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Abstract
Partial differential equations with nonlocal boundary conditions have been widely
applied in various fields of science and engineering. In this work, we first build a high
accuracy difference scheme for Poisson equation with two integral boundary
conditions. Then, we prove that the scheme can reach the asymptotic optimal error
estimate in the maximum norm through applying the discrete Fourier transformation.
In the end, numerical experiments validate the correctness of theoretical results and
show the stability of the scheme.
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1 Introduction
Partial differential equations with nonlocal boundary conditions have been widely used to
build mathematical models in various fields of science and engineering such as thermoe-
lasticity, physics, medical science, chemical engineering, and so on (see [1–6]).

This work is concerned with the following two-dimensional Poisson equation with two
integral boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u = f (x, y), (x, y) ∈ � = (0, 1)2, (1.1a)

u|x=0 = μ1(y), 0 < y < 1, (1.1b)

u|x=1 = μ2(y), 0 < y < 1, (1.1c)
∫ ξ1

0 u dy = μ3(x), 0 < x < 1, (1.1d)
∫ 1

ξ2
u dy = μ4(x), 0 < x < 1, (1.1e)

where f (x, y), μi(y) (i = 1, 2), μj(x) (j = 3, 4) are some given smooth functions, and ξ1, ξ2 are
constants such that 0 < ξ1 < ξ2 < 1.

FDM is preferred by many researchers because of its simple format and easy program-
ming. Recently, Sapagovas [7] presented a difference scheme of fourth-order approxima-
tion for Poisson equation with two integral boundary conditions. The author also studied
its solvability and justified an iteration method for solving the corresponding difference
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system. Berikelashvili [8] constructed some difference schemes for Poisson problem with
one integral condition and obtained its estimate of the convergence rate. For Poisson equa-
tion with Bitsadze–Samarskii nonlocal boundary, a new method was developed [9] which
used the five-point difference scheme to discretize Laplace operator. There are also some
literature works on nonlinear and high order elliptic problems with nonlocal boundary
conditions. In [10, 11], the authors presented some iterative methods for the system of
difference equations to solve nonlinear elliptic equation with integral condition. Pao and
Wang [12, 13] used finite difference method to construct a coupled system of two second-
order equations for fourth-order elliptic equations with nonlocal boundary conditions.

In recent years, the radial basis function (RBF) collocation method is very popular for
PDEs to seek numerical solution, especially for elliptic equations with nonlocal bound-
ary [14–16]. However, the numerical results of RBF collocation method often suffer from
shape parameter and condition number of the collocation matrix. As for some other nu-
merical methods for elliptic equations with nonlocal boundary conditions, e.g., FEM, we
refer the reader to [17–19].

To our knowledge, few studies not only focus on building high accuracy difference
schemes which are of optimal or asymptotic optimal order for error estimation and show-
ing theoretical proofs, but also on displaying corresponding numerical tests for Poisson
problem with nonlocal boundary conditions. Therefore, how to design a high accuracy
scheme and prove that it is of optimal or asymptotic optimal order for error estimation
is a great challenge for us. In this work, we consider a two-dimensional Poisson problem
with two integral conditions. The first novel idea is that we build a high accuracy differ-
ence scheme by introducing the equivalent relations which are convenient to discretize
two nonlocal conditions. The second one is that we ingeniously apply the discrete Fourier
transformation (DFT) to transform the two-dimensional problem to a one-dimensional
problem for error analysis. Besides, we prove that the difference scheme can reach the
asymptotic optimal error estimate in the maximum norm. Numerical examples confirm
the correctness of theoretical results.

This work is organized as follows. In Sect. 2, we present a finite difference scheme for
Problem (1.1a)–(1.1e). In Sect. 3, the error equations of the scheme are analyzed with the
DFT and the corresponding error estimates are presented. In Sect. 4, we show numerical
results to support our conclusions. Finally, a summary of this article and future work in
this field are discussed.

2 The finite difference discretization
For convenience of discretizing the integral boundary conditions, we can easily prove the
equivalent relations as follows.

Lemma 2.1 Suppose that the solution u ∈ C2(�̄) in Problem (1.1a)–(1.1e), and μi(y) (i =
1, 2) and μj(x) (j = 3, 4) satisfy the following consistent properties:

∫ ξ1

0
μ1(y) dy = μ3(0),

∫ ξ1

0
μ2(y) dy = μ3(1), (2.1)

∫ 1

ξ2

μ1(y) dy = μ4(0),
∫ 1

ξ2

μ2(y) dy = μ4(1). (2.2)
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Then the integral boundary conditions (1.1d) and (1.1e) are equivalent to the nonlocal
boundary conditions

uy|y=ξ1 – uy|y=0 = φ1(x) (2.3)

and

uy|y=1 – uy|y=ξ2 = φ2(x), (2.4)

respectively, where

φ1(x) =
∫ ξ1

0
f (x, y) dy – μ′′

3(x), φ2(x) =
∫ 1

ξ2

f (x, y) dy – μ′′
4(x).

Proof Integrating two sides of (1.1a) about the variable y over the interval [0, ξ1] and using
(1.1d), we have

μ′′
3(x) +

∫ ξ1

0
uyy dy =

∫ ξ1

0
uxx dy +

∫ ξ1

0
uyy dy =

∫ ξ1

0
f (x, y) dy,

i.e.,

uy|y=ξ1 – uy|y=0 =
∫ ξ1

0
f (x, y) dy – μ′′

3(x),

which yields (2.3).
In turn, when (2.3) holds, together with (1.1a), we can obtain

∫ ξ1

0
uxx dy = μ′′

3(x).

Integrating two sides of the above expression about the variable x twice, we have

∫ ξ1

0
u dy = μ3(x) + C1x + C2,

where C1 and C2 are two constants.
Let x = 0 and x = 1 in the above equation respectively, and from (1.1b)–(1.1c) and (2.1),

we get

C1 = C2 = 0,

which yields

∫ ξ1

0
u dy = μ3(x).

Therefore, (1.1d) is equivalent to (2.3)
Similarly, from (1.1a)–(1.1c) and (2.2), we can also derive that (1.1e) is equivalent to (2.4).

Thus, the proof of this lemma is completed. �
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Based on Lemma 2.1, we are now in a position to present the finite difference scheme
for Problem (1.1a)–(1.1e). Divide � into an N × N mesh by

0 = x0 < x1 < · · · < xN = 1, 0 = y0 < y1 < · · · < yN = 1,

where xi = ih, yj = jh, h = 1
N is the stepsize in both x and y directions, and N is the corre-

sponding partition number. For convenience, we only discuss Problem (1.1a)–(1.1e) under
the assumption that ξ1 and ξ2 are two rational constants. Moreover, assume that ξm = Nmh
(m = 1, 2), where N1, N2 are integers and 0 < N1 < N2 < N .

Let U be the finite difference approximation of u. Denote ui,j = u(xi, yj), Ui,j = U(xi, yj),
fi,j = f (xi, yj), (μm)j = μm(yj), and (φm)i = φm(xi) (m = 1, 2). Then the governing equation
(1.1a) and two local boundary conditions (1.1b) and (1.1c) can be discretized as follows:

⎧
⎨

⎩

Ui–1,j–2Ui,j+Ui+1,j
h2 + Ui,j–1–2Ui,j+Ui,j+1

h2 = fi,j, i, j = 1, . . . , N – 1,

U0,j = (μ1)j, UN ,j = (μ2)j, j = 1, . . . , N – 1.
(2.5)

From Lemma 2.1, two nonlocal boundary conditions (1.1d) and (1.1e) can be discretized
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

1
h ( 3

2 Ui,N1 – 2Ui,N1–1 + 1
2 Ui,N1–2) – 1

h (– 3
2 Ui,0 + 2Ui,1 – 1

2 Ui,2) = (φ1)i,
1
h ( 3

2 Ui,N – 2Ui,N–1 + 1
2 Ui,N–2) – 1

h (– 3
2 Ui,N2 + 2Ui,N2+1 – 1

2 Ui,N2+2) = (φ2)i,

i = 1, . . . , N – 1.

(2.6)

3 Error estimate
Denote the error at point (xi, yj) by ei,j := Ui,j – ui,j. Suppose that the exact solution u ∈
C4(�̄). Then, from (2.5) and (2.6), we have

⎧
⎨

⎩

ei–1,j–2ei,j+ei+1,j
h2 + ei,j–1–2ei,j+ei,j+1

h2 = αi,j, i, j = 1, . . . , N – 1,

e0,j = eN ,j = 0, j = 1, . . . , N – 1,
(3.1)

and

⎧
⎪⎪⎨

⎪⎪⎩

1
h ( 3

2 ei,N1 – 2ei,N1–1 + 1
2 ei,N1–2) – 1

h (– 3
2 ei,0 + 2ei,1 – 1

2 ei,2) = (β1)i,
1
h ( 3

2 ei,N – 2ei,N–1 + 1
2 ei,N–2) – 1

h (– 3
2 ei,N2 + 2ei,N2+1 – 1

2 ei,N2+2) = (β2)i,

i = 1, . . . , N – 1,

(3.2)

where αi,j and (βm)i (m = 1, 2) are the corresponding local truncation errors satisfying

max
i,j=1,...,N–1

{|αi,j|,
∣
∣(β1)i

∣
∣,

∣
∣(β2)i

∣
∣
}

� h2. (3.3)

Aiming to present the estimation of the errors ei,j (i, j = 1, 2, . . . , N – 1), we introduce the
following DFT formula:

ei,j =
√

2h
N–1∑

k=1

êk,j sin kπxi, i, j = 1, 2, . . . , N – 1. (3.4)
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Taking the DFT for αi,j and (βm)i, respectively, we find

⎧
⎨

⎩

αi,j =
√

2h
∑N–1

k=1 α̂k,j sin kπxi, i, j = 1, . . . , N – 1,

(βm)i =
√

2h
∑N–1

k=1 (β̂m)k sin kπxi, i = 1, . . . , N – 1, m = 1, 2.

Since
√

2h(sin kπxi)(N–1)×(N–1) is an orthogonal matrix, the following inverse DFT formu-
las hold:

⎧
⎨

⎩

α̂k,j =
√

2h
∑N–1

i=1 αi,j sin iπxk , k, j = 1, . . . , N – 1,

(β̂m)k =
√

2h
∑N–1

i=1 (βm)i sin iπxk , k = 1, . . . , N – 1, m = 1, 2.
(3.5)

Thereby, from (3.3) and (3.5), we can derive

max
k,j=1,...,N–1

{|̂αk,j|,
∣
∣(β̂1)k

∣
∣,

∣
∣(β̂2)k

∣
∣
}

� h
3
2 . (3.6)

Substituting (3.4) into the first equation of (3.1) and (3.2), respectively, we have

⎧
⎪⎪⎨

⎪⎪⎩

êk,j–1 – ωk̂ek,j + êk,j+1 = h2α̂k,j j = 1, . . . , N – 1,
3
2 êk,N1 – 2̂ek,N1–1 + 1

2 êk,N1–2 + 3
2 êk,0 – 2̂ek,1 + 1

2 êk,2 = h(β̂1)k ,
3
2 êk,N – 2̂ek,N–1 + 1

2 êk,N–2 + 3
2 êk,N2 – 2̂ek,N2+1 + 1

2 êk,N2+2 = h(β̂2)k ,

(3.7)

where

ωk = 2 + 4 sin2 θk , θk =
kπh

2
. (3.8)

Let εk,j = êk,j + h2pk,j, where pk,j satisfies

⎧
⎨

⎩

–pk,j–1 + ωkpk,j – pk,j+1 = α̂k,j, j = 1, . . . , N – 1,

pk,0 = pk,N = 0.
(3.9)

From (3.7) and (3.9), one can see that

⎧
⎪⎪⎨

⎪⎪⎩

εk,j–1 – ωkεk,j + εk,j+1 = 0, j = 1, . . . , N – 1,
3
2εk,N1 – 2εk,N1–1 + 1

2εk,N1–2 + 3
2εk,0 – 2εk,1 + 1

2εk,2 = h(β̃1)k ,
3
2εk,N – 2εk,N–1 + 1

2εk,N–2 + 3
2εk,N2 – 2εk,N2+1 + 1

2εk,N2+2 = h(β̃2)k ,

(3.10)

where (β̃m)k (m = 1, 2) are defined by

(β̃1)k = (β̂1)k + h
(

3
2

pk,N1 – 2pk,N1–1 +
1
2

pk,N1–2 +
3
2

pk,0 – 2pk,1 +
1
2

pk,2

)

,

(β̃2)k = (β̂2)k + h
(

3
2

pk,N – 2pk,N–1 +
1
2

pk,N–2 +
3
2

pk,N2 – 2pk,N2+1 +
1
2

pk,N2+2

)

.

Let ‖α̂k‖ = maxj=1,...,N–1 |̂αk,j|. Now, we can obtain the following estimates.
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Lemma 3.1 Suppose that pk,j satisfies (3.9). Then we have

max
j=1,...,N–1

|pk,j| � h–2

k2 ‖α̂k‖ (3.11)

and

max
j=0,...,N–1

|pk,j+1 – pk,j| � h–1‖α̂k‖. (3.12)

Proof Let |pk,�| = maxj=1,...,N–1 |pk,j|. Then, from (3.8) and (3.9), we have

|̂αk,�| = |–pk,�–1 + ωkpk,� – pk,�+1| ≥ (ωk – 2)|pk,�| = 4 sin2 θk|pk,�|. (3.13)

Recalling that θk = kπh
2 , h = 1

N , and 1 ≤ k ≤ N – 1, we can derive

sin θk ≥ 2
π

θk = kh. (3.14)

Therefore, one can easily infer (3.11).
Let δk,i = α̂k,i – 4 sin2 θkpk,i, i = 1, . . . , N – 1. From (3.13), we have

|δk,i| ≤ 2‖α̂k‖. (3.15)

From (3.9), we get

–pk,i–1 + 2pk,i – pk,i+1 = δk,i.

Then, summing the above equations over i from 1 to j (1 ≤ j ≤ N – 1), we obtain

pk,j+1 – pk,j = pk,1 – pk,0 –
j∑

i=1

δk,i. (3.16)

Furthermore, summing (3.16) over j from 1 to N – 1 and noticing pk,N = pk,0 = 0, we get

–(pk,1 – pk,0) = (N – 1)(pk,1 – pk,0) –
N–1∑

j=1

j∑

i=1

δk,i.

From (3.15) and the above equation, we have

|pk,1 – pk,0| � h–1‖α̂k‖.

Therefore, using (3.15) again together with (3.16), we finally obtain (3.12) which completes
the proof. �

Now we present the convergence theorem for Problem (1.1a)–(1.1e).

Theorem 3.1 Suppose that u ∈ C4(�). Then, for i, j = 1, . . . , N – 1, we have

Ui,j = ui,j + O
(
h2| ln h|). (3.17)
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Proof Let λk = (
√

1 + sin2 θk + sin θk)2, k = 1, . . . , N – 1. Obviously,

λk + λ–1
k = ωk ,

√
λk –

1√
λk

= 2 sin θk . (3.18)

From (3.10), we have

εk,j = C1
(
λ

j
k – λ

N1–j
k

)
+ C2

(
λ

j
k – λ

N+N2–j
k

)
, (3.19)

where η = 3
2 – 2λk + 1

2λ2
k ,η = 3

2 – 2λ–1
k + 1

2λ–2
k ,

C1 = h(β̃2)k
(1–λ

N1–N2–N
k )(λN

k η+λ
N2
k η)

and C2 = h(β̃1)k
(1–λ

N+N2–N1
k )(λN1

k η+η)
.

From the definition of (β̃m)k (m = 1, 2), Lemma 3.1, and (3.6), we obtain

∣
∣(β̃m)k)

∣
∣ ≤ ∣

∣(β̂m)k
∣
∣ + 4h–1‖α̂k‖ � h

3
2 , m = 1, 2. (3.20)

Note the fact that

λ
N
2

k ≥
(

1 + sin
kπ

2N

)N

≥
(

1 +
k
N

)N

≥ 2. (3.21)

Then we have

1 – λ
N1–N2–N
k ≥ 1 – λ–N

k ≥ 1
2

.

From the above inequality, (3.19), (3.20), and (3.21), we get

|εk,j| ≤ |C1|max
{
λ

j
k ,λN1–j

k
}

+ |C2|max
{
λ

j
k ,λN+N2–j

k
}

≤ |C1|λN–1
k + |C2|λN+N2–1

k

� h 5
2

1 – λ
N1–N2–N
k

(
λN–1

k

|λN
k η + λ

N2
k η| +

λ
N1–1
k

|λN1
k η + η|

)

� h
5
2

(
λN–1

k

|λN
k η + λ

N2
k η| +

λ
N1–1
k

|λN1
k η + η|

)

.

From (3.18), (3.21), and (3.14), we have

∣
∣λN

k η + λ
N2
k η

∣
∣ =

1
2
√

λk

(
√

λk –
1√
λk

)
(
λN–2

k (3λk – 1) – λ
N2
k (3 – λk)

)

� λN–1
k

(
1 – λ

N2–N+1
k

)
sin θk � khλN–1

k
(
1 – λ

ξ2N–N+1
k

)
� khλN–1

k .

Similar to the above estimation, we can derive

∣
∣λ

N1
k η + η

∣
∣ � khλ

N1–1
k .

Therefore, we get

|εk,j| � h 3
2

k
.
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Table 1 The errors for finite difference method in two norms

h ‖u – U‖2 ratio ‖u – U‖∞ ratio

1/16 6.504E–03 1.724E–02
1/32 1.728E–03 3.76 4.545E–03 3.79
1/64 4.451E–04 3.88 1.166E–03 3.90
1/128 1.130E–04 3.94 2.953E–04 3.95

Table 2 The errors for finite difference method in the sense of pointwise

(x, y) (0.25, 0.25) (0.25, 0.5) (0.5, 0.25) (0.5, 0.5)
h ratio ratio ratio ratio

1/16 4.241E–03 5.471E–03 5.998E–03 7.737E–03
1/32 1.165E–03 3.64 1.437E–03 3.80 1.647E–03 3.64 2.035E–03 3.80
1/64 3.043E–04 3.83 3.688E–04 3.90 4.303E–04 3.83 5.216E–04 3.90
1/128 7.773E–05 3.91 9.337E–05 3.95 1.099E–04 3.92 1.320E–04 3.95

From the definition of εk,j, Lemma 3.1, and (3.6), we have

|̂ek,j| =
∣
∣εk,j – h2pk,j

∣
∣ ≤ |εk,j| + h2|pk,j| � h 3

2

k
+

‖α̂k‖
k2 � h 3

2

k
.

Together with (3.4), we finally obtain (3.17), which completes the proof. �

4 Numerical experiments
In this section, we present two typical examples to demonstrate the theoretical results and
compare the numerical results with the RBF collocation method [15].

Example 4.1 Consider Problem (1.1a)–(1.1e), and let

f (x, y) = –2π2 sinπx sinπy, ξ1 =
1
4

, ξ2 =
1
2

, μ1(y) = μ2(y) = 0,

μ3(x) = –
1
π

(√
2

2
– 1

)

sinπx, μ4(x) =
1
π

sinπx.

One can check that the exact solution is u(x, y) = sinπx sinπy.

In this experiment, we take the uniform partition for � and employ the preconditioned
conjugate gradient method to solve the corresponding difference equations (2.5) and (2.6).
Numerical results are shown in Tables 1 and 2, where the norms ‖u – U‖m (m = 2,∞)
are defined by ‖u – U‖2 = 1

N (
∑N

i=1
∑N

j=1 |ui,j – Ui,j|2) 1
2 , ‖u – U‖∞ = max1≤i,j≤N |ui,j – Ui,j|,

respectively. To illustrate the pointwise error, we choose four typical points and show the
corresponding errors in Table 2. From the results, one can see that the convergent order
is close to two, which validates the correctness of the theoretical results.

Now, we adopt the RBF collocation method to solve Example 4.1. Like [15], we examine
efficiency of the method based on regular distribution and MQ RBF, i.e., let RBF

φ(r) =
√

1 + ε2r2, (4.1)

where ε is the shape parameter. Take ε = 2 and the results are shown in Tables 3 and 4,
where κ(A) and URBF denote the condition number of the discretize linear system and the
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Table 3 The errors for the RBF collocation method in two norms

h κ (A) ‖u – URBF‖2 ratio ‖u – URBF‖∞ ratio

1/16 9.8519e+16 2.6519e–05 – 1.4564e–04 –
1/32 2.0368e+20 2.0121e–06 13.18 1.3284e–05 10.96
1/64 3.9795e+21 1.0321e–05 0.19 6.7160e–05 0.20
1/128 9.1311e+22 5.1418e–05 0.20 3.4878e–04 0.19

Table 4 The errors for the RBF collocation method in the sense of pointwise

(x, y) (0.25, 0.25) (0.25, 0.5) (0.5, 0.25) (0.5, 0.5)
h ratio ratio ratio ratio

1/16 1.1372e–05 – 6.8717e–06 – 1.8715e–05 – 1.0472e–05 –
1/32 2.2706e–06 5.01 1.5711e–06 4.37 5.3550e–07 34.95 1.5465e–06 6.77
1/64 1.3262e–06 1.71 9.3458e–06 0.17 5.7546e–06 0.09 6.5863e–06 0.23
1/128 3.5495e–05 0.04 2.1038e–05 0.44 2.2841e–05 0.25 9.6709e–06 0.68

corresponding approximation solution, respectively. By comparing Tables 3 and 4 with
Tables 1 and 2, one can see that when h decreases gradually from 1/16 to 1/128, one fact
is that the RBF collocation method has better approximation to the exact solution than
our method. But the other fact is that the κ(A) becomes larger which would make the
discretize linear system unsolvable. Meanwhile, the convergence rate of errors for RBF
collocation method decreases rapidly near to zero. In turn, the convergence rate of errors
for our method is always kept at about 4 whether h is large or small. Therefore, we can
conclude that our method is far more stable than the RBF collocation method, and it can
get better approximation numerical results to the exact solution with h becoming smaller.

Example 4.2 Consider Problem (1.1a)–(1.1e), and let

f (x, y) =
(
4 + x + y2)ex, ξ1 =

1
4

, ξ2 =
1
2

, μ1(y) = y2, μ2(y) = e
(
1 + y2),

μ3(x) =
1
4

xex +
1

192
ex, μ4(x) =

1
2

xex +
7

24
ex.

One can verify that the exact solution is u(x, y) = ex(x + y2).

In this example, take the same partitions as in Example 4.1 and let the shape parameter
ε = 6. The numerical results of our method are shown in Tables 5 and 6, while the results
of the RBF collocation method are shown in Tables 7 and 8. From Tables 5 and 6, one can
see that the convergent order is close to two, which confirms the correctness of theoret-
ical results again. From Tables 7 and 8, the approximation solution obtained by the RBF
collocation method is very close to the exact solution when h = 1/16, 1/32 and 1/64. How-
ever, the ratio of error norms drops sharply to zero when h = 1/128. By comparison with
Tables 5 and 6, the fact that our approach is more stable than the RBF collocation method
is demonstrated once again.

5 Summary and conclusions
In this paper, we construct a high accuracy difference scheme for Poisson equation with
two integral boundary conditions and prove that the scheme can reach the asymptotic
optimal error estimate. Numerical results verify the correctness of theoretical analysis.
In the future, we will work on designing some other high order difference schemes (e.g.,



Zhou and Yu Advances in Difference Equations  (2018) 2018:225 Page 10 of 11

Table 5 The errors for finite difference solutions in two norms

h ‖u – U‖2 ratio ‖u – U‖∞ ratio

1/16 2.394E–04 3.716E–04
1/32 6.077E–05 3.94 9.298E–05 4.00
1/64 1.531E–05 3.97 2.327E–05 4.00
1/128 3.842E–06 3.98 5.817E–06 4.00

Table 6 The errors for finite difference solutions in the sense of pointwise

(x, y) (0.25, 0.25) (0.25, 0.5) (0.5, 0.25) (0.5, 0.5)
h ratio ratio ratio ratio

1/16 2.168E–04 2.269E–04 3.187E–04 3.333E–04
1/32 5.422E–05 4.00 5.674E–05 4.00 7.972E–05 4.00 8.337E–05 4.00
1/64 1.356E–05 4.00 1.419E–05 4.00 1.993E–05 4.00 2.085E–05 4.00
1/128 3.389E–06 4.00 3.547E–06 4.00 4.984E–06 4.00 5.212E–06 4.00

Table 7 The errors for the RBF collocation method in two norms

h κ (A) ‖u – URBF‖2 ratio ‖u – URBF‖∞ ratio

1/16 1.4646e+09 1.3794e–03 – 1.7503e–02 –
1/32 3.9473e+14 6.9637e–05 19.81 1.5305e–03 11.44
1/64 3.5329e+21 1.0098e–06 68.96 2.0507e–05 74.63
1/128 1.8454e+22 8.4855e–04 0.00 8.2442e–03 0.00

Table 8 The errors for the RBF collocation method in the sense of pointwise

(x, y) (0.25, 0.25) (0.25, 0.5) (0.5, 0.25) (0.5, 0.5)
h ratio ratio ratio ratio

1/16 2.1454e–04 – 4.2667e–05 – 3.3242e-04 – 9.1856e–05 –
1/32 1.0465e–05 20.50 2.0434e–06 20.88 1.5989e–05 20.79 4.6344e–06 19.82
1/64 4.7127e–08 222.06 8.0976e–08 25.23 6.8216e–08 234.39 7.1355e–008 64.95
1/128 4.7203e–05 0.00 5.1627e–04 0.00 1.9326e–04 0.00 1.2537e–05 0.01

fourth-order nonstandard compact finite difference [20], or sixth-order implicit finite dif-
ference [21]) for Poisson problem with other nonlocal boundary conditions. Besides, we
will also try to apply some other analytic methods for error estimation, e.g., homotopy
analysis transform method [22, 23], or Lie symmetry analysis method [24, 25].
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