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Abstract
Multiple periodic solutions for the equation

�(pn(�xn–1)δ) + qnx
δ
n = ∇F(n, xn), n ∈ Z,

are obtained via variational method and saddle-point theorem of Brezis and
Nirenberg. Our main results extend some earlier results. An example is given.
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1 Introduction
Let Z, N. And R be the sets of all integers, all positive integers, and all real numbers re-
spectively. Set Z[a, b] = {a, a + 1, . . . , b} for a ≤ b, a, b ∈ Z.

We consider the existence of multiple solutions for the following difference equation:

�
(
pn(�xn–1)δ

)
+ qnxδ

n = ∇F(n, xn), n ∈ Z. (1)

Here �xn = xn+1 – xn, �2xn = �(�xn), the odd integer δ > 0 is the ratio, real sequences
{pn}, {qn} and the function F(n, x) =

∫ x
0 ∇F(n, s) ds satisfy

pn = pn+T > 0, qn = qn+T , F(n + T , x) = F(n, x), n ∈ Z,

for a fixed T ∈ Z.
Difference equations are widely found in mathematics itself and in its applications to

combinatorial analysis, quantum physics, chemical reactions, and so on. Many authors
were interested in difference equations and obtained many significant conclusions; see,
for instance, the papers [1–3, 5–20]. Various methods have been used to deal with the
existence of solutions to discrete problems, we refer to the fixed point theorems in cones
in [12] and the variational method in [2, 3, 5–11, 13, 14, 18–20]. In 2003, in [10, 11] Yu
and Guo made a new variational structure to handle discrete equations and obtained good
conclusions on the solvability condition of a periodic solution. This new variational struc-
ture represents an important advance as it allows us to prove multiplicity results as well.
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When δ = 1, equation (1) has been considered in [17] and [19]. When δ �= 1 and
∇F(n, x) = 0, equation (1) has been also studied. For example, in [1] and [8], the authors
were interested in the results on disconjugacy, disfocality, oscillation, and the asymptotic
behavior. In [20] the authors were interested in the results on the existence of positive so-
lutions. However, to the best of our knowledge, when δ �= 1 and ∇F(n, x) �= 0, besides [6]
and [18], in the literature there are no results on the solvability condition of periodic solu-
tions for equation (1). By employing the mountain pass lemma, in [6] the authors proved
that there are at least two nontrivial periodic solutions of equation (1) under the following
conditions:

(a) qn < 0, ∀n ∈ Z[1, T].
(b) For each n ∈ Z, limx→0

∇F(n,x)
|x|δ = 0.

(c) There exist constants a1 > 0, a2 > 0, and β > δ + 1 such that

F(n, x) ≤ –a1|x|β + a2, ∀x ∈R.

To get the critical points, condition (c) is essential, especially, β > δ + 1. Later, by virtue of
the saddle-point theorem, in [18] the authors obtained the periodic solution of equation
(1) under condition (a) and the following assumptions:

(d) There are constants R1 > 0 and α ∈ (1, 2) such that

α

2
(δ + 1)F(n, x) ≤ x∇F(n, x) < 0 for n ∈ Z and |x| ≥ R1.

(e) There are constants a3 > 0, a4 > 0, and γ ∈ (1,α] such that

F(n, x) ≤ –a3|x| γ
2 (δ+1) + a4, ∀x ∈R.

From condition (e) we have β = γ

2 (δ + 1) < δ + 1.
Hence it is natural for us to consider the case β = δ + 1. In the present papere, the mo-

tivation comes from the recent papers [6, 7, 14, 18]. By virtue of the minimax methods
with variational techniques, the solvability conditions on multiple periodic solutions are
proved for difference equation when β = δ + 1. In particular, our results complement and
generalize the results in [6] and [18].

2 Preliminaries
To obtain multiple periodic solutions via variational techniques, we state the correspond-
ing variational structure for equation (1). Let S be the sequence

S = {un} = (. . . , u–n, . . . , u–1, u0, u1, . . . , un, . . .) = {un}+∞
–∞.

Define

au + bv = {aun + bvn}, ∀u, v ∈ S, a, b ∈R.

This yields that S is a vector space. For any fixed T ∈ N, let ET be the subspace of S defined
as

ET =
{

u = {un} ∈ S | un+T = un, n ∈ Z
}

.
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Define the inner product 〈·, ·〉ET and norm ‖ · ‖ET in ET as follows:

〈u, v〉ET =
T∑

i=1

uivi and ‖u‖ET = ‖u‖ =

( T∑

j=1

u2
j

) 1
2

∀u, v ∈ ET .

Obviously, the space ET is finite dimensional. Set

‖u‖δ+1 =

( T∑

j=1

uδ+1
j

) 1
δ+1

.

Since δ + 1 ≥ 2, by the Hölder inequality we have

‖u‖ ≤ T
δ–1
δ+1 ‖u‖δ+1 ≤ T

1
2 ‖u‖δ+1, u ∈ ET .

On the other hand, we have

( T∑

j=1

uδ+1
j

) 2
δ+1

≤
T∑

j=1

u2
j , u ∈ ET .

Obviously,

T– 1
2 ‖u‖ ≤ ‖u‖δ+1 ≤ ‖u‖ (2)

for all u ∈ ET . Let

ϕ(x) = –
1

δ + 1

T∑

n=1

pn(�xn–1)δ+1 +
1

δ + 1

T∑

n=1

qnxδ+1
n –

T∑

n=1

F(n, xn), ∀x ∈ ET .

Then ϕ ∈ C1(ET ,R), and we have the partial derivative

∂ϕ

∂xn
= �

(
pn(�xn–1)δ

)
+ qnxδ

n – ∇F(n, xn), n ∈ Z[1, T],

via x0 = xT , x1 = xT+1. Thus x ∈ ET satisfies ϕ′(x) = 0 if and only if x satisfies equation (1)
for any n ∈ Z[1, T]. To seek the T-periodic solutions for equation (1) is to find the critical
points of functional ϕ since xn = xT+n and ∇F(n + T , x) = ∇F(n, x).

Set the T × T matrix

P =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

2 –1 0 · · · 0 –1
–1 2 –1 · · · 0 0
0 –1 2 · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 –1

–1 0 0 · · · –1 2

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

.

From the matrix theory we know that

λk = 2
(

1 – cos
2kπ

T

)
, k = 1, 2, . . . , T – 1,
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are the eigenvalues of P and λ0 = 0,λ1 > 0,λ2 > 0, . . . ,λT–1 > 0. Thus we have

λmin = min{λ1,λ2, . . . ,λT–1} = λ1 = 2
(

1 – cos
2π

T

)
.

Let

W = ker P = {x ∈ ET | Px = 0}.

Then

W =
{

x ∈ ET | x = {c}, c ∈ R
}

.

Set V = W ⊥. Clearly, ET = V ⊕ W . For convenience, we identify x ∈ ET with x =
(x1, x2, . . . , xT )T .

3 Main results and proofs
Set

pmin = min
n∈Z[1,T]

pn > 0, qmin = min
n∈Z[1,T]

qn, qmax = max
n∈Z[1,T]

qn.

We study equation (1) under the following conditions:
(F1) qmax – qmin < pminλ

δ+1
2

1
1

Tδ+1 .
(F2) There exist constants ρ0 > 0 and

a1 ∈
((

qmax – qmin

pminλ
δ+1

2
1

) 1
δ+1

,
1
T

)

such that

qmax – pminλ
δ+1

2
1 aδ+1

1
δ + 1

|x|δ+1 ≤ F(n, x) ≤ qmin

δ + 1
|x|δ+1

for all n ∈ Z and |x| ≤ ρ0.
(F3) lim sup|x|→∞

F(n,x)
|x|δ+1 < – A

δ+1 , where A = maxn∈Z[1,T][2δ+1(pn + pn+1) – qn].
(F4) There are constants ρ1 > 0 and a2 ∈ (0, 1

T ) such that

–
pminλ

δ+1
2

1 aδ+1
2

δ + 1
|x|δ+1 ≤ F(n, x) ≤ 0

for all n ∈ Z and |x| ≤ ρ1.
(F5) lim sup|x|→∞

F(n,x)
|x|δ+1 < – B

δ+1 , where B = maxn∈Z[1,T][2δ+1(pn + pn+1)].
Now we state our main results.

Theorem 3.1 Under hypotheses (F1), (F2), and (F3), equation (1) has at least two nontriv-
ial T-periodic solutions.

For the particular case qn = 0 in Theorem 3.1, we easily obtain the following result.
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Corollary 3.2 Under hypotheses (F4) and (F5), equation (1) has at least two nontrivial
T-periodic solutions.

Remark 3.3 Theorem 3.1 generalizes Theorem 3.2 in [6]. On the one hand, the sequence
{qn} can be sign-changing. However, {qn} is negative in Theorem 3.2 of [6]. On the other
hand, conditions (F2) and (F3) in our Theorem 3.1 are weaker than the corresponding
conditions in Theorem 3.2. There are functions F satisfying Theorem 3.1 but not fulfilling
Theorem 3.2 in [6] and Theorem 1.3 in [18]. For example, set

F(n, x) = –|x|δ+1 ln
(
1 + |x|) –

1
2(δ + 1)

λ
δ+1

2
1

(
1

2T

)δ+1

|x|δ+1

and

qn =
1
4
λ

δ+1
2

1

(
1

2T

)δ+1

sin
2πn

T
, pn = 2 + sin

2πn
T

.

Clearly, {qn} and {pn} are T-periodic, pmin = 1 > 0, and

qmax – qmin

pminλ
δ+1

2
1

=
1
2

(
1

2T

)δ+1

<
(

1
T

)δ+1

,

which implies that {qn} and {pn} satisfy (F1) in Theorem 3.1 but do not satisfy the corre-
sponding condition of Theorem 3.2 of [6]. A simple computation yields

lim|x|→0

F(n, x)
|x|δ+1 = –

1
2(δ + 1)

λ
δ+1

2
1

(
1

2T

)δ+1

.

Put a1 = 1
2T . Clearly,

qmax – qmin

pminλ
δ+1

2
1

< aδ+1
1 <

(
1
T

)δ+1

and

qmax – pminλ
δ+1

2
1 aδ+1

1
δ + 1

< –
1

2(δ + 1)
λ

δ+1
2

1

(
1

2T

)δ+1

<
qmin

δ + 1
.

So F satisfies (F2). Further, we have

lim|x|→∞ sup
F(n, x)
|x|δ+1 = –∞,

which implies that such a function F satisfies condition (F3) of Theorem 3.1 but does not
satisfy the corresponding condition of Theorem 3.2 in [6] and the corresponding condition
of Theorem 1.3 in [18]. Moreover, our conclusion complements the results of Theorem 3.2
in [6] and Theorem 1.3 in [18].

The proof of Theorem 3.1 uses the following saddle-point theorem of Brezis and Niren-
berg.



Ma et al. Advances in Difference Equations  (2018) 2018:265 Page 6 of 8

Lemma 3.4 ([4]) Let X be a Banach space with X = X1 + X2, where dim X2 < ∞, and let
ϕ be a C1 function on X with ϕ(0) = 0 satisfying the PS condition. Suppose that, for some
δ0 > 0,

(I1) ϕ(v) ≥ 0, for v ∈ X1 with ‖v‖ ≤ δ0, and
(I2) ϕ(v) ≤ 0, for v ∈ X2 with ‖v‖ ≤ δ0.

If ϕ is bounded from below and infX ϕ < 0, then ϕ has at least two nonzero critical points.

Proof of Theorem 3.1 Set

W = X1, V = X2.

First, we claim that ϕ satisfies the PS condition. Now let {x(k)} be a sequence for ϕ such
that {ϕ(x(k))} is bounded and ϕ′(x(k)) → 0 as k → ∞. Then we need to verify that there is
a convergent subsequence of {x(k)}. Since ET is finite dimensional, we only need to prove
that {x(k)} is bounded.

By (F3) there exist constants b1 > A
δ+1 , b2 > 0 satisfying

F(n, x) ≤ –b1|x|δ+1 + b2 (3)

for all n ∈ Z[1, T] and x ∈R. In view of (2) and (3), for any k ∈N, we obtain

ϕ
(
x(k)) = –

1
δ + 1

T∑

n=1

[
pn

(
x(k)

n – x(k)
n–1

)δ+1 – qn
(
x(k)

n
)δ+1] –

T∑

n=1

F
(
n, x(k)

n
)

≥ –
1

δ + 1

T∑

n=1

pn2δ+1((x(k)
n

)δ+1 +
(
x(k)

n–1
)δ+1) +

1
δ + 1

T∑

n=1

qn
(
x(k)

n
)δ+1

–
T∑

n=1

F
(
n, x(k)

n
)

≥ –
2δ+1

δ + 1

T∑

n=1

(pn + pn+1)
(
x(k)

n
)δ+1 +

1
δ + 1

T∑

n=1

qn
(
x(k)

n
)δ+1 –

T∑

n=1

F
(
n, x(k)

n
)

≥ –
1

δ + 1

T∑

n=1

[
2δ+1(pn + pn+1) – qn

](
x(k)

n
)δ+1 + b1

T∑

n=1

(
x(k)

n
)δ+1 – b2T

≥ –
A

δ + 1
∥∥x(k)∥∥δ+1

δ+1 + b1
∥∥x(k)∥∥δ+1

δ+1 – b2T

≥
(

b1 –
A

δ + 1

)
T– δ+1

2
∥
∥x(k)∥∥δ+1 – b2T . (4)

Since {ϕ(x(k))} is bounded and b1 – A
δ+1 > 0, {x(k)} is bounded in ET . In the finite-

dimensional space ET , such a bounded consequence {x(k)} has a convergent subsequence.
Hence ϕ satisfies the PS condition.

Clearly, ϕ(0) = 0 by (F2). Hence x = 0 is a trivial solution of equation (1).
On the one hand, for any w ∈ W with ‖w‖ ≤ ρ and n ∈ Z[1, T], due to (F2), we obtain

ϕ(w) =
1

δ + 1

T∑

n=1

qnwδ+1 –
T∑

n=1

F(n, w) ≥ 1
δ + 1

T∑

n=1

qnwδ+1 –
1

δ + 1

T∑

n=1

qnwδ+1 = 0.

So condition (I1) of Lemma 3.4 is verified.
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For all x ∈ ET , by the Hölder inequality we have

T∑

n=1

(�xn–1)2 ≤
( T∑

n=1

1
δ+1
δ–1

) δ–1
δ+1

·
( T∑

n=1

(�xn–1)δ+1

) 2
δ+1

= T
δ–1
δ+1 ·

( T∑

n=1

(�xn–1)δ+1

) 2
δ+1

.

Then a simple computation yields

[ T∑

n=1

(�xn–1)2

] δ+1
2

≤ T
δ–1

2

T∑

n=1

(�xn–1)δ+1 ≤ T
δ+1

2

T∑

n=1

(�xn–1)δ+1. (5)

On the other hand, by (F2) and (5), for all n ∈ Z[1, T] and x ∈ V = W ⊥ with ‖x‖ ≤ ρ , we
have

ϕ(x) ≤ –
1

δ + 1

T∑

n=1

pn(�xn–1)δ+1 +
1

δ + 1

T∑

n=1

qnxδ+1
n –

qmax – pminλ
δ+1

2
1 aδ+1

1
δ + 1

T∑

n=1

xδ+1
n

≤ –
pmin

δ + 1

T∑

n=1

(�xn–1)δ+1 +
qmax

δ + 1

T∑

n=1

xδ+1
n –

qmax – pminλ
δ+1

2
1 aδ+1

1
δ + 1

T∑

n=1

xδ+1
n

≤ –
pmin

δ + 1

(
1
T

) δ+1
2

[ T∑

n=1

(�xn–1)2

] δ+1
2

+
pminλ

δ+1
2

1 aδ+1
1

δ + 1

T∑

n=1

xδ+1
n

≤ –
pmin

δ + 1
λ

δ+1
2

1

(
1
T

) δ+1
2 ‖x‖δ+1 +

pminλ
δ+1

2
1 aδ+1

1
δ + 1

T
δ+1

2 ‖x‖δ+1

≤
(

(a1
√

T)δ+1 –
(

1√
T

)δ+1) pmin

δ + 1
λ

δ+1
2

1 ‖x‖δ+1. (6)

Since a1 < 1
T , we have a1

√
T < 1√

T
. Then

(a1
√

T)δ+1 –
(

1√
T

)δ+1

< 0. (7)

Thus by (6), (7), and pmin > 0, we conclude that

inf
ET

ϕ ≤ 0 for all x ∈ V with ‖x‖ ≤ ρ.

Thus condition (I2) of Lemma 3.4 is verified. Moreover, we have

inf
ET

ϕ(x) ≤ 0. (8)

Next, we consider two cases.
Case 1: infET ϕ < 0. Then the proof of Theorem 3.1 is finished directly due to

Lemma 3.4.
Case 2: infET ϕ ≥ 0. Due to (8), we obtain

ϕ(x) = inf
ET

ϕ = 0 for all x ∈ ET .
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This means that all x ∈ V with ‖x‖ ≤ ρ are solutions of equation (1). Hence the proof of
Theorem 3.1 is finished. �

The proof of Corollary 3.2 is omitted since it is similar to that of Theorem 3.1.
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