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Abstract
In this paper, firstly, we solve the linear 3D Schrödinger equation using Douglas–Gunn
alternating direction implicit (ADI) scheme and high-order compact (HOC) ADI
scheme, which have the order O(τ 2 + h2) and O(τ 2 + h4), respectively. Secondly,
a fourth-order compact ADI scheme, based on the Douglas–Gunn ADI scheme
combined with second-order Strang splitting technique, is proposed for solving 3D
nonlinear Schrödinger equation. Stability analysis has demonstrated that these
schemes are unconditionally stable. Finally, numerical results show that these
schemes preserve the conservation laws and provide accurate and stable solutions
for the 3D linear and nonlinear Schrödinger equations.
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1 Introduction
The nonlinear Schrödinger (NLS) equation has been used extensively in underwater
acoustics, quantum mechanics, plasma physics, nonlinear optics, electromagnetic wave
propagation, etc. [1–4]. In this paper, we consider the following 3D Schrödinger equation:

i
∂u
∂t

= –a(uxx + uyy + uzz) + β|u|2u + v(x, y, z)u, (x, y, z, t) ∈ � × (0, T], (1.1)

with the initial and boundary conditions

u(x, y, z, 0) = u0(x, y, z), (x, y, z) ∈ �, (1.2)

u(x, y, z, t) = 0, (x, y, z) ∈ ∂�, t ∈ (0, T], (1.3)

where u = u(x, y, z, t) is a complex-valued function, v(x, y, z) is an arbitrary real-valued po-
tential function, a and β are real constants. Here, we suppose � = [L1, L2]3, ∂� is the
boundary of �, u0 is a given sufficiently smooth function, and i =

√
–1. There have been

different kinds of numerical methods on the solution for various Schrödinger equations
[5–10]. For example, Bao and Cai [11] established uniform error estimates of finite differ-
ence methods for the NLS equation perturbed by the wave operator. Chang et al. [12] stud-
ied several finite difference schemes and compared them for the generalized NLS equa-
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tion. Kurkinaitis and Ivanauskas [13] investigated several types of finite difference schemes
for solving a system of the NLS equations. Besides, Sulem et al. [14] proposed several fi-
nite difference schemes, including spectral method, to study the singular solutions to the
two-dimensional cubic NLS equations.

In the past years, high-order compact (HOC) methods, which feature high-order accu-
racy and smaller stencils, have been proposed to solve multi-dimensional partial differen-
tial equations [15–18]. For the 2D Schrödinger equations, Wang et al. [19] studied fourth-
order compact and energy conservative difference schemes, which are fourth-order in
space and second-order in time. Mohebbi and Dehghan [20] developed a compact bound-
ary value method for solving a 2D Schrödinger equation, and this method has fourth-order
accuracy in both space and time. Mahdi [21] used a compact finite difference scheme to
get fourth-order solution for the 2D unsteady Schrödinger equation.

The alternating direction implicit (ADI) method is widely used to solve the multi-
dimensional Schrödinger equations due to its unconditional stability and efficiency in sav-
ing CPU time, see for instance Xu and Zhang [22] and the references given there. In order
to reduce the computational cost of HOC method, there has been growing work to de-
velop HOC-ADI method. Tian and Yu [23] studied a HOC-ADI method for the solution
of the unsteady 2D Schrödinger equation. Gao and Xie [24] proposed a fourth-order ADI
compact finite difference scheme for two-dimensional Schrödinger equation. Liao et al.
[25] established a compact ADI scheme for solving linear Schrödinger equations. These
three articles are second-order in time and fourth-order in space with less computational
cost. Li et al. [26] proposed a sixth-order ADI method based on the combined compact
method for solving two-dimensional Schrödinger equations. Kong et al. [27] investigated
HOC-ADI schemes for the multi-dimensional Schrödinger equations. In [28], Christian
Hendricks et al. proposed high-order ADI finite difference schemes for parabolic equa-
tions in the combination technique with application in finance. These methods assimilate
the advantages of the HOC method and ADI skill. There is very little literature concerning
application of the HOC-ADI method to the 3D Schrödinger equation. This paper is just
an effort on this subject. In this paper, we apply the standard Douglas–Gunn ADI method
and HOC-ADI method to solve the 3D linear Schrödinger (LS) equation. Then, we com-
bine the second-order standard Strang splitting [29] skills with the above methods to solve
the 3D nonlinear Schrödinger (NLS) equation.

The rest of our paper is organized as follows: In Sect. 2, we present a standard Douglas–
Gunn ADI scheme and a new HOC-ADI scheme for the 3D LS equation, and the stability
of the standard Douglas–Gunn ADI scheme and the new HOC-ADI scheme is investi-
gated. In Sect. 3, we develop the Douglas–Gunn ADI splitting scheme and the new HOC-
ADI splitting scheme for the 3D NLS equation. In Sect. 4, we present numerical examples
and detailed numerical results to verify our theoretical analysis. Finally, the conclusion
will be made in Sect. 5.

2 A new high-order compact ADI finite difference scheme for LS equation
In this section, we consider the 3D LS equation by choosing β = 0 and v(x, y, z) = 0 in (1.1):

i
∂u
∂t

+ a(uxx + uyy + uzz) = 0, (x, y, z, t) ∈ � × (0, T], (2.1)
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with the initial and boundary conditions

u(x, y, z, 0) = u0(x, y, z), (x, y, z) ∈ �, (2.2)

u(x, y, z, t) = 0, (x, y, z) ∈ ∂�, t ∈ (0, T], (2.3)

where u0 is a smooth function. If we discretize the region �1 = {(x, y, z, t)|(x, y, z, t) ∈
[L1, L2]3 × [0, T]} with mesh of points with coordinates xj = L1 + jh, yk = L1 + kh, zl =
L1 + lh (hx = hy = hz = h), j = k = l = 0, 1, . . . , M, tn = nτ , n = 0, 1, . . . , N , where h = L2–L1

M
and τ = T

N are mesh sizes and time step, respectively. Let un
jkl be the approximation of

u(xj, yk , zl, tn). Applying Crank–Nicolson implicit discretization to (2.1), we have

un+1
jkl – un

jkl

τ
–

a
2

i
(
δ2

x + δ2
y + δ2

z
)(

un+1
jkl + un

jkl
)

= 0, (2.4)

where δ2
x un

jkl = (un
j+1,kl – 2un

jkl + un
j–1,kl)/h2, and δ2

y un
jkl , δ2

z un
jkl are defined similarly. It is easy to

see that (2.4) has second-order accuracy both in space and time.
Adding the term

[
τ

4
a2i2(δ2

xδ
2
y + δ2

xδ
2
z + δ2

y δ
2
z
)

–
τ 2

8
a3i3δ2

xδ
2
y δ

2
z

](
un+1

jkl – un
jkl

)

to the left-hand side of (2.4), we get a second-order scheme

(
1 –

τ

2
aiδ2

x

)(
1 –

τ

2
aiδ2

y

)(
1 –

τ

2
aiδ2

z

)(
un+1

jkl – un
jkl

)

= τai
(
δ2

x + δ2
y + δ2

z
)
un

jkl. (2.5)

Introducing three intermediate variables �u∗, �u∗∗, and �u, we obtain the following
second-order standard Douglas–Gunn ADI scheme (D–G ADI scheme):

(
1 –

τ

2
aiδ2

x

)
�u∗

jkl = τai
(
δ2

x + δ2
y + δ2

z
)
un

jkl, (2.6a)

(
1 –

τ

2
aiδ2

y

)
�u∗∗

jkl = �u∗
jkl, (2.6b)

(
1 –

τ

2
aiδ2

z

)
�ujkl = �u∗∗

jkl , (2.6c)

un+1
jkl – un

jkl = �ujkl. (2.6d)

We note that the intermediate values of �u∗∗ and �u∗ at the boundary are easily obtained
by (2.6c) and (2.6b).

Theorem 1 Suppose that the exact solution u of problem (2.1) is smooth enough, then the
truncation order of the D–G ADI scheme (2.6a)–(2.6d) is O(τ 2 + h2).
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Proof Eliminating the intermediate variables in the D–G ADI scheme (2.6a)–(2.6d), we
obtain

un+1
jkl – un

jkl

τ
–

a
2

i
(
δ2

x + δ2
y + δ2

z
)(

un+1
jkl + un

jkl
)

+
[

τ 2

4
a2i2(δ2

xδ
2
y + δ2

xδ
2
z + δ2

y δ
2
z
)

–
τ 3

8
a3i3δ2

xδ
2
y δ

2
z

]un+1
jkl – un

jkl

τ
= 0.

By the Taylor expansion, it is easy to check that the truncation error of the above scheme
is

Rn+ 1
2

jkl =
(

1
24

τ 2 ∂3u
∂t3 –

ai
8

τ 2
(

∂4u
∂t2 ∂x2 +

∂4u
∂t2 ∂y2 +

∂4u
∂t2 ∂z2

)

+
a2i2

4
τ 2

(
∂5u

∂t ∂x2∂y2 +
∂5u

∂t ∂z2 ∂x2 +
∂5u

∂t ∂y2 ∂z2

)

–
a3i3

8
τ 3

(
∂7u

∂t ∂x2 ∂y2 ∂z2

)
–

ai
12

h2
(

∂4u
∂x4 +

∂4u
∂y4

+
∂4u
∂z4

))
(xj, yk , zl, tn+ 1

2
) + O

(
τ 4 + τ 2h2 + h4)

= O
(
τ 2 + h2),

where O(h2) = O(h2
x + h2

y + h2
z ). This ends the proof.

However, scheme (2.6a)–(2.6d) is only second-order accurate in both space and time, so
we want to use the fourth-order compact finite difference method to improve the accuracy
of space.

Using the fourth-order accurate compact finite difference space discretization [23] and
the Crank–Nicolson time discretization to (2.1), we obtain

un+1
jkl – un

jkl

τ
–

a
2

i
(

δ2
x

1 + h2
12 δ2

x

+
δ2

y

1 + h2
12 δ2

y

+
δ2

z

1 + h2
12 δ2

z

)
(
un+1

jkl + un
jkl

)
= 0, (2.7)

where j = k = l = 1, 2, . . . , M – 1. For convenience, we define the following finite difference
operators:

Lx = 1 +
h2

12
δ2

x , Ly = 1 +
h2

12
δ2

y , Lz = 1 +
h2

12
δ2

z .

Applying to both sides of (2.7) with the operator LxLyLz, we have

LxLyLz

(un+1
jkl – un

jkl

τ

)
–

a
2

i
(
LyLzδ

2
x + LxLzδ

2
y + LxLyδ

2
z
)(

un+1
jkl + un

jkl
)

= 0. (2.8)

Adding the extra term

[
τ

4
a2i2(Lzδ

2
xδ

2
y + Lyδ

2
xδ

2
z + Lxδ

2
y δ

2
z
)

–
τ 2

8
a3i3δ2

xδ
2
y δ

2
z

]
(
un+1

jkl – un
jkl

)
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to the left-hand side of (2.8), we get the following scheme:

(
Lx –

τ

2
aiδ2

x

)(
Ly –

τ

2
aiδ2

y

)(
Lz –

τ

2
aiδ2

z

)
(
un+1

jkl – un
jkl

)

= τai
(
LyLzδ

2
x + LxLzδ

2
y + LxLyδ

2
z
)
un

jkl. (2.9)

Introducing the intermediate variables, we obtain the new HOC-ADI scheme

(
Lx –

τ

2
aiδ2

x

)
�u∗

jkl = τai
(
LyLzδ

2
x + LxLzδ

2
y + LxLyδ

2
z
)
un

jkl, (2.10a)

(
Ly –

τ

2
aiδ2

y

)
�u∗∗

jkl = �u∗
jkl, (2.10b)

(
Lz –

τ

2
aiδ2

z

)
�ujkl = �u∗∗

jkl , (2.10c)

un+1
jkl – un

jkl = �ujkl. (2.10d)

For this method, intermediate values of �u∗∗ and �u∗ at the boundary are easily obtained
by (2.10c) and (2.10b). �

Theorem 2 Suppose that the exact solution u of problem (2.1) is smooth enough, then the
truncation order of the new HOC-ADI scheme (2.10a)–(2.10d) is O(τ 2 + h4).

Proof Eliminating the intermediate variables in the new HOC-ADI scheme (2.10a)–
(2.10d), we have

LxLyLz

(un+1
jkl – un

jkl

τ

)
–

a
2

i
(
LyLzδ

2
x + LxLzδ

2
y + LxLyδ

2
z
)(

un+1
jkl + un

jkl
)

+
[

τ 2

4
a2i2(Lzδ

2
xδ

2
y + Lyδ

2
xδ

2
z + Lxδ

2
y δ

2
z
)

–
τ 3

8
a3i3δ2

xδ
2
y δ

2
z

]un+1
jkl – un

jkl

τ
= 0.

For the above scheme using Taylor expansion, we have the following truncation error:

Rn+ 1
2

jkl =
(

1
24

τ 2LxLyLz
∂3u
∂t3 –

ai
8

τ 2
(

LyLz
∂4u

∂t2 ∂x2 + LxLz
∂4u

∂t2 ∂y2

+ LxLy
∂4u

∂t2 ∂z2

)
+

a2i2

4
τ 2

(
Lz

∂5u
∂t ∂x2 ∂y2 + Ly

∂5u
∂t ∂z2 ∂x2

+ Lx
∂5u

∂t ∂y2 ∂z2

)
–

a3i3

8
τ 3

(
∂7u

∂t ∂x2∂y2∂z2

)
–

ai
240

h4
(

LyLz
∂4u
∂x4

+ LxLz
∂4u
∂y4 + LxLy

∂4u
∂z4

))
(xj, yk , zl, tn+ 1

2
)

+ O
(
τ 4 + τ 2h4 + h6)

= O
(
τ 2 + h4),

where O(h4) = O(h4
x + h4

y + h4
z ). This completes the proof.
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We now investigate the stability of D-G ADI scheme using the Fourier analysis method.
The D-G ADI scheme (2.6a)–(2.6d) can be written as the following product form:

(
1 –

τ

2
aiδ2

x

)(
1 –

τ

2
aiδ2

y

)(
1 –

τ

2
aiδ2

z

)
un+1

jkl

=
(

1 +
τ

2
aiδ2

x

)(
1 +

τ

2
aiδ2

y

)(
1 +

τ

2
aiδ2

z

)
un

jkl. (2.11)

We assume that the numerical solution can be expressed by using a Fourier series, whose
typical term is

un
jkl = ρnei(jθxh+kθyh+lθzh), (2.12)

where i =
√

–1, ρn is the amplitude at time level n, and θx, θy, θz are the wave numbers
in the x, y, z directions, respectively. Substituting (2.12) into (2.11), we have the following
growth factor:

G1 =
(1 – ai 2τ

h2 sin2 θxh
2 )(1 – ai 2τ

h2 sin2 θyh
2 )(1 – ai 2τ

h2 sin2 θzh
2 )

(1 + ai 2τ

h2 sin2 θxh
2 )(1 + ai 2τ

h2 sin2 θyh
2 )(1 + ai 2τ

h2 sin2 θzh
2 )

.

We find that

|G1| =
|(1 – ai 2τ

h2 sin2 θxh
2 )(1 – ai 2τ

h2 sin2 θyh
2 )(1 – ai 2τ

h2 sin2 θzh
2 )|

|(1 + ai 2τ

h2 sin2 θxh
2 )(1 + ai 2τ

h2 sin2 θyh
2 )(1 + ai 2τ

h2 sin2 θzh
2 )|

=
|(1 – ai 2τ

h2 sin2 θxh
2 )|

|(1 + ai 2τ

h2 sin2 θxh
2 )|

|(1 – ai 2τ

h2 sin2 θyh
2 )|

|(1 + ai 2τ

h2 sin2 θyh
2 )|

|(1 – ai 2τ

h2 sin2 θzh
2 )|

|(1 + ai 2τ

h2 sin2 θzh
2 )|

=

√
1 + (a 2τ

h2 sin2 θxh
2 )2

√
1 + (a 2τ

h2 sin2 θxh
2 )2

√
1 + (a 2τ

h2 sin2 θyh
2 )2

√
1 + (a 2τ

h2 sin2 θyh
2 )2

√
1 + (a 2τ

h2 sin2 θzh
2 )2

√
1 + (a 2τ

h2 sin2 θzh
2 )2

= 1.

Therefore, it meets the unconditional stability criterion (|G| ≤ 1) and the D-G ADI scheme
(2.6a)–(2.6d) is unconditionally stable.

Next, we study the stability of the new HOC-ADI scheme in a similar way used above.
The new HOC-ADI scheme (2.10a)–(2.10d) can be rewritten as

(
Lx –

τ

2
aiδ2

x

)(
Ly –

τ

2
aiδ2

y

)(
Lz –

τ

2
aiδ2

z

)
un+1

jkl

=
(

Lx +
τ

2
aiδ2

x

)(
Ly +

τ

2
aiδ2

y

)(
Lz +

τ

2
aiδ2

z

)
un

jkl. (2.13)

Substituting (2.12) into (2.13), we get

G2 =
(1 – 1

3 sin2 θxh
2 – ai 2τ

h2 sin2 θxh
2 )(1 – 1

3 sin2 θyh
2 – ai 2τ

h2 sin2 θyh
2 )

(1 – 1
3 sin2 θxh

2 + ai 2τ

h2 sin2 θxh
2 )(1 – 1

3 sin2 θyh
2 + ai 2τ

h2 sin2 θyh
2 )
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× (1 – 1
3 sin2 θzh

2 – ai 2τ

h2 sin2 θzh
2 )

(1 – 1
3 sin2 θzh

2 + ai 2τ

h2 sin2 θzh
2 )

.

Also we can easily see that |G2| = 1, so scheme (2.10a)–(2.10d) is also unconditionally
stable. Therefore, the above results prove the following theorem. �

Theorem 3 The D-G ADI scheme (2.6a)–(2.6d) and the new HOC-ADI scheme (2.10a)–
(2.10d) are unconditionally stable.

3 A new HOC-ADI splitting scheme for the NLS equation
In this section, we extend the D-G ADI splitting scheme and the new HOC-ADI splitting
scheme which combines the D-G ADI skill and the HOC-ADI skill with splitting strategy
to the initial-boundary problems of three-dimensional NLS equations (by choosing a = 1

2
in (1.1)):

i
∂u
∂t

= –
1
2

(uxx + uyy + uzz) + β|u|2u + v(x, y, z)u, (x, y, z, t) ∈ � × (0, T], (3.1)

u(x, y, z, 0) = u0(x, y, z), (x, y, z) ∈ �, (3.2)

u(x, y, z, t)|∂� = 0, t ∈ (0, T]. (3.3)

Here, we use the standard Strang splitting method [30, 31] with second-order splitting
error. To this end, we split (3.1) into the following two subequations.

• Linear equation:

i
∂u(x, y, z, t)

∂t
= –

1
2

(
∂2u(x, y, z, t)

∂x2 +
∂2u(x, y, z, t)

∂y2 +
∂2u(x, y, z, t)

∂z2

)
; (3.4)

• Nonlinear equation:

i
∂u(x, y, z, t)

∂t
= β

∣
∣u(x, y, z, t)

∣
∣2u(x, y, z, t) + v(x, y, z)u(x, y, z, t), (3.5)

where (3.4) will be solved by the D-G ADI scheme and the HOC-ADI scheme, respectively,
which are proposed in the previous section, and the nonlinear equation (3.5) is solved ex-
actly. If we discretize �1 = {(x, y, z, t)|(x, y, z, t) ∈ [L1, L2]3 × [0, T]} with mesh of points with
coordinates xj = L1 + jh, yk = L1 + kh, zl = L1 + lh (hx = hy = hz = h), j = k = l = 0, 1, . . . , M,
tn = nτ , n = 0, 1, . . . , N , where h = L2–L1

M and τ = T
N are the mesh sizes and time step, re-

spectively. Let un
jkl be the approximation of u(xj, yk , zl, tn), and use the D-G ADI scheme

for linear equation (3.4), then we can derive the D-G ADI splitting scheme for the above
3D nonlinear equations (3.1)–(3.3) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(1)
jkl = e–i(vjkl+β|un

jkl |2)τ /2un
jkl,

(1 – τ
4 iδ2

x )u(2)
jkl = τ i

2 (δ2
x + δ2

y + δ2
z )u(1)

jkl ,

(1 – τ
4 iδ2

y )u(3)
jkl = u(2)

jkl ,

(1 – τ
4 iδ2

z )u(4)
jkl = u(3)

jkl ,

u(5)
jkl – u(1)

jkl = u(4)
jkl ,

un+1
jkl = e–i(vjkl+β|u(5)

jkl |2)τ /2u(5)
jkl , j, k, l = 0, 1, 2, . . . , M.

(3.6)
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In the same way, if we use the HOC-ADI scheme for linear equation (3.4), then we can
derive the new HOC-ADI splitting scheme for the above 3D nonlinear equations (3.1)–
(3.3) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(1)
jkl = e–i(vjkl+β|un

jkl |2)τ /2un
jkl,

(Lx – τ
4 iδ2

x )u(2)
jkl = τ i

2 (LyLzδ
2
x + LxLzδ

2
y + LxLyδ

2
z )u(1)

jkl ,

(Ly – τ
4 iδ2

y )u(3)
jkl = u(2)

jkl ,

(Lz – τ
4 iδ2

z )u(4)
jkl = u(3)

jkl ,

u(5)
jkl – u(1)

jkl = u(4)
jkl ,

un+1
jkl = e–i(vjkl+β|u(5)

jkl |2)τ /2u(5)
jkl , j, k, l = 0, 1, 2, . . . , M.

(3.7)

The accuracy of the D-G ADI splitting scheme (3.6) is of second-order in time and space.
The new HOC-ADI splitting scheme (3.7) has a truncation error of order O(τ 2 + h4). In
the following we study the stability of the above two methods.

Theorem 4 The D-G ADI splitting scheme (3.6) and the new HOC-ADI splitting scheme
(3.7) are unconditionally stable.

Proof We define the norm and error term as follows:

‖u‖∞ = max
jkl

|ujkl|,

ε =
∣∣uexact(x, y, z, t) – uapprox(x, y, z, t)

∣∣.
(3.8)

Because nonlinear equation (3.5) is solved exactly, by substituting (3.8) into the first equa-
tion of (3.6), we have

∥∥εn∥∥∞ =
∥∥ε(1)∥∥∞, (3.9)

and also, for the sixth equation of (3.6), we can write

∥∥εn+1∥∥∞ =
∥∥ε(5)∥∥∞. (3.10)

For the linear equation (3.4), by using Theorem 3, we get

∥∥ε(5)∥∥∞ ≤ ∥∥ε(1)∥∥∞. (3.11)

Combining (3.10), (3.11) with (3.9) we conclude that

∥∥εn+1∥∥∞ ≤ ∥∥εn∥∥∞. (3.12)

Hence the D-G ADI splitting scheme (3.6) is unconditionally stable. Similarly, the new
HOC-ADI splitting scheme (3.7) is also unconditionally stable. �

4 Numerical results
In this section, we performed numerical examples to show the accuracy and efficiency of
the proposed methods, all the numerical experiments are obtained by Matlab R2015b on
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a Lenovo L450 computer (CPU is Intel Core i7-5500U, and Memory is 4.00 GB). It is well
known that NLS equation has two conservation laws (mass and energy) [31].

Proposition 1 If the wave function u is the solution of (1.1), then this wave function satisfies
the following conservation laws:

(1) Mass conservation

Q(t) =
∫

R3

∣∣u(x, t)
∣∣2 dx =

∫

R3

∣∣u(x, 0)
∣∣2 dx = Q(0). (4.1)

(2) Energy conservation

E(t) =
∫

R3

[
a
∣
∣∇u(x, t)

∣
∣2 +

β

2
∣
∣u(x, t)

∣
∣4 + v(x)

∣
∣u(x, t)

∣
∣2

]
dx,

=
∫

R3

[
a
∣
∣∇u(x, 0)

∣
∣2 +

β

2
∣
∣u(x, 0)

∣
∣4 + v(x)

∣
∣u(x, 0)

∣
∣2

]
dx = E(0). (4.2)

The above conservation laws (4.1) and (4.2) are approximated by

h3
∑

jkl

∣
∣un+1

jkl
∣
∣2 = h3

∑

jkl

∣
∣un

jkl
∣
∣2 (4.3)

and

h3
∑

jkl

(
a
∣∣
∣∣
un+1

j+1,kl – un+1
j–1,kl

2h

∣∣
∣∣

2

+ a
∣∣
∣∣
un+1

j,k+1,l – un+1
j,k–1,l

2h

∣∣
∣∣

2

+ a
∣
∣∣
∣
un+1

jk,l+1 – un+1
jk,l–1

2h

∣
∣∣
∣

2

+
β

2
∣∣un+1

jkl
∣∣4 + vjkl

∣∣un+1
jkl

∣∣2
)

= h3
∑

jkl

(
a
∣
∣∣∣
un

j+1,kl – un
j–1,kl

2h

∣
∣∣∣

2

+ a
∣
∣∣∣
un

j,k+1,l – un
j,k–1,l

2h

∣
∣∣∣

2

+ a
∣
∣∣
∣
un

jk,l+1 – un
jk,l–1

2h

∣
∣∣
∣

2

+
β

2
∣∣un

jkl
∣∣4 + vjkl

∣∣un
jkl

∣∣2
)

, (4.4)

which will be used to verify the conservation laws of our scheme numerically.

Example 1 (3D LS equation) We consider (2.1) with parameters a = 1 and the initial con-
dition

i
∂u
∂t

+ uxx + uyy + uzz = 0, (x, y, z) ∈ [0, 2π ]3, t ∈ (0, T],

u0(x, y, z) = sin x sin y sin z.

The exact solution is given by uexact(x, y, z, t) = sin x sin y sin z exp(–i3t).

We are now applying the D-G ADI scheme (2.6a)–(2.6d) and the new HOC-ADI scheme
(2.10a)–(2.10d) to solve this example. Table 1 gives the maximum of numerical errors
|uexact(x, y, z, t)–uapprox(x, y, z, t)|, orders, and CPU times of the two methods. Table 2 shows
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Table 1 Numerical comparison results of the D-G ADI scheme and the new HOC-ADI scheme for
Example 1, at T = 2, time step τ = 0.001

D-G ADI scheme New HOC-ADI scheme

h Error Order CPU(s) Error Order CPU(s)
π
5 0.167 – 9.750 3.403e-3 – 20.68
π
10 4.918e–2 1.766 65.58 2.445e–4 3.799 124.0
π
20 1.233e–2 1.996 475.8 1.524e–5 4.004 848.0
π
40 3.084e–3 1.999 3882.8 9.515e–7 4.001 6020.7

Table 2 Comparison of maximum errors at different time T for the equation in Example 1,
h = 2π /20, time step τ = 0.01

D-G ADI scheme New HOC-ADI scheme

T Error CPU(s) Error CPU(s)

0.5 1.230e–2 1.45 6.112e–5 2.54
1 2.459e–2 2.84 1.222e–4 4.92
2 4.918e–2 5.55 2.445e–4 10.0
3 7.376e–2 8.42 3.667e–4 15.1
4 9.833e–2 10.5 4.890e–4 20.4

the maximum of numerical errors until time T = 4 using two methods. Figure 1 shows the
contour plot of exact solution and numerical solutions by the D-G ADI scheme and the
new HOC-ADI scheme in the x – y plane at T = 0.01, z = 0.5 with N = 100 and M = 20.
Figure 2 gives relative errors for the two methods, where τ = 0.005, h = 2π/25. The relative
errors are defined by

Relative Error =
‖uexact(x, y, z, t) – uapprox(x, y, z, t)‖∞

‖uexact(x, y, z, t)‖∞
.

In Fig. 3, we use the two methods to investigate the discrete mass and energy conservation
errors for Example 1, where τ = 0.005, h = 2π/25. The errors are measured by

Error of Q(t) = Qn – Qo, Error of E(t) = En – Eo.

The results in Table 1, Table 2, and Fig. 1 show that the new HOC-ADI scheme is more
accurate than the D-G ADI scheme, and the new HOC-ADI scheme and D-G ADI scheme
have the order O(τ 2 + h4) and O(τ 2 + h2), respectively. From Fig. 3 we can observe that two
schemes for this linear problem preserve the mass and energy conservation.

Example 2 (3D NLS equation) For this example, we consider the following three-
dimensional NLS equation:

i
∂u(x, y, z, t)

∂t
= –

1
2

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
u(x, y, z, t)

+ β
∣∣u(x, y, z, t)

∣∣2u(x, y, z, t) + v(x, y, z)u(x, y, z, t),

(x, y, z) ∈ [0, 2π ] × [0, 2π ] × [0, 2π ], t ∈ (0, T],

u0(x, y, z) = sin(x) sin(y) sin(z),
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Figure 1 The contour plot of exact solution and numerical solutions to Example 1 at T = 0.01, z = 0.5 with
N = 100 and M = 20. Left panel for real part and right panel for imaginary part correspond to the exact
solution, solutions by the D-G ADI scheme, and solutions by the new HOC-ADI scheme, respectively)

where v(x, y, z) = 1 – sin2 x sin2 y sin2 z and β = 1. The exact solution for this equation is in
the following form:

uexact(x, y, z, t) = sin x sin y sin z exp(–i5t/2).

We solved the equation by both D-G ADI splitting scheme (3.6) and the new HOC-
ADI splitting scheme (3.7) with homogeneous boundary conditions. Table 3 illustrates the
maximum error of |uexact(x, y, z, t) – uapprox(x, y, z, t)| and orders from the two methods at
T = 2, and we can see that the new HOC-ADI splitting scheme and the D-G ADI splitting
scheme have the order O(τ 2 +h4) and O(τ 2 +h2), respectively. Table 4 shows the maximum
of numerical errors until time T = 5 using two methods. Figure 4 shows the contour plot
of exact solution and numerical solutions by the D-G ADI splitting scheme and the new
HOC-ADI splitting scheme in the x – y plane at T = 0.01, z = 0.5 with N = 100 and M = 20.
Figure 5 gives the relative errors for the two methods, where τ = 0.005, h = 2π/25. The
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Figure 2 Comparison of relative error using D-G ADI scheme and new HOC-ADI scheme for Example 1

Figure 3 Discrete conservation errors using two methods for Example 1 under τ = 0.005,h = 2π /25

Table 3 Numerical comparison results of the D-G ADI splitting scheme and the new HOC-ADI
splitting scheme for Example 2, at T = 2, time step τ = 0.001

D-G ADI scheme New HOC-ADI scheme

h Error Order CPU(s) Error Order CPU(s)
π
5 6.790e–2 – 23.31 9.495e– – 36.56
π
10 1.709e–2 1.989 153.1 5.888e–5 4.011 218.7
π
20 4.281e–3 1.997 1123.0 3.672e–6 4.003 1547.4
π
40 1.071e–3 1.999 9307.0 2.294e–7 4.001 12,116.5

results show that the new HOC-ADI splitting scheme is more accurate. Figure 6 shows
that the numerical mass and energy for the nonlinear problem preserve the conservation
laws.
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Table 4 Comparison of maximum errors at different time T for the equation in Example 2,
h = 2π /15, time step τ = 0.01

D-G ADI scheme New HOC-ADI scheme

T Error CPU(s) Error CPU(s)

0.5 1.072e–2 1.14 9.528e–5 1.57
1 2.145e–2 2.08 1.906e–4 3.16
2 4.289e–2 4.20 3.811e–4 6.29
3 6.433e–2 6.27 5.716e–4 9.41
4 8.576e–2 8.70 7.621e–4 12.6
5 1.071e–1 10.4 9.526e–4 16.5

Figure 4 The contour plot of exact solution and numerical solutions to Example 2 at T = 0.01, z = 0.5 with
N = 100 and M = 20. (Left panel for real part and right panel for imaginary part corresponding to the exact
solution, solutions by the D-G ADI splitting scheme, and solutions by the new HOC-ADI splitting scheme,
respectively)

5 Conclusions
In this article, we proposed a new high-order compact alternating direction implicit finite
difference scheme for the linear and nonlinear Schrödinger equation in three dimensions.
For the nonlinear problem, the methods adopted the Strang splitting technique to split the
nonlinear problem into linear and nonlinear subproblems for handling the nonlinearity.
These methods are proven to be unconditionally stable and preserve the mass and energy
conservation for linear and nonlinear problems. Computational results were shown in the
tables and figures, and the accuracy and discrete conservation laws were tested. These
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Figure 5 Comparison of relative error using D-G ADI splitting scheme and new HOC-ADI splitting scheme for
Example 2

Figure 6 Discrete conservation errors using two methods for Example 2 under τ = 0.005,h = 2π /25

results show that the proposed methods are efficient and accurate for numerically solving
3D Schrödinger equations.
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