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Abstract
In this paper, a stage-structured predator–prey model with Holling type III functional
response and two time delays is investigated. By analyzing the associated
characteristic equation, its local stability and the existence of Hopf bifurcation with
respect to both delays are studied. Based on the normal form method and center
manifold theorem, the explicit formulas are derived to determine the direction of
Hopf bifurcation and the stability of bifurcating period solutions. Finally, the
effectiveness of theoretical analysis is verified via numerical simulations. This study
may be helpful in understanding the behavior of ecological environment.
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1 Introduction
The dynamics of predator–prey models is one of important subjects in ecology and math-
ematical ecology, and many factors, such as time delay, disease, harvesting, functional re-
sponse, etc., can affect it in the natural world.

In recent years, some researchers have discussed predator–prey models with these fac-
tors. Wangersky and Cunningham [1] considered a predator–prey system with time delay
and studied the effect of time delay on the system. May [2] also analyzed the stability of
vegetation–herbivore and vegetation–herbivore–carnivore systems with time delay. They
found that a model with time delay could cause a stable equilibrium to become unsta-
ble and cause the population to fluctuate. Hu and Li [3] described a mathematical model
dealing with a predator–prey system with disease in the prey, they discussed the prop-
erties of Hopf bifurcation. Banshidhar and Swarup [4] proposed a predator–prey model
with harvesting where the top predator population is partially supported with alternative
food. Their research showed that alternative food can prevent top predator extinction risk
at higher harvesting effort. Yang [5] discussed the stability in a delayed diffusive predator–
prey model with nonconstant death rate. Zhu et al. [6] studied a predator–prey model with
time delay and square root response function. As we all know, non-smooth factor is used
in mechanical engineering [7, 8]. In fact, non-smooth factor is also found in a predator–
prey model. Chen and Huang [9] investigated a Filippov ratio-dependent predator–prey
model to describe the effect on behavioral refuges caused by prey instinct anti-predator
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behavior. They discussed complete analysis of local and global dynamical behaviors of this
model by Filippov qualitative theory. Peng et al. [10] proposed a hybrid control strategy in
a predator–prey model. Their numerical simulation results showed that the hybrid con-
troller is efficient in controlling a Hopf bifurcation.

In nature, there are many species whose individuals have a life history that can be di-
vided into two stages: immature and mature. The stage structure reflects the species’ ac-
tivity ability and the difference about resistance to natural enemies in different growth
period. It can affect the persistence and extinction of biological populations to various de-
gree. Therefore, it is more practical to discuss the predator–prey model with this factor.
Meng et al. [11] studied the stability and Hopf bifurcation in a three-species system with
stage structure for the predator. Ref. [12, 13] also have paid great attention to discussing
the effect with stage structure in predator–prey models. In [14], Wang et al. considered a
delayed ratio-dependent predator–prey system with Holling type III functional response
and stage structure for the predator:

ẋ(t) = x(t)
(

r – ax(t – τ1) –
a1x(t)y2(t)

my2
2(t) + x2(t)

)
,

ẏ1(t) =
a2x2(t – τ2)y2(t – τ2)

my2
2(t – τ2) + x2(t – τ2)

– r1y1(t) – Dy1(t),

ẏ2(t) = Dy1(t) – r2y2(t),

(1.1)

where x(t) represents the density of the prey population at time t, y1(t) and y2(t) describe
the densities of the immature and the mature predator population at time t, respectively.
The parameters r, a, a1, a2, m, r1, r2, and D are positive constants in which r represents
the intrinsic growth rate of the prey, a is the intraspecific competition rate of the prey,
a1 is the capturing rate, a2/a1 is the conversion rate of the mature predator, m is the half
capturing saturation constant, r1 and r2 are the death rates of the immature and the ma-
ture predator, respectively. D denotes the rate at which the immature predator becomes
the mature predator. τ1 is the feedback time delay of the prey, τ2 is the time delay due to
the gestation of the mature predator. In [14], Wang et al. investigated the local stability
of each of the feasible equilibria of the system and the related properties of Hopf bifurca-
tion.

However, some predator species dislike hunting immature preys, or many immature
preys are concealed in the caves or nests to keep from being attacked by the predators in
the natural world. In this paper, based on the above discussions and motivated by the work
of Wang et al. [14], we consider the following system with stage structure for the prey and
two delays:

ẋ1(t) = ax2(t) – bx1(t) – r1x1(t) – cx1(t)x1(t – τ1) –
a1x2

1(t)y(t)
1 + mx2

1(t)
,

ẋ2(t) = bx1(t) – r2x2(t),

ẏ(t) =
a2x2

1(t – τ2)y(t – τ2)
1 + mx2

1(t – τ2)
– ry(t),

(1.2)

where x1(t), x2(t) describe the densities of the immature prey and the mature prey at time
t, y(t) represents the density of the predator at time t, respectively. a is the birth rate of
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the immature prey, b is the transformation rate from the immature prey to the mature
one, c is the intraspecific competition coefficient of the immature prey, r1, r2, r denote the
death rates of immature prey, mature prey, and predator. a2/a1 is the conversion rate of
the predator, τ1 is the feedback time delay of the immature prey, and τ2 is the time delay
due to the gestation of the predator. The rest of parameters a1, m are similar to those of
model (1.1).

The organization of this paper is as follows. In Sect. 2, the local stability of the positive
equilibrium and the existence of Hopf bifurcation for system (1.2) are studied. The direc-
tion of Hopf bifurcation and the stability of bifurcating periodic solutions are derived in
Sect. 3. In Sect. 4, numerical simulations are carried out to illustrate the validity of the
established results. Finally, a brief conclusion is given.

2 Local stability and Hopf bifurcation
From the viewpoint of biology, we only study the positive equilibrium of system (1.2).
In this section, we shall discuss the local stability of a linearized system at the positive
equilibrium and the existence of Hopf bifurcations for system (1.2).

It is easy to show that system (1.2) has a unique positive equilibrium E∗(x∗
1, x∗

2, y∗),
where

x∗
1 =

√
r

a2 – rm
,

x∗
2 =

b
r2

x∗
1,

y∗ =
(ab – r1r2 – br2 – cr2x∗

1)(1 + mx∗2
1 )

a1r2x∗
1

if the following conditions are satisfied:

(H1) a2 – rm > 0, ab – r1r2 – br2 – cr2

√
r

a2 – rm
> 0.

Let x̄1(t) = x1(t) – x∗
1, x̄2(t) = x2(t) – x∗

2, ȳ(t) = y(t) – y∗ and still denote x̄1(t), x̄2(t), ȳ(t),
respectively. Using Taylor’s expansion to expand system (1.2) at the positive equilibrium
E∗(x∗

1, x∗
2, y∗), we have

ẋ1(t) = a11x1(t) + a12x2(t) + a13y(t) + b11x(t – τ1)

+
∑

i+j+k+q≥2

f (ijkq)
1 xi

1(t)xj
2(t)ykxq

1(t – τ1),

ẋ2(t) = a21x1(t) + a22x2(t) +
∑
i+j≥2

f (ij)
2 xi

1(t)xj
2(t),

ẏ(t) = b31x1(t – τ2) + a33y(t) + b33y(t – τ2) +
∑

i+j+k≥2

f (ijk)
3 yi(t)xj

1(t – τ2)yk(t – τ2),

(2.1)
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where

a11 = –r1 – cx∗
1 – b –

2a1x∗
1y∗

[1 + m(x∗
1)2]2 , a12 = a,

a13 =
–a1(x∗

1)2

1 + m(x∗
1)2 , b11 = –cx∗

1,

a21 = b, a22 = –r2, b31 =
2a2x∗

1y∗

[1 + m(x∗
1)2]2 ,

b33 =
a2(x∗

1)2

1 + m(x∗
1)2 , a33 = –r.

f (ijkq)
1 =

1
i!j!k!q!

∂ i+j+k+qf1

∂xi
1(t) ∂xj

2(t) ∂yk(t) ∂xq(x – τ1)

∣∣∣∣(x∗
1, x∗

2, y∗),

f (ij)
2 =

1
i!j!

∂ i+jf2

∂xi
1(t) ∂xj

2(t)

∣∣∣∣(x∗
1, x∗

2, y∗),

f (ijk)
3 =

1
i!j!k!

∂ i+j+kf3

∂yi(t) ∂xj
1(t – τ2) ∂yk(t – τ2)

∣∣∣∣(x∗
1, x∗

2, y∗),

f1 = ax2(t) – bx1(t) – r1x1(t) – cx1(t)x1(t – τ1) –
a1x2

1(t)y(t)
1 + mx2

1(t)
,

f2 = bx1(t) – r2x2(t), f3 =
a2x2

1(t – τ2)y(t – τ2)
1 + mx2

1(t – τ2)
– ry(t).

Then we obtain the linearized system of system (2.1) as follows:

ẋ1(t) = a11x1(t) + a12x2(t) + a13y(t) + b11x(t – τ1),

ẋ2(t) = a21x1(t) + a22x2(t),

ẏ(t) = b31x1(t – τ2) + a33y(t) + b33y(t – τ2).

(2.2)

Therefore, the corresponding characteristic equation of system (2.2) is given by

λ3 + m2λ
2 + m1λ + m0 +

(
n2λ

2 + n1λ + n0
)
e–λτ1

+
(
p2λ

2 + p1λ + p0
)
e–λτ2 + (q1λ + q0)e–λ(τ1+τ2) = 0, (2.3)

where

m0 = a12a21a33 – a11a22a33, m1 = a11a22 + a22a33 + a11a33 – a12a21,

m2 = –(a11 + a22 + a33),

n0 = –b11a22a33, n1 = b11(a22 + a33), n2 = –b11,

p0 = a13a22b31 + a12a21b33 – a11a22a33,

p1 = a11b33 + a22b33 – a13b31, p2 = –b33,

q0 = –a22b11b33, q1 = b11b33.

In order to investigate the root distribution of the transcendental Eq. (2.3), the result of
Ruan and Wei [15] is introduced here.
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Lemma 2.1 For the transcendental equation

p
(
λ, e–λτ1 , . . . , e–λτm

)
= λn + p(0)

1 λn–1 + · · · + p(0)
n–1λ + p(0)

n

+
[
p(1)

1 λn–1 + · · · + p(1)
n–1λ + p(1)

n
]
e–λτ1 + · · ·

+
[
p(m)

1 λn–1 + · · · + p(m)
n–1λ + p(m)

n
]
e–λτm

= 0,

as (τ1, τ2, τ3, . . . , τm) vary, the sum of orders of the zeros of p(λ, e–λτ1 , . . . , e–λτm ) in the open
right half plane can change, and only a zero appears on or crosses the imaginary axis.

Next, we will consider the following four cases.
Case 1: τ1 = τ2 = 0, the characteristic Eq. (2.3) reduces to

λ3 + m12λ
2 + m11λ + m10 = 0, (2.4)

where m10 = m0 + n0 + p0 + q0, m11 = m1 + n1 + p1, m12 = m2 + n2 + p2.
It is not difficult to verify that m10 > 0, m12 > 0. Thus, all the roots of Eq. (2.4) have

negative real parts if the following condition holds:

(H11) m11m12 > m10.

Namely, the equilibrium point E∗(x∗
1, x∗

2, y∗) is locally asymptotically stable when condition
(H11) is satisfied.

Case 2: τ1 = 0, τ2 > 0. Equation (2.3) becomes

λ3 + m22λ
2 + m21λ + m20 +

(
p22λ

2 + p21λ + p20
)
e–λτ2 = 0, (2.5)

where m20 = m0 + n0, m21 = m1 + n1, m22 = m2 + n2, p20 = p0 + q0, p21 = p1 + q1, p22 = p2.
Let iω2 (ω2 > 0) be a root of Eq. (2.5), it follows that

p21ω2 sinω2τ2 +
(
p20 – p22ω

2
2
)

cosω2τ2 = m22ω
2
2 – m20,

p21ω2 cosω2τ2 –
(
p20 – p21ω

2
2
)

sinω2τ2 = ω3
2 – m21ω2,

(2.6)

which leads to

ω6
2 + e22ω

4
2 + e21ω

2
2 + e20 = 0, (2.7)

where e20 = m2
20 – p2

20, e21 = m2
21 – 2m20m22 – p2

21 + 2p20p22, e22 = m2
22 – 2m21 – p2

22.
Let ω2

2 = v2, then Eq. (2.7) can be written as

v3
2 + e22v2

2 + e21v2 + e20 = 0. (2.8)

Denote

f1(v2) = v3
2 + e22v2

2 + e21v2 + e20. (2.9)
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Since f1(0) = e20, limv2→+∞ f1(v2) = +∞, and from Eq. (2.9), we have

f ′
1(v2) = 3v2

2 + 2e22v2 + e21. (2.10)

After discussion about the roots of Eq. (2.10) similar to that in [16], we have the following
lemma.

Lemma 2.2 For the polynomial Eq. (2.8), we have the following results:
(1) If

(H21) e20 ≥ 0, � = e2
22 – 3e21 ≤ 0

holds, then Eq. (2.8) has no positive root;
(2) If

(H22) e20 ≥ 0, � = e2
22 – 3e21 > 0, v∗

2 =
–e21 +

√
�

3
> 0, f1

(
v∗

2
) ≤ 0,

or

(H23) e20 < 0

holds, then Eq. (2.8) has a positive root.

Suppose that Eq. (2.8) has positive roots. Without loss of generality, we assume that it
has three positive roots, which are denoted by v21, v22, and v23. Then Eq. (2.7) has three
positive roots ω2k = √v2k , k = 1, 2, 3. The corresponding critical value of time delay τ

(j)
2k is

τ
(j)
2k =

1
ω2k

arccos

{
A24ω

4
2k + A22ω

2
2k + A20

B24ω
4
2k + B22ω

2
2k + B20

}
+

2π j
ω2k

, k = 1, 2, 3; j = 0, 1, 2, . . . , (2.11)

where A20 = –m20p20, A22 = m22p20 + m20p22 – m21p21, A24 = p21 – m22p22, B20 = p2
20, B22 =

p2
21 – 2p20p22, B24 = p2

22.
Thus ±ω2k is a pair of purely imaginary roots of Eq. (2.5) with τ2 = τ

(j)
2k , and let τ20 =

mink∈{1,2,3}{τ (0)
2k }, ω20 = ω2k0 .

Lemma 2.3 Suppose that

(H24) f ′
1
(
ω2

20
) 
= 0,

then the following transversality condition holds:

{
d(Reλ)

dτ2

}
λ=iω20


= 0.

Proof Differentiating Eq. (2.5) with respect to τ2, and noticing that λ is a function of τ2,
we obtain

(
dλ

dτ2

)–1

= –
3λ2 + 2m22λ + m21

λ(λ3 + m22λ2 + m21λ + m20)
+

2p22λ + p21

λ(p22λ2 + p21λ + n20)
–

τ1

λ
, (2.12)
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which leads to

Re

(
dλ

dτ2

)–1

= Re

(
–

3λ2 + 2m22λ + m21

λ(λ3 + m22λ2 + m21λ + m20)

)
λ=iω20

+ Re

(
2p22λ + p21

λ(p22λ2 + p21λ + p20)

)
λ=iω20

=
3ω4

20 + 2(m2
22 – 2m21)ω2

20 + m2
21 – 2m20m22

(ω3
20 – m21ω20)2 + (m20 – m22ω

2
20)2 –

2p2
22ω

2
20 + p2

21 – 2p20p22

(p22ω
2
20 – p20)2 + p2

21ω
2
20

.

From Eq. (2.6), we have

(
ω3

20 – m21ω20
)2 +

(
m20 – m22ω

2
20

)2 =
(
p22ω

2
20 – p20

)2 + p2
21ω

2
20. (2.13)

Noting that { d(Reλ)
dτ1

}λ=iω20 and {Re( dλ
dτ1

)–1}λ=iω20 have the same sign, then

sign

{
d(Reλ)

dτ1

}
λ=iω20

= sign

{
Re

(
dλ

dτ1

)–1}
λ=iω20

=
3(ω2

20)2 + 2e22ω
2
20 + e21

p2
21ω

2
20 + (p20 – p22ω

2
20)2

=
f ′
1(ω2

20)
p2

21ω
2
20 + (p20 – p22ω

2
20)2


= 0. (2.14)

It follows that { d(Reλ)
dτ2

}λ=iω20 
= 0 and the proof is complete. �

By Lemmas 2.1–2.3, and combining the Hopf bifurcation theorem [17–19], we have the
following results.

Theorem 2.1 For system (1.2), τ1 = 0.
(1) If (H21) holds, then the positive equilibrium E∗(x∗

1, x∗
2, y∗) is asymptotically stable for

all τ2 ≥ 0.
(2) If (H22) or (H23) and (H24) hold, then the positive equilibrium E∗(x∗

1, x∗
2, y∗) is

asymptotically stable for all τ2 ∈ [0, τ20) and unstable for τ2 > τ20. Furthermore,
system (1.2) undergoes a Hopf bifurcation at the positive equilibrium E∗(x∗

1, x∗
2, y∗)

when τ2 = τ20.

Case 3: τ1 = τ2 = τ 
= 0. Equation (2.3) reduces to

λ3 + m32λ
2 + m31λ + m30 +

(
n32λ

2 + n31λ + n30
)
e–λτ + (q31λ + q30)e–2λτ = 0, (2.15)

where m30 = m0, m31 = m1, m32 = m2, n30 = n0 + p0, n31 = n1 + p1, n32 = n2 + p2, q30 = q0,
q31 = q1.

Multiplying by eλτ , Eq. (2.15) becomes

(
λ3 + m32λ

2 + m31λ + m30
)
eλτ +

(
n32λ

2 + n31λ + n30
)

+ (q41λ + q40)e–λτ = 0. (2.16)
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Let iω (ω > 0) be the root of Eq. (2.16), and separate the real and imaginary parts, we
have

E31 sinωτ + E32 cosωτ = E35,

E33 cosωτ + E34 sinωτ = E36,
(2.17)

where E31 = –m31ω + ω3 + q31ω, E32 = m30 – m32ω
2 + q30,

E33 = m31ω – ω3 + q31ω, E34 = m30 – m32ω
2 – q30,

E35 = n32ω
2 – n30, E36 = –n31ω.

It follows that

sinωτ =
A35ω

5 + A33ω
3 + A31ω

ω6 + B34ω4 + B32ω2 + B30
, cosωτ =

A34ω
4 + A32ω

4 + A30

ω6 + B34ω4 + B32ω2 + B30
, (2.18)

where

A30 = (q30 – m30)n30, A31 = (m31 + q31)n30 – (m30 + q30)n31,

A32 = (m30 – q30)n32 – m31n31 + m32n30 + q31n31,

A33 = m32n31 – n30 – m31n32 – q31n32,

A34 = n31 – m32n32, A35 = n32, B30 = m2
30 – q2

30,

B32 = m2
31 – q2

31 – 2m30m32, B34 = m2
32 – 2m31.

From Eq. (2.18), we get

ω12 + e35ω
10 + e34ω

8 + e33ω
6 + e32ω

4 + e31ω
2 + e30 = 0, (2.19)

where

e30 = B2
30 – A2

30, e31 = 2B30B32 – A2
31 – 2A30A32,

e32 = B2
32 + 2B30B34 – A2

32 – 2A30A34 – 2A31A33,

e33 = 2B30 + 2B32B34 – A2
33 – 2A31A35 – 2A32A34,

e34 = B2
34 + 2B32 – A2

34 – 2A33A35, e35 = 2B34 – A2
35.

Let ω2 = v3, then Eq. (2.19) can be written as

v6
3 + e35v5

3 + e34v4
3 + e33v3

3 + e32v2
3 + e31v3 + e30 = 0. (2.20)

Suppose that Eq. (2.20) has at least one positive root, and without loss of generality, we
assume that it has six positive roots which are denoted by v31, v32, v33, v34, v35, v36, then
Eq. (2.19) has six positive roots ωk = √v3k , k = 1, 2, 3, 4, 5, 6. The corresponding critical
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value of time delay τ
(j)
k is

τ
(j)
k =

1
ωk

arccos

{
A34ω

4
k + A32ω

2
k + A30

ω6
k + B34ω

4
k + B32ω

2
k + B30

}
+

2π j
ωk

,

k = 1, 2, 3, 4, 5, 6, j = 0, 1, 2, . . . . (2.21)

Then ±ωk is a pair of purely imaginary roots of Eq. (2.16) with τ = τ
(j)
k , and let τ0 =

mink∈{1–6}{τ (0)
k }, ω0 = ωk0 .

Lemma 2.4 Suppose that

(H31) AC + BD 
= 0

holds, then the following transversality condition is satisfied:

{
d(Reλ)

dτ

}
λ=iω0


= 0.

Proof Differentiating Eq. (2.16) with respect to τ , we obtain

(
dλ

dτ

)–1

=
2n32λ + n31 + (3λ2 + 2m32λ + m31)eλτ

–λ(λ3 + m32λ2 + m31λ + m30)eλτ + (q31λ2 + q30)λe–λτ
–

τ

λ
, (2.22)

substituting λ = iω0 into Eq. (2.22), we get

Re

(
dλ

dτ

)–1

λ=iω0

= Re

(
A + Bi
C + Di

)
=

AC + BD
C2 + D2 , (2.23)

where

A =
(
m31 – 3ω2

0
)

cosω0τ0 – 2m32ω0 sinω0τ0 + q31 cosω0τ0 + n31,

B =
(
m31 – 3ω2

0
)

sinω0τ0 + 2m32ω0 cosω0τ0 – q31 sinω0τ0 + 2n32ω0,

C =
(
m31 – q31 – ω2

0
)
ω2

0 cosω0τ0 +
(
q30 + m30 – m32ω

2
0
)
ω0 sinω0τ0,

D =
(
m31 + q31 – ω2

0
)
ω2

0 sinω0τ0 +
(
q30 – m30 + m32ω

2
0
)
ω0 cosω0τ0.

Noting that { d(Reλ)
dτ

}λ=iω0 and {Re( dλ
dτ

)–1}λ=iω0 have the same sign, if condition (H31)
holds, we obtain { d(Reλ)

dτ
}λ=iω0 
= 0.

This completes the proof. �

By applying Lemma 2.4 to Eq. (2.16), we obtain the existence of a Hopf bifurcation as
stated in the following theorem.

Theorem 2.2 For system (1.2), τ1 = τ2 = τ 
= 0. Suppose that condition (H31) holds, then the
positive equilibrium E∗(x∗

1, x∗
2, y∗) is asymptotically stable for all τ ∈ [0, τ0) and unstable for

τ > τ0. Furthermore, system (1.2) undergoes a Hopf bifurcation at the positive equilibrium
E∗(x∗

1, x∗
2, y∗) when τ = τ0.
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Case 4: τ1 > 0, τ2 ∈ [0, τ20), and τ1 
= τ2.
We consider Eq. (2.3) with τ2 in its stable interval, and τ1 is regarded as the parameter.

Let iω1∗ (ω1∗ > 0) be the root of Eq. (2.3), then we obtain

E41 sinω1∗τ1 + E42 cosω1∗τ1 = E43,

E41 cosω1∗τ1 – E42 sinω1∗τ1 = E44,
(2.24)

where

E41 = n1ω1∗ – q0 sinω1∗τ2 + q1ω1∗ cosω1∗τ2,

E42 = n0 – n2ω
2
1∗ + q0 cosω1∗τ2 + q1ω1∗ sinω1∗τ ,

E43 = m2ω
2
1∗ – m0 +

(
p2ω

2
1∗ – p0

)
cosω1∗τ2 – p1ω1∗ sinω1∗τ2,

E44 = ω3
1∗ – m1ω1∗ –

(
p2ω

2
1∗ – p0

)
sinω1∗τ2 – p1ω1∗ cosω1∗τ2.

From Eq. (2.24), we have

ω6
1∗ + e42ω

4
1∗ + e41ω

2
1∗ + e40 +

(
c44ω

4
1∗ + c42ω

2
1∗ + c40

)
cosω1∗τ2

+
(
c45ω

5
1∗ + c43ω

3
1∗ + c41ω1∗

)
sinω1∗τ2 = 0, (2.25)

where

e40 = m2
0 + p2

0 – n2
0 – q2

0, e41 = m2
1 + p2

1 – n2
1 – q2

1 + 2n0n2 – 2m0m2 – 2p0p2,

e42 = m2
2 – n2

2 – 2m1 + p2
2, c40 = 2m0p0 – 2n0q0,

c41 = 2p1m0 – 2p0m1 + 2n1q0 – 2n0q1,

c42 = 2p1m1 – 2p0m2 + 2n2q0 – 2p2m0 – 2n1q1,

c43 = 2p0 – 2p1m2 + 2p2m1 + 2n2q1, c44 = –2p1 + 2p2m2, c45 = –2p2.

In order to give the main results, we provide the following assumption.

(H41) Eq. (2.25) has at least a finite positive root.

We denote the positive roots of Eq. (2.25) by ω
(1)
1∗ , ω(2)

1∗ , ω(3)
1∗ , ω(4)

1∗ , ω(5)
1∗ , and ω

(6)
1∗ . For every

ω
(i)
1∗ (i = 1, 2, 3, 4, 5, 6), the corresponding critical value of time delay τ

(j)
1i , j = 1, 2, 3 . . . , is

τ
(j)
1i =

1
ω1∗

arccos

{
E41E44 + E42E43

E2
41 + E2

42
+ 2π j

}
ω1∗ =ωi

1∗
,

i = 1, 2, 3, 4, 5, 6; j = 0, 1, 2 . . . . (2.26)

Let τ ′
10 = min{τ (0)

1i |i = 1, 2, . . . 6; j = 0, 1, 2 . . .}, ω′
10 is the corresponding root of Eq. (2.25)

with τ ′
10.

Lemma 2.5 Suppose that

(H42) A′C′ + B′D′ 
= 0



Peng and Zhang Advances in Difference Equations  (2018) 2018:251 Page 11 of 20

holds, then the following transversality condition holds:

{
d(Reλ)

dτ1

}
λ=iω′

10


= 0.

Proof Taking the derivative of λ with respect to τ1 in Eq. (2.3) and substituting λ = iω′
10,

we get

Re

(
dλ

dτ1

)′–1

λ=iω10

= Re

(
A′ + B′i
C′ + D′i

)
=

A′C′ + B′D′

C′2 + D′2 , (2.27)

where

A′ = m1 – 3ω′2
10 + 2n2ω

′
10 sinω′

10τ
′
10 + n1 cosω′

10τ
′
10

+ sinω′
10τ2

(
–p1ω

′
10τ2 + 2p2ω

′
10 + q1 sinω′

10τ
′
10

)
+ cosω′

10τ2
(
p2τ2ω

′2
10 + p1 – p0τ2 + q1 cosω′

10τ
′
10

)
,

B′ = 2m2ω
′
10 – n1 sinω′

10τ
′
10 + 2n2ω

′
10 cosω′

10τ
′
10

+ sinω′
10τ2

(
–p1 + p0τ2 – p2τ2ω

′2
10 – q1 cosω′

10τ
′
10

)
+ cosω′

10τ2
(
2p2ω

′
10 – p1ω

′
10τ2 – q1 sinω′

10τ
′
10

)
,

C′ =
(
n0ω

′
10 – n2ω

′3
10

)
sinω′

10τ
′
10 – n1ω

′2
10 cosω′

10τ
′
10

+
(
q0ω

′
10 cosω′

10τ
′
10 + q1ω

′2
10 sinω′

10τ
′
10

)
sinω′

10τ2

+
(
q0ω

′
10 sinω′

10τ
′
10 – q1ω

′2
10 cosω′

10τ
′
10

)
cosω′

10τ2,

D′ =
(
n0ω

′
10 – n2ω

′3
10

)
cosω′

10τ
′
10 + n1ω

′2
10 sinω′

10τ
′
10

+
(
–q0ω

′
10 sinω′

10τ
′
10 + q1ω

′2
10 cosω′

10τ
′
10

)
sinω′

10τ2

+
(
q0ω

′
10 cosω′

10τ
′
10 + q1ω

′2
10 sinω′

10τ
′
10

)
cosω′

10τ2.

Obviously, if condition (H42) holds, then we have { d(Reλ)
dτ1

}λ=iω′
10


= 0. This completes the
proof of the lemma. �

By the above analysis, we have the following theorem.

Theorem 2.3 For system (1.2), τ1 > 0, τ2 ∈ [0, τ20), and τ1 
= τ2. Suppose that conditions
(H41) and (H42) hold, then the positive equilibrium E∗(x∗

1, x∗
2, y∗) is asymptotically stable

for all τ1 ∈ [0, τ ′
10) and unstable for τ1 > τ ′

10. Furthermore, system (1.2) undergoes a Hopf
bifurcation at the positive equilibrium E∗(x∗

1, x∗
2, y∗) when τ1 = τ ′

10.

3 Direction and stability of Hopf bifurcation
In the previous section, we have shown that system (1.2) undergoes a Hopf bifurcation for
different combinations of τ1 and τ2. In this section, we shall study the direction of Hopf
bifurcation and the stability of bifurcating periodic solutions of system (1.2) with respect to
τ1 and τ2 ∈ [0, τ20). The theoretical approach we apply is based on the normal form theory
and center manifold theorem [18]. Throughout this section, we assume that system (1.2)
undergoes a Hopf bifurcation at τ1 = τ ′

10, τ2 ∈ [0, τ20).
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Without loss of generality, we assume that τ ′
10 > τ ′

2. Let τ1 = τ ′
10 + μ, μ ∈ R, t = sτ1,

x1(sτ1) = x̂1(s), x2(sτ1) = x̂2(s), y(sτ1) = ŷ(s). Denote x1 = x̂1, x2 = x̂2, y = ŷ, and t = s, then
system (1.2) can be written as a functional differential equation (FDE) in C = C([–1, 0], R3):

u′(t) = Lμ(ut) + F(μ, ut), (3.1)

where u(t) = (x1(t), x2(t), y(t))T ∈ C, and

ut(θ ) = u(t + θ ) =
(
x1(t + θ ), x2(t + θ ), y(t + θ )

)T ∈ C, and

Lμ : C → R3, F : R × C → R3

are given by

Lμ(φ) =
(
τ ′

10 + μ
)
Ãφ(0) +

(
τ ′

10 + μ
)
B̃φ

(
–

τ ′
2

τ ′
10

)
+

(
τ ′

10 + μ
)
C̃φ(–1), (3.2)

and

F(μ,φ) =
(
τ ′

10 + μ
)
(F1, F2, F3)T , (3.3)

where

φ(θ ) =
(
φ1(θ ),φ2(θ ),φ3(θ )

)T ∈ C,

Ã =

⎛
⎜⎝

a11 a12 a13

a21 a22 0
0 0 a33

⎞
⎟⎠ , B̃ =

⎛
⎜⎝

0 0 0
0 0 0

b31 0 b33

⎞
⎟⎠ , C̃ =

⎛
⎜⎝

b11 0 0
0 0 0
0 0 0

⎞
⎟⎠ ,

F1 = k11φ
2
1 (0) + k12φ1(0)φ1(–1) + k13φ1(0)φ3(0) + k14φ

2
1 (0)φ3(0) + k15φ

3
1 (0) + · · · ,

F2 = 0,

F3 = k31φ
2
1

(
–

τ ′
2

τ ′
10

)
+ k32φ1

(
–

τ ′
2

τ ′
10

)
φ3

(
–

τ ′
2

τ ′
10

)

+ k33φ
2
1

(
–

τ ′
2

τ ′
10

)
φ3

(
–

τ ′
2

τ ′
10

)
+ k34φ

3
1

(
–

τ ′
2

τ ′
10

)
+ · · · ,

k11 =
–2a1y∗ + 6a1m(x∗

1)2y∗

(1 + m(x∗
1)2)3 , k12 = –c, k13 =

–2a1x∗
1

(1 + m(x∗
1)2)2 ,

k14 =
–2a1 + 6a1m(x∗

1)2

(1 + m(x∗
1)2)3 , k15 =

24a1mx∗
1y∗(1 – m(x∗

1)2)
(1 + m(x∗

1)2)4 ,

k31 =
2a2y∗ – 6a2m(x∗

1)2y∗

(1 + m(x∗
1)2)3 , k32 =

2a2x∗
1

(1 + m(x∗
1)2)2 ,

k33 =
2a2 – 6a2m(x∗

1)2

(1 + m(x∗
1)2)3 , k34 =

24a2mx∗
1y∗(–1 + m(x∗

1)2)
(1 + m(x∗

1)2)4 .

Hence, by the Riesz representation theorem, there exists a 3 × 3 matrix function η(θ ,μ)
of bounded variation for θ ∈ [–1, 0] such that

Lμφ =
∫ 0

–1
dη(θ ,μ)φ(θ ) for φ ∈ C. (3.4)
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In fact, we can choose

η(θ ,μ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(τ ′
10 + μ)(Ã + B̃ + C̃), θ = 0,

(τ ′
10 + μ)(B̃ + C̃), θ ∈ [– τ ′

2
τ10

, 0),

(τ10 + μ)C̃, θ ∈ (–1, – τ ′
2

τ10
),

0, θ = –1.

(3.5)

For φ ∈ C([–1, 0], R3), define

A(μ)φ =

⎧⎨
⎩

dφ(θ )
dθ

, –1 ≤ θ < 0,∫ 0
–1 dη(θ ,μ)φ(θ ), θ = 0.

(3.6)

and

Rμ(φ) =

⎧⎨
⎩

0, –1 ≤ θ < 0,

F(μ,φ), θ = 0.
(3.7)

Then Eq. (3.1) can be transformed into the following operator equation:

u′
t = A(μ)ut + R(μ)ut . (3.8)

For ϕ ∈ C′([–1, 0], (R3)∗), where (R3)∗ is the three-dimensional space of row vectors, we
further define the adjoint operator A∗ of A(0):

A∗ϕ(s) =

⎧⎨
⎩

– dϕ(s)
ds , s ∈ (0, 1],∫ 0

–1 dηT (t, 0)ϕ(–t), s = 0.
(3.9)

For φ ∈ C([–1, 0], R3) and ϕ ∈ C′([–1, 0], (R3)∗), define the bilinear form

〈
ϕ(s),φ(s)

〉
= ϕ̄(0)φ(0) –

∫ 0

–1

∫ θ

ξ=0
ϕ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (3.10)

where η(θ ) = η(θ , 0), A = A(0) and A∗ are adjoint operators. From Sect. 2, we know that
±iω′

10τ
′
10 are eigenvalues of A(0). Thus they are also the eigenvalues of A∗.

Suppose that q(θ ) = (1, q2, q3)T eiω′
10τ ′

10θ is the eigenvector of A(0) corresponding to
iω′

10τ
′
10 and q∗(s) = 1/ρ(1, q∗

2, q∗
3)eiω′

10τ ′
10s is the eigenvector of A∗ corresponding to –iω′

10τ
′
10.

By the direct calculation, we obtain

q2 =
a21

iω′
10 – a22

, q3 =
b31e–iω′

10τ ′
2

iω′
10 – a33 – b33e–iω′

10τ ′
2

,

q∗
2 = –

a12

iω′
10 + a22

, q∗
3 = –

a13

iω′
10 + a33 + b33e–iω′

10τ ′
2

.
(3.11)
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Then, from Eq. (3.10), we get

〈
q∗(s), q(θ )

〉
= q̄∗(0)q(0) –

∫ 0

–1

∫ θ

ξ=0
q̄∗(ξ – θ ) dη(θ )q(ξ ) dξ

=
1
ρ̄

[
1 + q2q̄∗

2 + q3q̄∗
3 –

∫ 0

–1

(
1, q̄∗

2, q̄∗
3
)
θeiω′

10τ ′
10θ dη(θ )(1, q2, q3)T

]

=
1
ρ̄

[
1 + q2q̄∗

2 + q3q̄∗
3 + b11τ

′
10e–iω′

10τ ′
10 + τ ′

2e–iω′
10τ ′

2 q̄∗
3(b31 + b33q3)

]
. (3.12)

Therefore, we can choose

ρ̄ = 1 + q2q̄∗
2 + q3q̄∗

3 + b11τ
′
10e–iω′

10τ ′
10 + τ ′

2e–iω′
10τ ′

2 q̄∗
3(b31 + b33q3) (3.13)

such that 〈q∗(s), q(θ )〉 = 1, 〈q∗(s), q̄(θ )〉 = 0.
In the remainder of this section, by using the algorithms in [18] and using a similar calcu-

lation process to that in [10], we obtain the coefficients used in determining the direction
of Hopf bifurcation and the stability of the bifurcation periodic solutions:

g20 =
2τ ′

10
ρ̄

[
k11 + k12e–iω′

10τ ′
10 + k13q3 + q̄∗

3
(
k31e–2iω′

10τ ′
2 + k32q3e–2iω′

10τ ′
2
)]

,

g11 =
τ ′

10
ρ̄

[
2k11 + k12

(
e–iω′

10τ ′
10 + eiω′

10τ ′
10

)
+ k13(q3 + q̄3) + q̄∗

3(2k31 + k32(q3 + q̄3)
]
,

g02 =
2τ ′

10
ρ̄

[
k11 + k12eiω′

10τ ′
10 + k13q̄3 + q̄∗

3
(
k31e2iω′

10τ ′
2 + k32q̄3e2iω′

10τ ′
2
)]

,

g21 =
2τ ′

10
ρ̄

[
k11

(
W (1)

20 (0) + 2W (1)
11 (0)

)
+ k12

(
W (1)

11 (–1) +
1
2

W (1)
20 (–1)

+
1
2

W (1)
20 (0)eiω′

10τ ′
10 + W (1)

11 (0)e–iω′
10τ ′

10

)

+ k13

(
W (3)

11 (0) +
1
2

W (3)
20 (0) +

1
2

W (1)
20 (0)q̄3 + W (1)

11 (0)q3

)
+ k14(2q3 + q̄3)

+ q̄∗
3

[
k31

(
2W (1)

11

(
–

τ ′
2

τ ′
10

)
e–iω′

10τ ′
2 + W (1)

20

(
–

τ ′
2

τ ′
10

)
q̄3eiω′

10τ ′
2

)

+ k32

(
W (3)

11

(
–

τ ′
2

τ ′
10

)
e–iω′

10τ ′
2 +

1
2

W (3)
20

(
–

τ ′
2

τ ′
10

)
eiω′

10τ ′
2

+
1
2

q̄3W (1)
20

(
–

τ ′
2

τ ′
10

)
eiω′

10τ ′
2 + q3W (1)

11

(
–

τ ′
2

τ ′
10

)
e–iω′

10τ ′
2

)

+ k33
(
2q3e–iω′

10τ ′
2 + q̄3e–iω′

10τ2
)

+ k34
(
3e–iω′

10τ ′
2
)]]

.

(3.14)

However,

W20(θ ) =
ig20

ω′
10τ

′
10

q(0)eiω′
10τ ′

10θ +
iḡ02

3ω′
10τ

′
10

q̄(0)e–iω′
10τ ′

10θ + E1e2iω′
10τ ′

10θ ,

W11(θ ) = –
ig11

ω′
10τ

′
10

q(0)eiω′
10τ ′

10θ +
iḡ11

ω′
10τ

′
10

q̄(0)e–iω′
10τ ′

10θ + E2,
(3.15)
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where E1 = (E(1)
1 , E(2)

1 , E(3)
1 )T ∈ R3 and E2 = (E(1)

2 , E(2)
2 , E(3)

2 )T ∈ R3 are also constant vectors
and can be determined by the following equations, respectively:

⎛
⎜⎝

2iω′
10 – a11 – b11e–2iω′

10τ ′
10 –a12 –a13

0 2iω′
10 – a22 0

–b31e–2iω′
10τ ′

2 0 2iω′
10 – a33 – b33e–2iω′

10τ ′
2

⎞
⎟⎠E1

= 2

⎛
⎜⎝

H1

H2

H3

⎞
⎟⎠ ,

⎛
⎜⎝

–a11 – b11 –a12 –a13

0 –a22 0
–b31 0 –a33 – b33

⎞
⎟⎠E2 =

⎛
⎜⎝

P1

P2

P3

⎞
⎟⎠ ,

(3.16)

with

H1 = k11 + k12e–iω′
10τ ′

10 + k13q3,

H2 = 0,

H3 = k31e–2iω′
10τ ′

2 + k32q3e–2iω′
10τ ′

2 ,

P1 = 2k11 + k12
(
e–iω′

10τ ′
10 + eiω′

10τ ′
10

)
+ k13(q3 + q̄3),

P2 = 0,

P3 = 2k31 + k32(q3 + q̄3).

Therefore, we can calculate g21 and compute the following values:

c1(0) =
i

2ω′
10τ

′
10

(
g20g11 – 2|g11|2 –

|g02|2
3

)
+

g21

2
,

μ2 = –
Re{c1(0)}

Re{λ′(τ ′
10)} ,

β2 = 2 Re
(
c1(0)

)
,

T2 = –
Im{c1(0)} + μ2 Im{λ′(τ10)}

ω′
10τ

′
10

,

(3.17)

which determine the properties of bifurcating periodic solutions at τ = τ ′
10 on the center

manifold. From the discussion above, we have the following result.

Theorem 3.1 For system (1.2), the direction of Hopf bifurcation is determined by the sign
of μ2: if μ2 > 0 (μ2 < 0), then the Hopf bifurcation is supercritical (subcritical). The stability
of the bifurcating periodic solutions is determined by the sign of β2: if β2 < 0 (β2 > 0), the
bifurcating periodic solutions are stable (unstable). The period of the bifurcating periodic
solutions is determined by the sign of T2: if T2 > 0 (T2 < 0), the bifurcating periodic solutions
increase (decrease).
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4 Numerical examples
In this section, we give some numerical simulations by using matlab to illustrate the ana-
lytical results in the previous section.

Let a = 8, b = 1, c = 1, a1 = 3, r1 = 0.5, a2 = 2, r2 = r = 1, m = 1. Then we have the following
particular example of system (1.2):

ẋ1(t) = 8x2(t) – 0.5x1(t) – x1(t) – x1(t)x1(t – τ1) –
3x2

1(t)y(t)
1 + x2

1(t)
,

ẋ2(t) = x1(t) – x2(t),

ẏ(t) =
2x2

1(t – τ2)y(t – τ2)
1 + x2

1(t – τ2)
– y(t).

(4.1)

It is not difficult to verify that condition (H1) holds, we obtain the positive equilibrium
E∗(1, 1, 11

3 ).
For τ1 = 0, τ2 > 0, we obtain w20 ≈ 0.4609, τ20 ≈ 1.9387. From Theorem 2.1, we know that

the positive equilibrium E∗ is asymptotically stable when τ2 ∈ [0, τ20), when the time delay
τ2 passes through the critical value τ20, the interior equilibrium E∗ will lose its stability and
a Hopf bifurcation occurs, and a family of periodic solutions bifurcate from the interior
equilibrium E∗. The corresponding waveform and the phase plots are depicted in Fig. 1
and Fig. 2.

For τ1 = τ2 = τ , we get ω0 = 0.5385, τ0 = 1.7889. By Theorem 2.2, we know that, when
τ increases from zero to the critical value τ0, the equilibrium point E∗ is asymptotically
stable. Once the time delay τ passes through the critical value τ0, the positive equilibrium

Figure 1 When τ1 = 0, E∗ is asymptotically stable for τ2 = 1.46 < τ20 = 1.9387
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Figure 2 When τ1 = 0, E∗ undergoes a Hopf bifurcation for τ2 = 1.98 > τ20 = 1.9387

E∗ will lose its stability and a Hopf bifurcation occurs, which can be depicted in Fig. 3 and
Fig. 4.

For τ1 > 0, τ ′
2 = 1.5 ∈ [0, τ20), we have ω′

10 = 0.5974, τ ′
10 = 2.3522. According to Theo-

rem 2.3, E∗ is asymptotically stable when τ1 ∈ [0, τ ′
10) and unstable when τ1 > τ ′

10. Af-
ter the computation of Eq. (3.17), we obtain c1(0) = –22.3543 + 6.0903i, μ2 = 444.4195,
β2 = –44.7086, T2 = –11.6715. From Theorem 3.1, the Hopf bifurcation is supercritical,
the bifurcating periodic solutions are stable, which is shown in Fig. 5 and Fig. 6.

Numerical simulations illustrate our theoretical analysis. Owing to the bifurcation peri-
odic solutions being stable, the species in system (1.2) can coexist in an oscillatory mode
from the viewpoint of biology.

5 Conclusions
In this paper, we have studied the problem of Hopf bifurcation analysis in a delayed
predator–prey model with stage structure for the prey. By setting the same group of pa-
rameter values, according to the existing two time delays and discussing four different
cases, we know that the interior equilibrium will lose its original stability and a Hopf bifur-
cation occurs, and a family of periodic solutions bifurcate E∗ when the time delay passes
though some critical values. By using the normal form theory and center manifold the-
orem, the explicit formulas which determine the direction of Hopf bifurcation and the
stability of the bifurcating periodic solution are derived. The numerical results that the
Hopf bifurcation is supercritical and the bifurcation periodic solutions are stable are in
excellent agreement with theoretical analysis, that is, the number of predators and prey
implies stability and coexistence. Therefore, the research about this kind of model has cer-
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Figure 3 When τ1 = τ2 = τ , E∗ is asymptotically stable for τ = 1.1 < τ0 = 1.7889

Figure 4 When τ1 = τ2 = τ , E∗ undergoes a Hopf bifurcation for τ = 1.8 > τ0 = 1.7889
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Figure 5 E∗ is asymptotically stable for τ1 = 1.4 < τ ′
10 = 2.3522 and τ ′

2 = 1.5

Figure 6 E∗ undergoes a Hopf bifurcation for τ1 = 2.4 > τ ′
10 = 2.3522 and τ ′

2 = 1.5
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tain ecological significance and provides a powerful theoretical basis for the sustainable
survival of natural populations.

In addition, stage structure for the prey is investigated in this paper due to the predator
feeding only on the immature prey. If we were concerned with the combined effects of
stage structure for both the predator and the prey, what will the dynamical behavior of the
system be? This issue is left as our future research.
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