2.2)

is a function of Wright type which satisfies

∫ ∞

0
θτ�μ(θ ) dθ =

�(1 + τ )
�(1 + μτ )

for θ ≥ 0.

Lemma 2.1 (see [25]) The operators Sν,μ and Pμ have the following properties.
(i) {Pμ(t) : t > 0} is continuous in the uniform operator topology.

(ii) For any fixed t > 0, Sν,μ(t) and Pμ(t) are linear and bounded operators, and

∥∥Pμ(t)x
∥∥ ≤ Mtμ–1

�(μ)
‖x‖,

∥∥Sν,μ(t)x
∥∥ ≤ Mt(ν–1)(1–μ)

�(ν(1 – μ) + μ)
‖x‖. (2.3)

(iii) {Pμ(t) : t > 0} and {Sν,μ(t) : t > 0} are strongly continuous.

3 Existence and controllability results
We consider the following nonlinear delay Hilfer fractional differential equation with im-
pulsive condition of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dν,μ
0+ x(t) = Ax(t) + f (t, x(γ1(t)),

∫ t
0 h(t, s)g(s, x(γ2(s))) ds),

t ∈ J = (0, b], t �= tk ,

�x|t=tk = Ik(x(t–
k )), k = 1, 2, . . . , m

I(1–ν)(1–μ)
0+ x(0) = x0,

(3.1)

where Dν,μ
0+ is the Hilfer fractional derivative, 0 ≤ ν ≤ 1, 0 < μ < 1, A is a closed, linear, and

densely defined operator in E. The delay γi(t) : J → J , i = 1, 2, are continuous functions, the
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state x(·) takes values in the Banach space E, and h : J × J → R is a continuous function,
�x|t=tk = Ik(x(t–

k )), where x(t+
k ) and x(t–

k ) represent the right and left limits of x(t) at t = tk ,
respectively, and the nonlinear operators f : J × E × E → E, g : J × E → E are given. The
operator A is the infinitesimal generator of a C0-semigroup T(t) on E, and there exists a
constant M > 0 such that ‖T(t)‖ ≤ M.

To establish the results, we need the following hypotheses.
(H1) (i) f : J × E × E → E is continuous and there exist constants N1 > 0 and N2 > 0 such

that, for all t ∈ J , v1, v2, w1, w2 ∈ E, we have

∥∥f (t, v1, w1) – f (t, v2, w2)
∥∥ ≤ N1

[‖v1 – v2‖ + ‖w1 – w2‖
]
, N2 =

∥∥f (t, 0, 0)
∥∥.

(ii) g : J × E → E is continuous and there exist constants L1 > 0 and L2 > 0 such that, for
all t ∈ J , v1, v2 ∈ E, we have

∥∥g(t, v1) – g(t, v2)
∥∥ ≤ L1‖v1 – v2‖, L2 =

∥∥g(t, 0)
∥∥.

(iii) The functions Ik : E → E are continuous and there exist constants L3 > 0, L4 > 0 such
that, for all t ∈ J , v1, v2 ∈ E, we have

∥∥Ik(v1) – Ik(v2)
∥∥ ≤ L3‖v1 – v2‖, L4 =

∥∥Ik(0)
∥∥, t ∈ J .

(H2) There exists a constant L such that |h(t, s)| ≤ L for (t, s) ∈ J × J .
(H3) There exists a constant q such that, for all x1, x2 ∈ E, ‖x1(γi(t)) – x2(γi(t))‖ ≤

q‖x1(t) – x2(t)‖ for i = 1, 2.
(H4) There exists a constant r > 0 such that

{
3M

�(ν(1 – μ) + μ)
[‖x0‖ + m(L3r + L4)

]

+
3Mbμ+(1–ν)(1–μ)

�(μ + 1)
[
N1

(
r + bL(L1r + L2)

)
+ N2

]} ≤ r

and

{
4M

�(ν(1 – μ) + μ)
[‖x0‖ + m(L3r + L4)

]
+

4Mb1–ν(1–μ)

�(μ + 1)
[
N1

(
r + bL(L1r + L2)

)
+ N2

]}

×
[

1 +
Mbμ‖B‖‖W –1‖

�(μ + 1)

]
+

4Mb1–ν(1–μ)‖x1‖‖B‖‖W –1‖
�(μ + 1)

≤ r.

Definition 3.1 (see [25]) We say that x ∈ Y is a mild solution of equation (3.1) if it satisfies

x(t) = Sν,μ(t)x0 +
∫ t

0
Pμ(t – s)f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds

+
∑

0<tk<t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))

, t ∈ J . (3.2)
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Theorem 3.1 If hypotheses (H1)–(H4) are satisfied, then equation (3.1) has a unique mild
solution on J provided that

χ1 :=
{

3qbμMN1

�(μ + 1)
[1 + bLL1] +

3mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)

}
< 1.

Proof Consider the operator 
 on Y defined as follows:


x(t) = Sν,μ(t)x0 +
∫ t

0
Pμ(t – s)f

(
s, x

(
γ1(s)

)
,
∫ s

0
k(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds

+
∑

0<tk<t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))

.

It will be shown that the operator 
 has a fixed point.
First we show that 
 maps Br into itself. For x ∈ Br ,

‖
x‖Y = sup
t∈J

t(1–ν)(1–μ)∥∥(
x)(t)
∥∥

≤ 3 sup
t∈J

t(1–ν)(1–μ)
{∥∥Sν,μ(t)x0

∥∥

+
∫ t

0
(
∥∥Pμ(t – s)

∥∥
∥∥∥∥f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)∥∥∥∥ds

+
∑

0<tk<t

∥∥Sν,μ(t – tk)Ik
(
x
(
t–
k
))∥∥

}

≤ 3M
�(ν(1 – μ) + μ)

[‖x0‖ + m(L3r + L4)
]

+
3Mbμ+(1–ν)(1–μ)

�(μ + 1)
[
N1

(
r + bL(L1r + L2)

)
+ N2

]

≤ r.

Thus 
 maps Br into itself.
We show that (
x)(t) is continuous on J for any x ∈ Br . Let 0 < t ≤ b and ε > 0 be suffi-

ciently small, then

∥∥(
x)(· + ε) – (
x)(·)∥∥Y

= sup
t∈J

t(1–ν)(1–μ)∥∥(
x)(t + ε) – (
x)(t)
∥∥

≤ 3 sup
t∈J

t(1–ν)(1–μ)∥∥(
Sν,μ(t + ε) – Sν,μ(t)

)
x0

∥∥

+ 3 sup
t∈J

t(1–ν)(1–μ)
∥∥∥∥
∫ t+ε

0
Pμ(t + ε – s)f

(
s, x

(
γ1(s)

)
,

∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds

–
∫ t

0
Pμ(t – s)f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds

∥∥∥∥
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+ 3 sup
t∈J

t(1–ν)(1–μ)
∥∥∥∥

∑
0<tk<t+ε

Sν,μ(t + ε – tk)Ik
(
x
(
t–
k
))

–
∑

0<tk<t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))∥∥∥∥. (3.3)

Clearly, the right-hand side of (3.3) tends to zero as ε → 0. Hence, (
x)(t) is continuous
on J .

We are going to show that (
x)(t) is a contraction on Br .
Next, for x1, x2 ∈ Br , we obtain

∥∥(
x1)(t) – (
x2)(t)
∥∥

≤ 3
∫ t

0

∥∥Pμ(t – s)
∥∥
∥∥∥∥f

(
s, x1

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x1

(
γ2(τ )

))
dτ

)

– f
(

s, x2
(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x2

(
γ2(τ )

))
dτ

)∥∥∥∥ds

+ 3
∑

0<tk <t

∥∥Sν,μ(t – tk)
∥∥∥∥Ik

(
x1

(
t–
k
))

– Ik
(
x2

(
t–
k
))∥∥

≤
{

3qbμMN1

�(μ + 1)
[1 + bLL1] +

3mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)

}∥∥x1(t) – x2(t)
∥∥

≤ χ1
∥∥x1(t) – x2(t)

∥∥.

Therefore,

sup
t∈J

t(1–ν)(1–μ)∥∥(
x1)(t) – (
x2)(t)
∥∥ ≤ χ1 sup

t∈J
t(1–ν)(1–μ)∥∥x1(t) – x2(t)

∥∥.

This implies that

‖
x1 – 
x2‖Y ≤ χ1‖x1 – x2‖Y .

Then, 
 is a contraction mapping on Br . From the Banach fixed point theorem, 
 has a
unique fixed point x(t) on J . Therefore system (3.1) has a unique mild solution on J , and
the proof is completed. �

Next, we will establish a set of sufficient conditions for controllability of impulsive delay
Hilfer fractional differential equation in the following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dν,μ
0+ x(t) = Ax(t) + Bu(t) + f (t, x(γ1(t)),

∫ t
0 h(t, s)g(s, x(γ2(s))) ds),

t ∈ J = (0, b], t �= tk ,

�x|t=tk = Ik(x(t–
k )), k = 1, 2, . . . , m

I(1–ν)(1–μ)
0+ x(0) = x0,

(3.4)

where the control function u(·) is given in L2(J , U), the Banach space of admissible control
functions with U a Banach space. The symbol B stands for a bounded linear from U into E.
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Definition 3.2 We say that x ∈ Y is a mild solution of system (3.4) if it satisfies

x(t) = Sν,μ(t)x0 +
∫ t

0
Pμ(t – s)Bu(s) ds

+
∫ t

0
Pμ(t – s)f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds

+
∑

0<tk<t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))

, t ∈ J . (3.5)

Definition 3.3 System (3.4) is said to be controllable on J if, for every x0, x1 ∈ E, there
exists a control u ∈ L2(J , U) such that the mild solution x(t) of system (3.4) satisfies x(b) =
x1, where x1 and b are the preassigned terminal state and time, respectively.

To establish the result, we need the following additional hypothesis:
(H5) The linear operator W from U into E defined by

Wu =
∫ b

0
Pμ(b – s)Bu(s) ds

has an inverse operator W –1 which takes values in L2(J , U)\ker W , where the kernel space
of W is defined by ker W = {x ∈ L2(J , U) : Wx = 0} and B is a bounded operator.

Theorem 3.2 If hypotheses (H1)–(H5) are satisfied and if

χ2 :=
{

4qbμMN1

�(μ + 1)
[1 + bLL1] +

4mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)

}{
1 +

M‖B‖‖W –1‖bμ

�(μ + 1)

}
< 1,

then system (3.4) is controllable on J .

Proof Using assumption (H5), define the control

u(t) = W –1
{

x1 – Sν,μ(b)x0

–
∫ b

0
Pμ(b – s)f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds

–
∑

0<tk<b

Sν,μ(b – tk)Ik
(
x
(
t–
k
))}

(t).

It shall now be shown that when using this control, the operator 
∗ defined by

(

∗x

)
(t) = Sν,μ(t)x0 +

∫ t

0
Pμ(t – s)f

(
s, x

(
γ1(s)

)
,
∫ s

0
k(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds

+
∑

0<tk <t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))

+
∫ t

0
Pμ(t – η)BW –1

{
x1 – Sν,μ(b)x0

–
∫ b

0
Pμ(b – s)f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds
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–
∑

0<tk<b

Sν,μ(b – tk)Ik
(
x
(
t–
k
))}

(η) dη (3.6)

has a fixed point. This fixed point is then a solution of equation (3.4).
First we show that 
∗ maps Br into itself. For x ∈ Br ,

∥∥
∗x
∥∥

Y = sup
t∈J

t(1–ν)(1–μ)∥∥(

∗x

)
(t)

∥∥

≤ 4 sup
t∈J

t(1–ν)(1–μ)
{∥∥Sν,μ(t)x0

∥∥ +
∫ t

0

∥∥Pμ(t – η)
∥∥‖B‖∥∥W –1∥∥

∥∥∥∥x1 – Sν,μ(b)x0

–
∫ b

0
Pμ(b – s)f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds

–
∑

0<tk <b

Sν,μ(b – tk)Ik
(
x
(
t–
k
))∥∥∥∥(η) dη

+
∫ t

0
(
∥∥Pμ(t – s)

∥∥
∥∥∥∥f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)∥∥∥∥ds

+
∑

0<tk <t

∥∥Sν,μ(t – tk)Ik
(
x
(
t–
k
))∥∥

}

≤ 4M
�(ν(1 – μ) + μ)

[‖x0‖ + m(L3r + L4)
]

+
4Mbμ‖B‖‖W –1‖

�(μ + 1)

{
b(1–ν)(1–μ)‖x1‖

+
M

�(ν(1 – μ) + μ)
[‖x0‖ + m(L3r + L4)

]

+
Mb1–ν(1–μ)

�(μ + 1)
[
N1

(
r + bL(L1r + L2)

)
+ N2

]}

+
4Mb1–ν(1–μ)

�(μ + 1)
(
N1

(
r + bL(L1r + L2)

)
+ N2

)

=
{

4M
�(ν(1 – μ) + μ)

[‖x0‖ + m(L3r + L4)
]

+
4Mb1–ν(1–μ)

�(μ + 1)
[
N1

(
r + bL(L1r + L2)

)
+ N2

]}

×
[

1 +
Mbμ‖B‖‖W –1‖

�(μ + 1)

]
+

4Mb1–ν(1–μ)‖x1‖‖B‖‖W –1‖
�(μ + 1)

≤ r.

Thus 
∗ maps Br into itself.
We show that (
∗x)(t) is continuous on J for any x ∈ Br . Let 0 < t ≤ b and ε > 0 be

sufficiently small, then

∥∥(

∗x

)
(· + ε) –

(

∗x

)
(·)∥∥Y

= sup
t∈J

t(1–ν)(1–μ)∥∥(

∗x

)
(t + ε) –

(

∗x

)
(t)

∥∥

≤ 4 sup
t∈J

t(1–ν)(1–μ)∥∥(
Sν,μ(t + ε) – Sν,μ(t)

)
x0

∥∥

+ 4 sup
t∈J

t(1–ν)(1–μ)
∥∥∥∥
∫ t+ε

0
Pμ(t + ε – s)Bu(s) ds –

∫ t

0
Pμ(t – s)Bu(s) ds

∥∥∥∥
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+ 4 sup
t∈J

t(1–ν)(1–μ)
∥∥∥∥
∫ t+ε

0
Pμ(t + ε – s)f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds

–
∫ t

0
Pμ(t – s)f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)
ds

∥∥∥∥
+ 4 sup

t∈J
t(1–ν)(1–μ)

∥∥∥∥
∑

0<tk<t+ε

Sν,μ(t + ε – tk)Ik
(
x
(
t–
k
))

–
∑

0<tk<t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))∥∥∥∥. (3.7)

Clearly, the right-hand side of (3.7) tends to zero as ε → 0. Hence, (
∗x)(t) is continuous
on J .

Next, for x, y ∈ Br , we obtain

∥∥(

∗x

)
(t) –

(

∗y

)
(t)

∥∥

≤ 4
∫ t

0

∥∥Pμ(t – η)
∥∥‖B‖∥∥W –1∥∥

[∫ b

0

∥∥Pμ(b – s)
∥∥

×
∥∥∥∥f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)

– f
(

s, y
(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , y

(
γ2(τ )

))
dτ

)∥∥∥∥ds

+
∑

0<tk<b

∥∥Sν,μ(b – tk)
∥∥∥∥Ik

(
x
(
t–
k
))

– Ik
(
y
(
t–
k
))∥∥

Y

]
dη + 4

∫ t

0

∥∥Pμ(t – s)
∥∥

×
∥∥∥∥f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)

– f
(

s, y
(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , y

(
γ2(τ )

))
dτ

)∥∥∥∥ds

+ 4
∑

0<tk <t

∥∥Sν,μ(t – tk)
∥∥∥∥Ik

(
x
(
t–
k
))

– Ik
(
y
(
t–
k
))∥∥

≤ 4M‖B‖‖W –1‖bμ

�(μ + 1)

{
qbμMN1

�(μ + 1)
[1 + bLL1] +

mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)

}∥∥x(t) – y(t)
∥∥

+
4qbμMN1

�(μ + 1)
[1 + bLL1]

∥∥x(t) – y(t)
∥∥ +

4mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)
∥∥x(t) – y(t)

∥∥

≤
{

4qbμMN1

�(μ + 1)
[1 + bLL1] +

4mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)

}{
1 +

M‖B‖‖W –1‖bμ

�(μ + 1)

}∥∥x(t) – y(t)
∥∥

≤ χ2
∥∥x(t) – y(t)

∥∥.

Therefore,

sup
t∈J

t(1–ν)(1–μ)∥∥(

∗x1

)
(t) –

(

∗x2

)
(t)

∥∥ ≤ χ2 sup
t∈J

t(1–ν)(1–μ)∥∥x1(t) – x2(t)
∥∥.

This implies that

∥∥
∗x1 – 
∗x2
∥∥

Y ≤ χ2‖x1 – x2‖Y .
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Then 
∗ is a contraction mapping, and hence there exists a unique fixed point x ∈ Br such
that 
∗x(t) = x(t). Therefore system (3.4) has a mild solution satisfying x(b) = x1. Thus,
system (3.4) is controllable on J . �

4 Existence and approximate controllability
First, we study existence and uniqueness for Sobolev-type neutral Hilfer fractional differ-
ential equation with impulsive condition in the following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dν,μ
0+ [Zx(t) + G(t, x(γ1(t))]

= Ax(t) + f (t, x(γ2(t)),
∫ t

0 h(t, s)g(s, x(γ3(s))) ds), t ∈ J = (0, b], t �= tk ,

�x|t=tk = Ik(x(t–
k )), k = 1, 2, . . . , m

I(1–ν)(1–μ)
0+ x(0) = x0,

(4.1)

where the delay γi(t) : J → J , i = 1, 2, 3, are continuous functions, the state x(·) takes values
in the Banach space E, the symbols A and Z are linear operators on E.

The operators A : D(A) ⊂ E → E and Z : D(Z) ⊂ E → E satisfy the following conditions:
(H6) A and Z are closed linear operators.
(H7) D(Z) ⊂ D(A) and Z is bijective.
(H8) Z–1 : E → D(Z) is continuous.
Here, (H6) and (H7) together with the closed graph theorem imply the boundedness of

the linear operator AZ–1 : E → E.
(H9) For each t ∈ J and for λ ∈ ρ(AZ–1), the resolvent of AZ–1, the resolvent R(λ, AZ–1)

is compact operator.

Lemma 4.1 (see [26]) Let T(t) be a uniformly continuous semigroup. If the resolvent set
R(λ, A) of A is compact for every λ ∈ ρ(A), then T(t) is a compact semigroup.

From the above fact, AZ–1 generates a compact semigroup {S(t), t > 0} in E, which means
that there exists M > 1 such that supt∈J ‖S(t)‖ ≤ M.

We suppose that 0 ∈ ρ(AZ–1), the resolvent set of AZ–1, and ‖S(t)‖ ≤ M for some constant
M ≥ 1 and every t > 0. We define the fractional power (AZ–1)–γ by

(
AZ–1)–γ =

1
�(γ )

∫ ∞

0
tγ –1S(t) dt, γ > 0.

For γ ∈ (0, 1], (AZ–1)γ is a closed linear operator on its domain D((AZ–1)γ ). Furthermore,
the subspace D((AZ–1)γ ) is dense in E. We will introduce the following basic properties of
(AZ–1)γ .

Theorem 4.1 (see [27]) (1) Let 0 < γ ≤ 1, then Eγ := D((AZ–1)γ ) is a Banach space with
the norm ‖x‖γ = ‖(AZ–1)γ x‖, x ∈ Eγ .

(2) If 0 < β < γ ≤ 1, then D((AZ–1)γ ) ↪→ D((AZ–1)β ) and the embedding is compact when-
ever the resolvent operator of (AZ–1) is compact.

(3) For every 0 < γ ≤ 1, there exists a positive constant Cγ such that

∥∥(
AZ–1)γ S(t)

∥∥ ≤ Cγ

tγ
, 0 < t ≤ b.
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Lemma 4.2 For any x ∈ E, β ∈ (0, 1) and δ ∈ (0, 1], we have

(
AZ–1)Tμ(t)x =

(
AZ–1)1–βTμ(t)

(
AZ–1)βx, 0 < t ≤ b

and

∥∥(
AZ–1)δTμ(t)x

∥∥ ≤ μCδ�(2 – δ)
tδμ�(1 + μ(1 – δ))

‖x‖, 0 < t ≤ b.

Definition 4.1 We say that x ∈ Y is a mild solution of system (4.1) if the function
AZ–1Pμ(t – s)G(s, x(γ1(s)), s ∈ (0, b) is integrable on (0, b) and the following integral equa-
tion is verified:

x(t) = Z–1Sν,μ(t)
[
Zx(0) + G

(
0, x(0)

)]
– Z–1G(t, x

(
γ1(t)

)

+
∫ t

0
Z–1AZ–1Pμ(t – s)G(s, x

(
γ1(s)

)
ds

+
∫ t

0
Z–1Pμ(t – s)f

(
s, x

(
γ2(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ3(τ )

))
dτ

)
ds

+ Z–1
∑

0<tk<t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))

, t ∈ J . (4.2)

To establish the results, we need the following assumptions.
(H10) (i) G : J × E → E is continuous and there exist constants K1 > 0 and K2 > 0 such

that, for all v1, v2 ∈ Br , we have

∥∥(
AZ–1)βG(t, v1) –

(
AZ–1)βG(t, v2)

∥∥ ≤ K1‖v1 – v2‖Y ,

K2 =
∥∥(

AZ–1)βG(t, 0)
∥∥, t ∈ J .

(ii) There exists a constant q such that, for all x1, x2 ∈ E,

∥∥x1
(
γi(t)

)
– x2

(
γi(t)

)∥∥ ≤ q
∥∥x1(t) – x2(t)

∥∥ for i = 1, 2, 3.

(H11) There exists a constant r > 0 such that

5
∥∥Z–1∥∥

{
M�1

�(ν(1 – μ) + μ)

+ ‖b(1–ν)(1–μ)
[

M0 +
C1–βbβμ�(1 + β)

β�(1 + μβ)

]
�2 +

Mb1–ν(1–μ)�3

μ�(μ)

}
≤ r

and

6
∥∥Z–1∥∥[1 + �4]

{
M�1

�(ν(1 – μ) + μ)
+ ‖b(1–ν)(1–μ)

[
M0 +

C1–βbβμ�(1 + β)
β�(1 + μβ)

]
�2

+
Mb1–ν(1–μ)�3

μ�(μ)

}
+ 6b(1–ν)(1–μ)‖h̄‖�4 ≤ r,
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where

�1 =
(‖Z‖ + M0K1

)‖x0‖ + M0K2 + m(L3r + L4), �2 = (K1r + K2),

�3 = N1
(
r + bL(L1r + L2)

)
+ N2,

�4 =
M2bμ‖Z–1‖‖B‖‖B∗‖

λμ�2(μ)
, M0 =

∥∥(
AZ–1)–β∥∥.

Theorem 4.2 If hypotheses (H1)–(H2) and (H6)–(H11) are satisfied, system (4.1) has a
unique mild solution on J provided that

χ3 := 5q
∥∥Z–1∥∥

{
M0K1 +

C1–βbβμK1�(1 + β)
�(1 + μβ)

+
MbμN1

μ�(μ)
(1 + bLL1) +

mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)

}

< 1.

Proof Consider the operator � on Y defined as follows:

(�x)(t) = Z–1Sν,μ(t)
[
Zx(0) + G

(
0, x(0)

)]
– Z–1G(t, x

(
γ1(t)

)

+
∫ t

0
Z–1AZ–1Pμ(t – s)G(s, x

(
γ1(s)

)
ds

+
∫ t

0
Z–1Pμ(t – s)f

(
s, x

(
γ2(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ3(τ )

))
dτ

)
ds

+ Z–1
∑

0<tk <t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))

.

It will be shown that the operator � has a fixed point. This fixed point is then a mild
solution of system (4.1). First we show that � maps Br into itself. For x ∈ Br ,

‖�x‖Y = sup
t∈J

t(1–ν)(1–μ)∥∥(�x)(t)
∥∥

≤ 5 sup
t∈J

t(1–ν)(1–μ)
{∥∥Z–1Sν,μ(t)

[
Zx(0) + G

(
0, x(0)

)]∥∥ +
∥∥Z–1G(t, x

(
γ1(t)

)∥∥

+
∫ t

0

∥∥Z–1AZ–1Pμ(t – s)G(s, x
(
γ1(s)

)∥∥ds

+
∫ t

0

∥∥Z–1Pμ(t – s)
∥∥
∥∥∥∥f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)∥∥∥∥ds

+
∑

0<tk <t

∥∥Z–1Sν,μ(t – tk)Ik
(
x
(
t–
k
))∥∥

}

≤ 5M‖Z–1‖
�(ν(1 – μ) + μ)

[‖Z‖‖x0‖ + M0
(
K1‖x0‖ + K2

)
+ m(L3r + L4)

]

+ 5M0b(1–ν)(1–μ)∥∥Z–1∥∥[K1r + K2]

+
5‖Z–1‖C1–βbβμ+(1–ν)(1–μ)�(1 + β)

β�(1 + μβ)
[K1r + K2]

+
5‖Z–1‖Mb1–ν(1–μ)

μ�(μ)
(
N1

(
r + bL(L1r + L2)

)
+ N2

)
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= 5
∥∥Z–1∥∥

{
M�1

�(ν(1 – μ) + μ)
+ b(1–ν)(1–μ)

[
M0 +

C1–βbβμ�(1 + β)
β�(1 + μβ)

]
�2

+
Mb1–ν(1–μ)�3

μ�(μ)

}

≤ r.

Thus � maps Br into itself.
We show that (�x)(t) is continuous on J for any x ∈ Br . Let 0 < t ≤ b and ε > 0 be suffi-

ciently small, then

∥∥(�x)(· + ε) – (�x)(·)∥∥Y

= sup
t∈J

t(1–ν)(1–μ)∥∥(�x)(t + ε) – (�x)(t)
∥∥

≤ 5
∥∥Z–1∥∥ sup

t∈J
t(1–ν)(1–μ)∥∥(

Sν,μ(t + ε) – Sν,μ(t)
)(

Zx0 + G
(
0, x(0)

))∥∥

+ 5
∥∥Z–1∥∥ sup

t∈J
t(1–ν)(1–μ)∥∥G

(
t + ε, x

(
γ1(t + ε)

))
– G

(
t, x

(
γ1(t)

))∥∥

+ 5
∥∥Z–1∥∥ sup

t∈J
t(1–ν)(1–μ)

∥∥∥∥
∫ t+ε

0
AZ–1Pμ(t + ε – s)G

(
s + ε, x

(
γ1(s + ε)

))
ds

–
∫ t

0
AZ–1Pμ(t – s)G

(
s, x

(
γ1(s)

))
ds

∥∥∥∥

+ 5
∥∥Z–1∥∥ sup

t∈J
t(1–ν)(1–μ)

∥∥∥∥
∫ t+ε

0
Pμ(t + ε – s)f

(
s, x

(
γ2(s)

)
,

∫ s

0
h(s, τ )g

(
τ , x

(
γ3(τ )

))
dτ

)
ds

–
∫ t

0
Pμ(t – s)f

(
s, x

(
γ2(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ3(τ )

))
dτ

)
ds

∥∥∥∥
+ 5

∥∥Z–1∥∥ sup
t∈J

t(1–ν)(1–μ)
∥∥∥∥

∑
0<tk <t+ε

Sν,μ(t + ε – tk)Ik
(
x
(
t–
k
))

–
∑

0<tk<t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))∥∥∥∥. (4.3)

Clearly, the right-hand side of (4.3) tends to zero as ε → 0. Hence, (�x)(t) is continuous
on J .

Next, for x1, x2 ∈ Br , we obtain

∥∥(�x1)(t) – (�x2)(t)
∥∥

≤ 5
∥∥Z–1∥∥

{∥∥(
AZ–1)–β∥∥∥∥(

AZ–1)βG
(
t, x1

(
γ1(t)

))
–

(
AZ–1)βG

(
t, x2

(
γ1(t)

))∥∥

+
∫ t

0
(t – s)μ–1∥∥(

AZ–1)1–βTμ(t – s)
∥∥∥∥(

AZ–1)βG
(
s, x1

(
γ1(s)

))

–
(
AZ–1)βG

(
s, x2

(
γ1(s)

))∥∥ds

+
∫ t

0

∥∥Pμ(t – s)
∥∥
∥∥∥∥f

(
s, x1

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x1

(
γ2(τ )

))
dτ

)
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– f
(

s, x2
(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x2

(
γ2(τ )

))
dτ

)∥∥∥∥ds

+
∑

0<tk<t

∥∥Sν,μ(t – tk)
∥∥∥∥Ik

(
x1

(
t–
k
))

– Ik
(
x2

(
t–
k
))∥∥

}

≤ 5q
∥∥Z–1∥∥

{
M0K1 +

C1–βbβμK1�(1 + β)
�(1 + μβ)

+
MbμN1

μ�(μ)
(1 + bLL1) +

mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)

}∥∥x1(t) – x2(t)
∥∥

≤ χ3
∥∥x1(t) – x2(t)

∥∥.

Therefore,

sup
t∈J

t(1–ν)(1–μ)∥∥(�x1)(t) – (�x2)(t)
∥∥ ≤ χ3 sup

t∈J
t(1–ν)(1–μ)∥∥x1(t) – x2(t)

∥∥.

This implies that

‖�x1 – �x2‖Y ≤ χ3‖x1 – x2‖Y .

Then, � is a contraction mapping on Br . From the Banach fixed point theorem, � has a
unique fixed point x(t) on J . Therefore system (4.1) has a unique mild solution on J .

Second, we will study the approximate controllability for Sobolev-type neutral Hilfer
fractional differential equation with impulsive condition of the form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dν,μ
0+ [Zx(t) + G(t, x(γ1(t))]

= Ax(t) + Bu(t) + f (t, x(γ2(t)),
∫ t

0 h(t, s)g(s, x(γ3(s))) ds),

t ∈ J = (0, b], t �= tk ,

�x|t=tk = Ik(x(t–
k )), k = 1, 2, . . . , m

I(1–ν)(1–μ)
0+ x(0) = x0,

(4.4)

where the control function u(·) is given in L2(J , U), the Banach space of admissible con-
trol functions with U a Banach space. The symbol B stands for a bounded linear from U
into E. �

Definition 4.2 We say that x ∈ Y is a mild solution of system (4.4) if the function
AZ–1Pμ(t – s)G(s, x(γ1(s)), s ∈ (0, b) is integrable on (0, b) and the following integral equa-
tion is verified:

x(t) = Z–1Sν,μ(t)
[
Zx(0) + G

(
0, x(0)

)]
– Z–1G(t, x

(
γ1(t)

)

+
∫ t

0
Z–1AZ–1Pμ(t – s)G(s, x

(
γ1(s)

)
ds +

∫ t

0
Z–1Pμ(t – s)Bu(s) ds

+
∫ t

0
Z–1Pμ(t – s)f

(
s, x

(
γ2(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ3(τ )

))
dτ

)
ds

+ Z–1
∑

0<tk<t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))

, t ∈ J . (4.5)
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In order to study the approximate controllability for system (4.4), we introduce the follow-
ing Sobolev-type linear fractional differential system:

⎧⎨
⎩

Dν,μ
0+ Zx(t) = Ax(t) + Bu(t), t ∈ J

I(1–ν)(1–μ)
0+ x(0) = x0.

(4.6)

It is convenient at this point to introduce the operators associated with (4.6) as follows:

�b
0 =

∫ b

0
(b – s)μ–1Tμ(b – s)BB∗T∗

μ(b – s) ds,

R
(
λ,�b

0
)

=
(
λI + �b

0
)–1, λ > 0.

Let x(b; x0, u) be the state value of (4.4) at terminal state b, corresponding to the control u
and the initial value x0. Denote by R(b, x0) = {x(b; x0, u) : u ∈ L2(J , U)} the reachable set of
system (4.4) at terminal time b, its closure in X is denoted by R(b, x0).

Definition 4.3 System (4.4) is said to be approximately controllable on the interval J if
R(b, x0) = E.

Lemma 4.3 (see [28]) The linear system (4.6) is approximate controllable on J if and only
if the operator λR(λ,�b

0) = λ(λI + �b
0)–1 → 0 as λ → 0+ in the strong operator topology.

We formulate sufficient conditions for the approximate controllability of system (4.4). For
this purpose, we first prove the existence of a mild solution for system (4.4). Second we prove
that system (4.4) is approximately controllable under certain assumptions.

Theorem 4.3 If hypotheses (H1)–(H2) and (H6)–(H11) are satisfied, then system (4.4)
has a mild solution on J provided that

χ4 := 6q
∥∥Z–1∥∥

{
M0K1 +

C1–βbβμK1�(1 + β)
�(1 + μβ)

+
MbμN1

μ�(μ)
(1 + bLL1) +

mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)

}

×
{

1 +
‖Z–1‖M2‖B‖‖B∗‖bμ

λμ�2(μ)

}
< 1.

Proof Consider the operator �∗ on Y defined as follows:

(
�∗x

)
(t) = Z–1Sν,μ(t)

[
Zx(0) + G

(
0, x(0)

)]
– Z–1G(t, x

(
γ1(t)

)

+
∫ t

0
Z–1AZ–1Pμ(t – s)G(s, x

(
γ1(s)

)
ds

+
∫ t

0
Z–1Pμ(t – s)Bu(s) ds

+
∫ t

0
Z–1Pμ(t – s)f

(
s, x

(
γ2(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ3(τ )

))
dτ

)
ds

+ Z–1
∑

0<tk <t

Sν,μ(t – tk)Ik
(
x
(
t–
k
))

,
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where

u(t) = B∗T∗
μ(b – t)

(
λI + �b

0
)–1

{
h̄ – Z–1Sν,μ(b)

[
Zx(0) + G

(
0, x(0)

)]
+ Z–1G(b, x

(
γ1(b)

)

–
∫ b

0
Z–1AZ–1Pμ(b – s)G(s, x

(
γ1(s)

)
ds – Z–1

∑
0<tk <b

Sν,μ(b – tk)Ik
(
x
(
t–
k
))

–
∫ b

0
Z–1Pμ(b – s)f

(
s, x

(
γ2(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ3(τ )

))
dτ

)
ds

}
.

It will be shown that the operator �∗ has a fixed point. This fixed point is then a mild
solution of system (4.4). We show that �∗ maps Br into itself. For x ∈ Br ,

∥∥�∗x
∥∥

Y = sup
t∈J

t(1–ν)(1–μ)∥∥(
�∗x

)
(t)

∥∥

≤ 6 sup
t∈J

t(1–ν)(1–μ)
{∥∥Z–1Sν,μ(t)

[
Zx(0) + G

(
0, x(0)

)]∥∥ +
∥∥Z–1G(t, x

(
γ1(t)

)∥∥

+
∫ t

0

∥∥Z–1AZ–1Pμ(t – s)G(s, x
(
γ1(s)

)∥∥ds

+
∫ t

0

∥∥Z–1Pμ(t – s)
∥∥‖B‖∥∥u(s)

∥∥ds

+
∫ t

0

∥∥Z–1Pμ(t – s)
∥∥
∥∥∥∥f

(
s, x

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x

(
γ2(τ )

))
dτ

)∥∥∥∥ds

+
∑

0<tk<t

∥∥Z–1Sν,μ(t – tk)Ik
(
x
(
t–
k
))∥∥

}

≤ 6M‖Z–1‖
�(ν(1 – μ) + μ)

[‖Z‖‖x0‖ + M0
(
K1‖x0‖ + K2

)
+ m(L3r + L4)

]

+ 6M0b(1–ν)(1–μ)∥∥Z–1∥∥[K1r + K2]

+
6‖Z–1‖C1–βbβμ+(1–ν)(1–μ)�(1 + β)

β�(1 + μβ)
[K1r + K2] +

6M2bμ‖Z–1‖‖B‖‖B∗‖
λμ�2(μ)

×
{

b(1–ν)(1–μ)‖h̄‖

+
M‖Z–1‖

�(ν(1 – μ) + μ)
[‖Z‖‖x0‖ + M0

(
K1‖x0‖ + K2

)
+ m(L3r + L4)

]

+
∥∥Z–1∥∥b(1–ν)(1–μ)(K1r + K2)

[
M0 +

C1–βbβμ�(1 + β)
β�(1 + μβ)

]

+
‖Z–1‖Mb1–ν(1–μ)

μ�(μ)
[
N1

(
r + bL(L1r + L2)

)
+ N2

]}

+
6‖Z–1‖Mb1–ν(1–μ)

μ�(μ)
(
N1

(
r + bL(L1r + L2)

)
+ N2

)

= 6
∥∥Z–1∥∥[1 + �4]

{
M�1

�(ν(1 – μ) + μ)

+ b(1–ν)(1–μ)
[

M0 +
C1–βbβμ�(1 + β)

β�(1 + μβ)

]
�2 +

Mb1–ν(1–μ)�3

μ�(μ)

}
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+ 6b(1–ν)(1–μ)‖h̄‖�4

≤ r.

Thus �∗ maps Br into itself.
Next, for x1, x2 ∈ Br , we obtain

∥∥(
�∗x1

)
(t) –

(
�∗x2

)
(t)

∥∥

≤ 6
∥∥Z–1∥∥

{∥∥(
AZ–1)–β∥∥∥∥(

AZ–1)βG
(
t, x1

(
γ1(t)

))
–

(
AZ–1)βG

(
t, x2

(
γ1(t)

))∥∥

+
∫ t

0
(t – s)μ–1∥∥(

AZ–1)1–βTμ(t – s)
∥∥∥∥(

AZ–1)βG
(
s, x1

(
γ1(s)

))

–
(
AZ–1)βG

(
s, x2

(
γ1(s)

))∥∥ds

+
∫ t

0

∥∥Pμ(t – s)
∥∥
∥∥∥∥f

(
s, x1

(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x1

(
γ2(τ )

))
dτ

)

– f
(

s, x2
(
γ1(s)

)
,
∫ s

0
h(s, τ )g

(
τ , x2

(
γ2(τ )

))
dτ

)∥∥∥∥ds

+
∑

0<tk<t

∥∥Sν,μ(t – tk)
∥∥∥∥Ik

(
x1

(
t–
k
))

– Ik
(
x2

(
t–
k
))∥∥

}

+ 6
∥∥Z–1∥∥

∫ t

0

∥∥Pμ(t – s)
∥∥‖B‖∥∥B∗∥∥∥∥T∗

μ(b – s)
∥∥(

λI + �b
0
)–1

[∥∥(
AZ–1)–β∥∥

× ∥∥(
AZ–1)βG

(
b, x1

(
γ1(b)

))
–

(
AZ–1)βG

(
b, x2

(
γ1(b)

))∥∥

+
∫ b

0
(b – s)μ–1∥∥(

AZ–1)1–βTμ(b – s)
∥∥

× ∥∥(
AZ–1)βG

(
s, x1

(
γ1(s)

))
–

(
AZ–1)βG

(
s, x2

(
γ1(s)

))∥∥ds +
∫ b

0

∥∥Pμ(b – τ )
∥∥

×
∥∥∥∥f

(
τ , x1

(
γ1(τ )

)
,
∫ τ

0
h(τ ,η)g

(
η, x1

(
γ2(η)

))
dη

)

– f
(

τ , x2
(
γ1(τ )

)
,
∫ τ

0
h(τ ,η)g

(
η, x2

(
γ2(η)

))
dη

)∥∥∥∥dτ

+
∑

0<tk<b

∥∥Sν,μ(b – tk)
∥∥∥∥Ik

(
x1

(
t–
k
))

– Ik
(
x2

(
t–
k
))∥∥

]
ds

≤ 6q
∥∥Z–1∥∥

{
M0K1 +

C1–βbβμK1�(1 + β)
�(1 + μβ)

+
MbμN1

μ�(μ)
(1 + bLL1)

+
mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)

}

×
{

1 +
‖Z–1‖M2‖B‖‖B∗‖bμ

λμ�2(μ)

}∥∥x1(t) – x2(t)
∥∥

≤ χ4
∥∥x1(t) – x2(t)

∥∥.
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Therefore,

sup
t∈J

t(1–ν)(1–μ)∥∥(
�∗x1

)
(t) –

(
�∗x2

)
(t)

∥∥ ≤ χ4 sup
t∈J

t(1–ν)(1–μ)∥∥x1(t) – x2(t)
∥∥.

This implies that

∥∥�∗x1 – �∗x2
∥∥

Y ≤ χ4‖x1 – x2‖Y .

Then �∗ is a contraction mapping and hence there exists a unique fixed point x ∈ Br such
that �∗x(t) = x(t). Hence, any fixed point of �∗ is a mild solution of (4.4) on J . �

Theorem 4.4 Assume that hypotheses (H1)–(H2) and (H6)–(H11) hold. Further, if the
functions f : J × E × E → E, G : J × E → E are uniformly bounded and {S(t), t > 0} is com-
pact, then system (4.4) is approximately controllable on J .

Proof Let xλ(·) be a fixed point of �∗ in Br . Any fixed point of �∗ is a mild solution of (4.4)
on J under the control

uλ(t) = B∗T∗
μ(b – t)R

(
λ,�b

0
)
p
(
xλ

)
,

where

p
(
xλ

)
= h – Z–1Sν,μ(b)

[
Zx(0) + G

(
0, x(0)

)]
+ Z–1G(b, xλ

(
γ1(b)

)

–
∫ b

0
Z–1AZ–1Pμ(b – s)G(s, xλ

(
γ1(s)

)
ds

– Z–1
∑

0<tk<b

Sν,μ(b – tk)Ik
(
xλ

(
t–
k
))

–
∫ b

0
Z–1Pμ(b – s)f

(
s, xλ

(
γ2(s)

)
,
∫ s

0
h(s, τ )g

(
τ , xλ

(
γ3(τ )

))
dτ

)
ds,

and satisfies

xλ(b) = h – λ
(
λI + �b

0
)–1p

(
xλ

)
. (4.7)

It follows from the assumption on f and G that there exists D > 0 such that

∥∥∥∥f
(

s, xλ
(
γ2(s)

)
,
∫ s

0
k(s, τ )g

(
τ , xλ

(
γ3(τ )

))
dτ

)∥∥∥∥ ≤ D,

∥∥G
(
s, xλ

(
γ1(s)

))∥∥ ≤ D.

Consequently, the sequence {G(s, xλ(γ1(s))), f (s, xλ(γ2(s)),
∫ s

0 k(s, τ )g(τ , xλ(γ3(τ ))) dτ )} is
bounded in L2(J , E).

Thus there is a subsequence, still denoted by {G(s, xλ(γ1(s))), f (s, xλ(γ2(s)),
∫ s

0 k(s, τ ) ×
g(τ , xλ(γ3(τ ))) dτ )}, that converges to say {G(s), f (s)}. On the other hand, by Lemma 4.3,
the operator λ(λI + �b

0)–1 → 0 strongly as λ → 0+ for all 0 < s ≤ b, and, moreover,
‖λ(λI + �b

0)–1‖ ≤ 1.



Ahmed et al. Advances in Difference Equations  (2018) 2018:226 Page 18 of 20

Thus, the Lebesgue dominated convergence theorem and the compactness of Pμ(t) yield

∥∥xλ(b) – h
∥∥

≤ ∥∥λ
(
λI + �b

0
)–1[h – Z–1Sν,μ(b)

(
Zx(0) + G

(
0, x(0)

))]∥∥
+

∥∥λ
(
λI + �b

0
)–1Z–1G(b, xλ

(
γ1(b)

)∥∥

+
∫ b

0

∥∥λ
(
λI + �b

0
)–1Z–1AZ–1Pμ(b – s)G(s, xλ

(
γ1(s)

)∥∥ds

+
∫ b

0

∥∥∥∥λ
(
λI + �b

0
)–1Z–1Pμ(b – s)f

(
s, xλ

(
γ2(s)

)
,
∫ s

0
k(s, τ )g

(
τ , xλ

(
γ3(τ )

))
dτ

)∥∥∥∥ds

+
∥∥λ

(
λI + �b

0
)–1∥∥

∥∥∥∥Z–1
∑

0<tk <b

Sν,μ(b – tk)Ik
(
xλ

(
t–
k
))∥∥∥∥ → 0, as λ → 0+.

This gives the approximate controllability of (4.4), the proof is complete. �

5 Application
Consider the following Sobolev-type Hilfer fractional delay partial differential equation
with impulsive condition:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dν, 3
5

0+ [x(t, y) – xyy(t, y) + G̃(t, x(t – ρ, y))]

= ∂2x(t,y)
∂y2 + χ (t, y) + x(t – ρ, y) +

∫ t
0 sin x(s – ρ, y) ds,

0 ≤ y ≤ π , t ∈ J = (0, b], t �= tk ,

x(t, 0) = x(t,π ) = 0, t ∈ J ,

x(t+
k , y) – x(t–

k , y) = Ik(x(t–
k , y)), k = 1, 2, . . . , m,

I
2
5 (1–ν)

0+ (x(0, y)) = x0(y), 0 ≤ y ≤ π ,

(5.1)

where Dν, 3
5

0+ is a Hilfer fractional derivative of order 0 ≤ ν ≤ 1,μ = 3
5 .

Let E = U = L2([0,π ]), define the operators Z : D(Z) ⊂ E → E and A : D(A) ⊂ E → E
by Zx = x – xyy and Ax = xyy, where the domains D(Z) and D(A) are given by {x ∈ E :
x, xy are absolutely continuous, xyy ∈ E, x(0) = x(π ) = 0}.

Then A and Z can be written as

Ax =
∞∑

n=1

n2(x, xn)xn, x ∈ D(A), Zx =
∞∑

n=1

(
1 + n2)(x, xn)xn, x ∈ D(Z).

Furthermore, for x ∈ E, we have

Z–1x =
∞∑

n=1

1
1 + n2 (x, xn)xn, AZ–1x =

∞∑
n=1

n2

1 + n2 (x, xn)xn.

It is known that AZ–1 is self-adjoint and has the eigenvalues λn = –n2π2, n ∈ N , with the
corresponding normalized eigenvectors en(ξ ) =

√
2 sin(nπξ ). Furthermore, AZ–1 gener-

ates a uniformly strongly continuous semigroup of bounded linear operators S(t), t > 0, on
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E which is given by

S(t)ξ =
∞∑

n=1

(ξn, en)en =
∞∑

n=1

2e–n2π2t sin(nπy)
∫ 1

0
sin(nπτ )ξ (τ ) dτ , ξ ∈ E.

We define the bounded operator B : U → E by Bu = χ (t, y), 0 ≤ y ≤ π , u ∈ U .
Also, we define the following functions:

x(t)y = x(t, y), G
(
t, x

(
γ1(t)

))
(y) = G̃

(
t, x(t – ρ, y)

)
,

∫ t

0
h(t, s)g(s, x

(
γ3(s)

)
(y) ds =

∫ t

0
sin x(s – ρ, y) ds,

f
(

t, x
(
γ2(t)

)
,
∫ t

0
h(t, s)g

(
s, x

(
γ2(s)

))
ds

)
(y) = x(t – ρ, y) +

∫ t

0
sin x(s – ρ, y) ds,

where h(t, s) = 1. Choose b and other constants such that conditions (H1)–(H2) and (H6)–
(H11) are satisfied.

Hence, all the hypotheses of Theorem 4.3 and Theorem 4.4 are satisfied and

χ4 := 6q
∥∥Z–1∥∥

{
M0K1 +

C1–βbβμK1�(1 + β)
�(1 + μβ)

+
MbμN1

μ�(μ)
(1 + bLL1) +

mMb(ν–1)(1–μ)

�(ν(1 – μ) + μ)

}

×
{

1 +
‖Z–1‖M2‖B‖‖B∗‖bμ

λμ�2(μ)

}
< 1.

So the Sobolev-type Hilfer fractional delay partial differential equation with impulsive
condition (5.1) is approximately controllable on J .
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