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Abstract
In this paper, we derive the solutions of homogeneous and non-homogeneous
nth-order linear general quantum difference equations based on the general
quantum difference operator Dβ which is defined by Dβ f (t) = (f (β(t)) – f (t))/(β(t) – t),
β(t) �= t, where β is a strictly increasing continuous function defined on an interval
I ⊆ R that has only one fixed point s0 ∈ I. We also give the sufficient conditions for the
existence and uniqueness of solutions of the β-Cauchy problem of these equations.
Furthermore, we present the fundamental set of solutions when the coefficients are
constants, the β-Wronskian associated with Dβ , and Liouville’s formula for the
β-difference equations. Finally, we introduce the undetermined coefficients, the
variation of parameters, and the annihilator methods for the non-homogeneous
β-difference equations.
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1 Introduction
Quantum difference operator allows us to deal with sets of non-differentiable functions.
Its applications are used in many mathematical fields such as the calculus of variations,
orthogonal polynomials, basic hypergeometric functions, quantum mechanics, and the
theory of scale relativity; see, e.g., [3, 5, 7, 13, 14].

The general quantum difference operator Dβ generalizes the Jackson q-difference oper-
ator Dq and the Hahn difference operator Dq,ω , see [1, 2, 4, 8, 12]. It is defined, in [10, p.
6], by

Dβ f (t) =

⎧
⎨

⎩

f (β(t))–f (t)
β(t)–t , t �= s0,

f ′(s0), t = s0,

where f : I → X is a function defined on an interval I ⊆ R, X is a Banach space, and
β : I → I is a strictly increasing continuous function defined on I that has only one fixed
point s0 ∈ I and satisfies the inequality (t – s0)(β(t) – t) ≤ 0 for all t ∈ I . The function
f is said to be β-differentiable on I if the ordinary derivative f ′ exists at s0. The general
quantum difference calculus was introduced in [10]. The exponential, trigonometric, and
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hyperbolic functions associated with Dβ were presented in [9]. The existence and unique-
ness of solutions of the first-order β-initial value problem were established in [11]. In [6],
the existence and uniqueness of solutions of the β-Cauchy problem of the second-order
β-difference equations were proved. Also, a fundamental set of solutions for the second-
order linear homogeneous β-difference equations when the coefficients are constants was
constructed, and the different cases of the roots of their characteristic equations were stud-
ied. Moreover, the Euler–Cauchy β-difference equation was derived.

The organization of this paper is briefly summarized in the following. In Sect. 2, we
present the needed preliminaries of the β-calculus from [6, 9–11]. In Sect. 3, we give
the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy
problem of the nth-order β-difference equations. Also, we construct the fundamental set
of solutions for the homogeneous linear β-difference equations when the coefficients aj

(0 ≤ j ≤ n) are constants. Furthermore, we introduce the β-Wronskian which is an effec-
tive tool to determine whether the set of solutions is a fundamental set or not and prove its
properties. Finally, we study the undetermined coefficients, the variation of parameters,
and the annihilator methods for the non-homogeneous linear β-difference equations.

Throughout this paper, J is a neighborhood of the unique fixed point s0 of β , S(y0, b) =
{y ∈X : ‖y – y0‖ ≤ b}, and R = {(t, y) ∈ I ×X : |t – s0| ≤ a,‖y – y0‖ ≤ b} is a rectangle, where
a, b are fixed positive real numbers, X is a Banach space. Furthermore, Dn

β f = Dβ (Dn–1
β f ),

n ∈N0 = N∪{0}, where f is β-differentiable n times over I , N is the set of natural numbers.
We use the symbol T for the transpose of the vector or the matrix.

2 Preliminaries
Lemma 2.1 ([10]) The following statements are true:

(i) The sequence of functions {βk(t)}∞k=0 converges uniformly to the constant function
β̂(t) := s0 on every compact interval V ⊆ I containing s0.

(ii) The series
∑∞

k=0 |βk(t) – βk+1(t)| is uniformly convergent to |t – s0| on every compact
interval V ⊆ I containing s0.

Lemma 2.2 ([10]) If f : I →X is a continuous function at s0, then the sequence {f (βk(t))}∞k=0
converges uniformly to f (s0) on every compact interval V ⊆ I containing s0.

Theorem 2.3 ([10]) If f : I →X is continuous at s0, then the series
∑∞

k=0 ‖(βk(t)–βk+1(t)) ×
f (βk(t))‖ is uniformly convergent on every compact interval V ⊆ I containing s0.

Theorem 2.4 ([10]) Assume that f : I → X and g : I → R are β-differentiable at t ∈ I .
Then:

(i) The product fg : I →X is β-differentiable at t and

Dβ (fg)(t) =
(
Dβ f (t)

)
g(t) + f

(
β(t)

)
Dβg(t)

=
(
Dβ f (t)

)
g
(
β(t)

)
+ f (t)Dβg(t),

(ii) f /g is β-differentiable at t and

Dβ (f /g)(t) =
(Dβ f (t))g(t) – f (t)Dβg(t)

g(t)g(β(t))
,

provided that g(t)g(β(t)) �= 0.
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Theorem 2.5 ([10]) Assume that f : I →X is continuous at s0. Then the function F defined
by

F(t) =
∞∑

k=0

(
βk(t) – βk+1(t)

)
f
(
βk(t)

)
, t ∈ I (2.1)

is a β-antiderivative of f with F(s0) = 0. Conversely, a β-antiderivative F of f vanishing at
s0 is given by (2.1).

Definition 2.6 ([10]) The β-integral of f : I →X from a to b, a, b ∈ I , is defined by

∫ b

a
f (t) dβ t =

∫ b

s0

f (t) dβ t –
∫ a

s0

f (t) dβ t,

where

∫ x

s0

f (t) dβ t =
∞∑

k=0

(
βk(x) – βk+1(x)

)
f
(
βk(x)

)
, x ∈ I,

provided that the series converges at x = a and x = b. f is called β-integrable on I if the
series converges at a and b for all a, b ∈ I . Clearly, if f is continuous at s0 ∈ I , then f is
β-integrable on I .

Definition 2.7 ([9]) The β-exponential functions ep,β (t) and Ep,β (t) are defined by

ep,β (t) =
1

∏∞
k=0[1 – p(βk(t))(βk(t) – βk+1(t))]

(2.2)

and

Ep,β (t) =
∞∏

k=0

[
1 + p

(
βk(t)

)(
βk(t) – βk+1(t)

)]
, (2.3)

where p : I →C is a continuous function at s0, ep,β (t) = 1
E–p,β (t) .

The both products in (2.2) and (2.3) are convergent to a non-zero number for every t ∈ I
since

∑∞
k=0 |p(βk(t))(βk(t) – βk+1(t))| is uniformly convergent.

Definition 2.8 ([9]) The β-trigonometric functions are defined by

cosp,β (t) =
eip,β (t) + e–ip,β (t)

2
,

sinp,β (t) =
eip,β (t) – e–ip,β (t)

2i
,

Cosp,β (t) =
Eip,β (t) + E–ip,β (t)

2
,

and Sinp,β (t) =
Eip,β (t) – E–ip,β (t)

2i
.
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Theorem 2.9 ([9]) The β-exponential functions ep,β (t) and Ep,β (t) are the unique solutions
of the first-order β-difference equations

Dβy(t) = p(t)y(t), y(s0) = 1,

Dβy(t) = p(t)y
(
β(t)

)
, y(s0) = 1,

respectively.

Theorem 2.10 ([9]) Assume that f : I → X is continuous at s0. Then the solution of the
following equation Dβy(t) = p(t)y(t) + f (t), y(s0) = y0 ∈X, has the form

y(t) = ep,β (t)
[

y0 +
∫ t

s0

f (τ )E–p,β
(
β(τ )

)
dβτ

]

.

Theorem 2.11 ([11]) Let z ∈C be a constant. Then the function φ(t) defined by

φ(t) =
∞∑

k=0

zkαk(t)

is the unique solution of the β-IVP

Dβy(t) = zy(t), y(s0) = 1,

where

αk(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑∞
i1,i2,i3,...,ik–1=0(

∏k–1
l=1 (β ,β)∑l

j=1 ij
)(β

∑k–1
j=1 ij (t) – s0), if k ≥ 2,

t – s0, if k = 1,

1, if k = 0,

with (β ,β)i = β i(t) – β i+1(t).

Proposition 2.12 ([11]) Let z ∈C. The β-exponential function ez,β (t) has the expansion

ez,β (t) =
∞∑

k=0

zkαk(t).

Theorem 2.13 ([11]) Assume that f : R → X is continuous at (s0, y0) ∈ R and satisfies the
Lipschitz condition (with respect to y)

∥
∥f (t, y1) – f (t, y2)

∥
∥≤ L‖y1 – y2‖ for all (t, y1), (t, y2) ∈ R,

where L is a positive constant. Then the sequence defined by

φk+1(t) = y0 +
∫ t

s0

f
(
τ ,φk(τ )

)
dβτ , φ0(t) = y0, |t – s0| ≤ δ, k ≥ 0 (2.4)
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converges uniformly on the interval |t – s0| ≤ δ to a function φ, the unique solution of the
β-IVP

Dβy(t) = f (t, y), y(s0) = y0, t ∈ I, (2.5)

where δ = min{a, b
Lb+M , ρ

L } with ρ ∈ (0, 1) and M = sup(t,y)∈R ‖f (t, y)‖ < ∞, ρ ∈ (0, 1).

Theorem 2.14 ([6]) Let fi(t, y1, y2) : I ×∏2
i=1 Si(xi, bi) → X, s0 ∈ I such that the following

conditions are satisfied:
(i) For yi ∈ Si(xi, bi), i = 1, 2, fi(t, y1, y2) are continuous at t = s0.

(ii) There is a positive constant A such that, for t ∈ I , yi, ỹi ∈ Si(xi, bi), i = 1, 2, the
following Lipschitz condition is satisfied:

∥
∥fi(t, y1, y2) – fi(t, ỹ1, ỹ2)

∥
∥≤ A

2∑

i=1

‖yi – ỹi‖.

Then there exists a unique solution of the β-initial value problem β-IVP

Dβyi(t) = fi
(
t, y1(t), y2(t)

)
, yi(s0) = xi ∈X, i = 1, 2, t ∈ I.

Corollary 2.15 ([6]) Let f (t, y1, y2) be a function defined on I ×∏2
i=1 Si(xi, bi) such that the

following conditions are satisfied:
(i) For any values of yi ∈ Si(xi, bi), i = 1, 2, f is continuous at t = s0.

(ii) f satisfies the Lipschitz condition

∥
∥f (t, y1, y2) – f (t, ỹ1, ỹ2)

∥
∥≤ A

2∑

i=1

‖yi – ỹi‖,

where A > 0, yi, ỹi ∈ Si(xi, bi), i = 1, 2, and t ∈ I . Then

D2
βy(t) = f

(
t, y(t), Dβy(t)

)
, Di–1

β y(s0) = xi, i = 1, 2,

has a unique solution on [s0, s0 + δ].

Corollary 2.16 ([6]) Assume that the functions aj(t) : I → C, j = 0, 1, 2, and b(t) : I → X

satisfy the following conditions:
(i) aj(t), j = 0, 1, 2, and b(t) are continuous at s0 with a0(t) �= 0 for all t ∈ I ,

(ii) aj(t)/a0(t) is bounded on I , j = 1, 2. Then

a0(t)D2
βy(t) + a1(t)Dβy(t) + a2(t)y(t) = b(t), Di–1

β y(s0) = xi, xi ∈X, i = 1, 2,

has a unique solution on a subinterval J ⊆ I , s0 ∈ J .

3 Main results
In this section, we give the sufficient conditions for the existence and uniqueness of solu-
tions of the β-Cauchy problem of the nth-order β-difference equations. We also present
the fundamental set of solutions for the homogeneous linear β-difference equations when
the coefficients aj (0 ≤ j ≤ n) are constants. Furthermore, we introduce the β-Wronskian.
Finally, we study the undetermined coefficients, the variation of parameters, and the an-
nihilator methods for the non-homogeneous linear β-difference equations.
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3.1 Existence and uniqueness of solutions
Theorem 3.1 Let I be an interval containing s0, fi(t, y1, . . . , yn) : I × ∏n

i=1 Si(xi, bi) → X,
such that the following conditions are satisfied:

(i) For yi ∈ Si(xi, bi), i = 1, . . . , n, fi(t, y1, . . . , yn) are continuous at t = s0.
(ii) There is a positive constant A such that, for t ∈ I , yi, ỹi ∈ Si(xi, bi), i = 1, . . . , n, the

following Lipschitz condition is satisfied:

∥
∥fi(t, y1, . . . , yn) – fi(t, ỹ1, . . . , ỹn)

∥
∥≤ A

n∑

i=1

‖yi – ỹi‖.

Then there exists a unique solution of the β-initial value problem β-IVP

Dβyi(t) = fi
(
t, y1(t), . . . , yn(t)

)
, yi(s0) = xi ∈X, i = 1, . . . , n, t ∈ I.

Proof See the proof of Theorem 2.14. �

The proof of the following two corollaries is the same as the proof of Corollaries 2.15,
2.16.

Corollary 3.2 Let f (t, y1, . . . , yn) be a function defined on I ×∏n
i=1 Si(xi, bi) such that the

following conditions are satisfied:
(i) For any values of yr ∈ Sr(xr , br), f is continuous at t = s0.

(ii) f satisfies the Lipschitz condition

∥
∥f (t, y1, . . . , yn) – f (t, ỹ1, . . . , ỹn)

∥
∥≤ A

n∑

i=1

‖yi – ỹi‖,

where A > 0, yi, ỹi ∈ Si(xi, bi), i = 1, . . . , n, and t ∈ I . Then

Dn
βy(t) = f

(
t, y(t), Dβy(t), . . . , Dn–1

β y(t)
)
,

Di–1
β y(s0) = xi, i = 1, . . . , n,

(3.1)

has a unique solution on [s0, s0 + δ].

The following corollary gives us the sufficient conditions for the existence and unique-
ness of solutions of the β-Cauchy problem (3.1).

Corollary 3.3 Assume that the functions aj(t) : I → C, j = 0, 1, . . . , n, and b(t) : I → X sat-
isfy the following conditions:

(i) aj(t), j = 0, 1, . . . , n, and b(t) are continuous at s0 with a0(t) �= 0 for all t ∈ I ,
(ii) aj(t)/a0(t) is bounded on I , j = 1, . . . , n. Then

a0(t)Dn
βy(t) + a1(t)Dn–1

β y(t) + · · · + an(t)y(t) = b(t),

Di–1
β y(s0) = xi, i = 1, . . . , n,

has a unique solution on a subinterval J ⊂ I containing s0.
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3.2 Homogeneous linear β-difference equations
Consider the nth-order homogeneous linear β-difference equation

a0(t)Dn
βy(t) + a1(t)Dn–1

β y(t) + · · · + an–1(t)Dβy(t) + an(t)y(t) = 0, (3.2)

where the coefficients aj(t), 0 ≤ j ≤ n, are assumed to satisfy the conditions of Corol-
lary 3.3. Equation (3.2) may be written as Lny = 0, where

Ln = a0(t)Dn
β + a1(t)Dn–1

β + · · · + an–1(t)Dβ + an(t).

The following lemma is an immediate consequence of Corollary 3.3.

Lemma 3.4 If y is a solution of equation (3.2) such that Di–1
β y(s0) = 0, 1 ≤ i ≤ n, then y(t) =

0 for all t ∈ J .

Theorem 3.5 The nth-order homogeneous linear scalar β-difference equation (3.2) is
equivalent to the first-order homogeneous linear system of the form

DβY (t) = A(t)Y (t),

where

Y =

⎛

⎜
⎜
⎝

y1
...

yn

⎞

⎟
⎟
⎠ and A =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 . . . 0
...

... . . .
...

0 0 1
– an

a0
– an–1

a0
. . . – a1

a0

⎞

⎟
⎟
⎟
⎟
⎠

.

Proof Let

y1 = y,

y2 = Dβy,

...

yn–1 = Dn–2
β y,

yn = Dn–1
β y.

(3.3)

β-differentiating (3.3), we have

Dβy = Dβy1, D2
βy = Dβy2, . . . , Dn–1

β y = Dβyn–1, Dn
βy = Dβyn. (3.4)

Then

Dβy1 = y2, Dβy2 = y3, . . . , Dβyn–1 = yn. (3.5)

Since a0(t) �= 0 on J , (3.2) is equivalent to

Dn
βy = –

an(t)
a0(t)

y –
an–1(t)
a0(t)

Dβy – · · · –
a1(t)
a0(t)

Dn–1
β y,
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from (3.3) and (3.4), we have

Dβyn = –
an(t)
a0(t)

y1 –
an–1(t)
a0(t)

y2 – · · · –
a1(t)
a0(t)

yn. (3.6)

Combining (3.5) and (3.6), we get

Dβy1 = y2,

...

Dβyn–1 = yn,

Dβyn = –
an(t)
a0(t)

y1 –
an–1(t)
a0(t)

y2 – · · · –
a1(t)
a0(t)

yn.

(3.7)

This is equivalent to the homogeneous linear vector β-difference equation

DβY (t) = A(t)Y (t), (3.8)

where

Y =

⎛

⎜
⎜
⎝

y1
...

yn

⎞

⎟
⎟
⎠ and A =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 . . . 0
...

... . . .
...

0 0 1
– an

a0
– an–1

a0
. . . – a1

a0

⎞

⎟
⎟
⎟
⎟
⎠

.

�

Theorem 3.6 Consider equation (3.2) and the corresponding system (3.8). If f is a solution
of (3.2) on J , then φ = (f , Dβ f , . . . , Dn–1

β f )T is a solution of (3.8) on J . Conversely, if φ =
(φ1, . . . ,φn)T is a solution of (3.8) on J , then its first component φ1 is a solution f of (3.2) on
J and φ = (f , Dβ f , . . . , Dn–1

β f )T .

Proof Suppose that f satisfies equation (3.2). Then

a0(t)Dn
β f (t) + · · · + an–1(t)Dβ f (t) + an(t)f (t) = 0, t ∈ J . (3.9)

Consider

φ(t) =
(
φ1(t), . . . ,φn(t)

)T =
(
f (t), Dβ f (t), . . . , Dn–1

β f (t)
)T . (3.10)

From (3.9) and (3.10), we have

Dβφ1(t) = φ2(t),

...

Dβφn–1(t) = φn(t),

Dβφn(t) = –
an(t)
a0(t)

φ1(t) –
an–1(t)
a0(t)

φ2(t) – · · · –
a1(t)
a0(t)

φn(t).

(3.11)
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Comparing (3.11) with (3.7), φ defined by (3.10) satisfies system (3.7). Conversely, suppose
that φ(t) = (φ1(t), . . . ,φn(t))T satisfies system (3.7) on J . Then (3.11) holds for all t ∈ J . The
first n – 1 equations of (3.11) give

φ2(t) = Dβφ1(t),

φ3(t) = Dβφ2(t) = D2
βφ1(t),

...

φn(t) = Dβφn–1(t) = D2
βφn–2(t) = · · · = Dn–1

β φ1(t),

(3.12)

and so Dβφn(t) = Dn
βφ1(t). The last equation of (3.11) becomes

a0(t)Dn
βφ1(t) + a1(t)Dn–1

β φ1(t) + · · · + an–1(t)Dβφ1(t) + an(t)φ1(t) = 0.

Thus φ1 is a solution f of equation (3.2); and moreover, (3.12) shows that φ(t) =
(f (t), Dβ f (t), . . . , Dn–1

β f (t))T . �

The following corollary is an immediate consequence of Theorem 3.6.

Corollary 3.7 If f is the solution of equation (3.2) on J satisfying the initial condition
Di–1

β f (s0) = xi, 1 ≤ i ≤ n, then φ = (f , Dβ f , . . . , Dn–1
β f )T is the solution of system (3.8) on J

satisfying the initial condition φ(s0) = (x1, . . . , xn)T . Conversely, if φ = (φ1, . . . ,φn)T is the so-
lution of (3.8) on J satisfying the initial condition φ(s0) = (x1, . . . , xn)T , then φ1 is the solution
f of (3.2) on J satisfying the initial condition Di–1

β f (s0) = xi, 1 ≤ i ≤ n.

Theorem 3.8 A linear combination y =
∑m

k=1 ckyk of m solutions y1, . . . , ym of the homoge-
neous linear β-difference equation (3.2) is also a solution of it, where c1, . . . , cm are arbitrary
constants.

Proof The proof is straightforward. �

Definition 3.9 (A fundamental set) A set of n linearly independent solutions of the nth-
order homogeneous linear β-difference equation (3.2) is called a fundamental set of equa-
tion (3.2).

By the theory of differential equations, we can easily prove the following theorems.

Theorem 3.10 If the solutions y1, . . . , yn of the homogeneous linear β-difference equation
(3.2) are linearly independent on J , then the corresponding solutions

φ1 =
(
y1, Dβy1, . . . , Dn–1

β y1
)T , . . . , φn =

(
yn, Dβyn, . . . , Dn–1

β yn
)T

of system (3.8) are linearly independent on J ; and conversely.

Theorem 3.11 Any arbitrary solution y of homogeneous linear β-difference equation (3.2)
on J can be represented as a suitable linear combination of a fundamental set of solutions
y1, . . . , yn of (3.2).
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Now, we are concerned with constructing the fundamental set of solutions of equation
(3.2) when the coefficients are constants. Equation (3.2) can be written as

Lny(t) = a0Dn
βy(t) + a1Dn–1

β y(t) + · · · + any(t) = 0, (3.13)

where aj, 0 ≤ j ≤ n, are constants. From Theorem 3.5, equation (3.13) is equivalent to the
system

DβY (t) = AY (t), (3.14)

where

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 . . . 0
...

... . . .
...

0 0 1
– an

a0
– an–1

a0
. . . – a1

a0

⎞

⎟
⎟
⎟
⎟
⎠

.

The characteristic polynomial of equation (3.13) is given by

P(λ) = det(λI – A) = a0λ
n + a1λ

n–1 + · · · + an, (3.15)

where I is the unit square matrix of order n, λi, 1 ≤ i ≤ k, are distinct roots of p(λ) = 0 of
multiplicity mi, so that

∑k
i=1 mi = n.

Theorem 3.12 Let A be a constant n × n matrix. Then the function 
(t) defined by


(t) =
∞∑

r=0

Arαr(t)

is the unique solution of the β-IVP

DβY (t) = AY (t), Y (s0) = I ,

where I is the unit square matrix of order n and

αr(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑∞
i1,i2,i3,...,ir–1=0(

∏r–1
l=1 (β ,β)∑l

j=1 ij
)(β

∑r–1
j=1 ij (t) – s0), if r ≥ 2,

t – s0 if r = 1,

I , if r = 0,

with (β ;β)i = βi(t) – βi+1(t).

Proof By using the successive approximations, with choosing 
0(t) = I , we have the de-
sired result. See the proof of Theorem 2.11. �
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Corollary 3.13 Let A be a constant n × n matrix with characteristic polynomial (3.15),
then 
(t) = eA,β (t) =

∑∞
r=0 Arαr(t) is the unique solution of (3.13) satisfying the initial con-

ditions


(s0) = I , Dβ
(s0) = A, . . . , Dn–1
β 
(s0) = An–1.

Proof The proof is straightforward. �

We have from the previous that

yi(t) = eλi ,β (t) =
∞∑

r=0

λr
i αr(t), 1 ≤ i ≤ k,

forms a fundamental set of solutions of equation (3.13).

Example 3.14 Consider the homogeneous linear system

DβY (t) =

⎛

⎜
⎝

3 1 –1
1 3 –1
3 3 –1

⎞

⎟
⎠Y (t). (3.16)

Let Y (t) = γ eλ,β (t), where γ = (γ1, . . . ,γn)T is a constant vector. The characteristic equation
is

λ3 – 5λ2 + 8λ – 4 = 0,

where λ1 = 1, λ2 = λ3 = 2. Then

y1(t) =

⎛

⎜
⎝

1
1
3

⎞

⎟
⎠ e1,β(t), y2(t) =

⎛

⎜
⎝

1
–1
0

⎞

⎟
⎠ e2,β(t) and y3(t) =

⎛

⎜
⎝

1
0
1

⎞

⎟
⎠ e2,β (t)

are the solutions of (3.16). The general solution of system (3.16) is

Y (t) = c1

⎛

⎜
⎝

e1,β (t)
e1,β (t)

3e1,β (t)

⎞

⎟
⎠ + c2

⎛

⎜
⎝

e2,β (t)
–e2,β (t)

0

⎞

⎟
⎠ + c3

⎛

⎜
⎝

e2,β (t)
0

e2,β (t)

⎞

⎟
⎠ ,

where c1, c2, and c3 are arbitrary constants.

Example 3.15 Consider the homogeneous linear system

DβY (t) =

⎛

⎜
⎝

4 3 1
–4 –4 –2
8 12 6

⎞

⎟
⎠Y (t). (3.17)

Assume that Y = γ eλ,β (t). The characteristic equation is

λ3 – 6λ2 + 12λ – 8 = 0,
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where λ1 = λ2 = λ3 = 2. Then

y1(t) =

⎛

⎜
⎝

1
0

–2

⎞

⎟
⎠ e2,β (t) and y2(t) =

⎛

⎜
⎝

0
1

–3

⎞

⎟
⎠ e2,β (t).

Let y3(t) = (γ t + ν)e2,β(t),

γ =

⎛

⎜
⎝

k1

k2

–2k1 – 3k2

⎞

⎟
⎠ and ν =

⎛

⎜
⎝

ν1

ν2

ν3

⎞

⎟
⎠ ,

where k1 and k1 are constants, and also γ and ν satisfy

(A – λI)γ = 0

and

(A – λI)ν = γ .

Therefore,

y3(t) =

⎡

⎢
⎣

⎛

⎜
⎝

1
–2
4

⎞

⎟
⎠ t +

⎛

⎜
⎝

0
0
1

⎞

⎟
⎠

⎤

⎥
⎦ e2,β (t).

The general solution of system (3.17) is

Y (t) = c1

⎛

⎜
⎝

e2,β (t)
0

–2e2,β (t)

⎞

⎟
⎠ + c2

⎛

⎜
⎝

0
e2,β(t)

–3e2,β (t)

⎞

⎟
⎠ + c3

⎛

⎜
⎝

te2,β(t)
–2te2,β (t)

(4t + 1)e2,β (t)

⎞

⎟
⎠ ,

where c1, c2, c3 are arbitrary constants.

3.3 β-Wronskian
Definition 3.16 Let y1, . . . , yn be β-differentiable functions (n–1) times defined on I , then
we define the β-Wronskian of the functions y1, . . . , yn by

Wβ (y1, . . . , yn)(t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(t) . . . yn(t)
Dβy1(t) . . . Dβyn(t)

...
. . .

...
Dn–1

β y1(t) . . . Dn–1
β yn(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Throughout this paper, we write Wβ instead of Wβ (y1, . . . , yn).
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Lemma 3.17 Let y1(t), . . . , yn(t) be n-times β-differentiable functions defined on I . Then,
for any t ∈ I , t �= s0,

DβWβ (y1, . . . , yn)(t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(β(t)) . . . yn(β(t))
Dβy1(β(t)) . . . Dβyn(β(t))

...
. . .

...
Dn–2

β y1(β(t)) . . . Dn–2
β yn(β(t))

Dn
βy1(t) . . . Dn

βyn(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.18)

Proof We prove by induction on n. The lemma is trivial when n = 1. Then suppose that it
is true for n = k. Our objective is to show that it holds for n = k + 1.

We expand Wβ (y1, . . . , yk+1) in terms of the first row to obtain

Wβ (y1, . . . , yk+1) =
k+1∑

j=1

(–1)j+1yj(t)W (j)
β (t),

where

W (j)
β =

⎧
⎪⎪⎨

⎪⎪⎩

Wβ (Dβy2, . . . , Dβyk+1), j = 1,

Wβ (Dβy1, . . . , Dβyj–1, Dβyj+1, . . . , Dβyk+1), 2 ≤ j ≤ k,

Wβ (Dβy1, . . . , Dβyk), j = k + 1.

Consequently,

DβWβ (y1, . . . , yk+1)(t) =
k+1∑

j=1

(–1)j+1Dβyj(t)W (j)
β (t) +

k+1∑

j=1

(–1)j+1yj
(
β(t)

)
DβW (j)

β (t).

We have

k+1∑

j=1

(–1)j+1Dβyj(t)W (j)
β (t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Dβy1(t) . . . Dβyk+1(t)
Dβy1(t) . . . Dβyk+1(t)
D2

βy1(t) . . . D2
βyk+1(t)

...
. . .

...
Dk–1

β y1(t) . . . Dk–1
β yk+1(t)

Dk
βy1(t) . . . Dk

βyk+1(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0,

and from the induction hypothesis we have

k+1∑

j=1

(–1)j+1yj
(
β(t)

)
DβW (j)

β (t)

=
k+1∑

j=1

(–1)j+1yj
(
β(t)

)
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×

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Dβy1(β(t)) . . . Dβyj–1(β(t)) Dβyj+1(β(t)) . . . Dβyk+1(β(t))
D2

βy1(β(t)) . . . D2
βyj–1(β(t)) D2

βyj+1(β(t)) . . . D2
βyk+1(β(t))

...
. . .

...
. . .

...
...

Dk–1
β y1(β(t)) . . . Dk–1

β yj–1(β(t)) Dk–1
β yj+1(β(t)) . . . Dk–1

β yk+1(β(t))
Dk+1

β y1(t) . . . Dk+1
β yj–1(t) Dk+1

β yj+1(t) . . . Dk+1
β yk+1(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

(3.19)

where at j = 1 the determinant of (3.19) starts with Dβy2(β(t)) and at j = k + 1 the deter-
minant ends with Dk+1

β yk(t). So,

k+1∑

j=1

(–1)j+1yj
(
β(t)

)
DβW (j)

β (t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(β(t)) . . . yk+1(β(t))
Dβy1(β(t)) . . . Dβyk+1(β(t))

...
. . .

...
Dk–1

β y1(β(t)) . . . Dk–1
β yk+1(β(t))

Dk+1
β y1(t) . . . Dk+1

β yk+1(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Thus, we have

DβWβ (y1, . . . , yk+1)(t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(β(t)) . . . yk+1(β(t))
Dβy1(β(t)) . . . Dβyk+1(β(t))

...
. . .

...
Dk–1

β y1(β(t)) . . . Dk–1
β yk+1(β(t))

Dk+1
β y1(t) . . . Dk+1

β yk+1(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

as required. �

Theorem 3.18 If y1(t), . . . , yn(t) are solutions of equation (3.2) in J , then their β-Wronskian
satisfies the first-order β-difference equation

DβWβ (t) = –P(t)Wβ (t), ∀t ∈ J\{s0}, (3.20)

where

P(t) =
n–1∑

k=0

(
t – β(t)

)kak+1(t)/a0(t).

Proof First, we show by induction that the following relation

DβWβ (y1, . . . , yn) =
n∑

k=1

(–1)k–1(t – β(t)
)k–1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(t) . . . yn(t)
Dβy1(t) . . . Dβyn(t)

...
. . .

...
Dn–k–1

β y1(t) . . . Dn–k–1
β yn(t)

Dn–k+1
β y1(t) . . . Dn–k+1

β yn(t)
...

. . .
...

Dn
βy1(t) . . . Dn

βyn(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.21)
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holds. Indeed, clearly (3.21) is true at n = 1. Assume that (3.21) is true for n = m. From
Lemma 3.17,

DβWβ (y1, . . . , ym+1)(t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(β(t)) . . . ym+1(β(t))
Dβy1(β(t)) . . . Dβym+1(β(t))

...
. . .

...
Dm–1

β y1(β(t)) . . . Dm–1
β ym+1(β(t))

Dm+1
β y1(t) . . . Dm+1

β ym+1(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
m+1∑

j=1

(–1)j+1yj
(
β(t)

)
W ∗(j)

β (t),

where

W ∗(j)
β =

⎧
⎪⎪⎨

⎪⎪⎩

DβWβ (Dβy2, . . . , Dβym+1), j = 1,

DβWβ (Dβy1, Dβyj–1, Dβyj+1, . . . , Dβym+1), 2 ≤ j ≤ m,

DβWβ (Dβy1, . . . , Dβym), j = m + 1.

One can see that W ∗(j)
β (t) =

∑m
k=1(–1)k–1(t – β(t))k–1Rjk , where

Rjk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Dβy1(t) . . . Dβyj–1(t) Dβyj+1(t) . . . Dβym+1(t)
D2

βy1(t) . . . D2
βyj–1(t) D2

βyj+1(t) . . . D2
βym+1(t)

...
. . .

...
...

. . .
...

Dm–k
β y1(t) . . . Dm–k

β yj–1(t) Dm–k
β yj+1(t) . . . Dm–k

β ym+1(t)
Dm–k+2

β y1(t) . . . Dm–k+2
β yj–1(t) Dm–k+2

β yj+1(t) . . . Dm–k+2
β ym+1(t)

...
. . .

...
...

. . .
...

Dm+1
β y1(t) . . . Dm+1

β yj–1(t) Dm+1
β yj+1(t) . . . Dm+1

β ym+1(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

2 ≤ j ≤ m,

Rjk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Dβy2(t) . . . Dβym+1(t)
D2

βy2(t) . . . D2
βym+1(t)

...
. . .

...
Dm–k

β y2(t) . . . Dm–k
β ym+1(t)

Dm–k+2
β y2(t) . . . Dm–k+2

β ym+1(t)
...

. . .
...

Dm+1
β y2(t) . . . Dm+1

β ym+1(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, j = 1,

Rjk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Dβy1(t) . . . Dβym(t)
D2

βy1(t) . . . D2
βym(t)

...
. . .

...
Dm–k

β y1(t) . . . Dm–k
β ym(t)

Dm–k+2
β y1(t) . . . Dm–k+2

β ym(t)
...

. . .
...

Dm+1
β y1(t) . . . Dm+1

β ym(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, j = m + 1.
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It follows that

DβWβ (y1, . . . , ym+1) =
m+1∑

j=1

(–1)j+1[yj(t) –
(
t – β(t)

)
Dβyj(t)

]

×
m∑

k=1

(–1)k–1(t – β(t)
)k–1Rjk

=
m∑

k=1

(–1)k–1(t – β(t)
)k–1

m+1∑

j=1

(–1)j+1yj(t)Rjk

+
m∑

k=1

(–1)k(t – β(t)
)k

m+1∑

j=1

(–1)j+1Dβyj(t)Rjk

=
m∑

k=1

(–1)k–1(t – β(t)
)k–1M(k) +

m∑

k=1

(–1)k(t – β(t)
)kL(k), (3.22)

where

M(k) =
m+1∑

j=1

(–1)j+1yj(t)Rjk =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(t) . . . ym+1(t)
Dβy1(t) . . . Dβym+1(t)
D2

βy1(t) . . . D2
βym+1(t)

...
. . .

...
Dm–k

β y1(t) . . . Dm–k
β ym+1(t)

Dm–k+2
β y1(t) . . . Dm–k+2

β ym+1(t)
...

. . .
...

Dm+1
β y1(t) . . . Dm+1

β ym+1(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (3.23)

L(k) =
m+1∑

j=1

(–1)j+1Dβyj(t)Rjk =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, if (k = 1, . . . , m – 1),
∣
∣
∣
∣
∣
∣
∣
∣
∣

Dβ y1(t) ... Dβ ym+1(t)

D2
β y1(t) ... D2

β ym+1(t)

...
. . .

...
Dm+1

β y1(t) ... Dm+1
β ym+1(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣

, if k = m.
(3.24)

Using relations (3.23) and (3.24) and substituting in (3.22), we obtain relation (3.21) at
n = m + 1. Since Dn

βyj(t) = –
∑n

i=1(ai(t)/a0(t))Dn–i
β yj(t), it follows that

DβWβ (t) =
n∑

k=1

(–1)k–1(t – β(t)
)k–1

(
–ak(t)
a0(t)

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1(t) . . . yn(t)
Dβy1(t) . . . Dβyn(t)

...
. . .

...
Dn–k–1

β y1(t) . . . Dn–k–1
β yn(t)

Dn–k+1
β y1(t) . . . Dn–k+1

β yn(t)
...

. . .
...

Dn–1
β y1(t) . . . Dn–1

β yn(t)
Dn–k

β y1(t) . . . Dn–k
β yn(t)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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=
n∑

k=1

(–1)2(k–1)(t – β(t)
)k–1

(
–ak(t)
a0(t)

)

Wβ (t)

= –
n–1∑

k=0

(
t – β(t)

)k
(

ak+1(t)
a0(t)

)

Wβ (t) = –P(t)Wβ (t),

which is the desired result. �

The following theorem gives us Liouville’s formula for β-difference equations.

Theorem 3.19 Assume that (β(t) – t)P(t) �= 1, t ∈ J . Then the β-Wronskian of any set of
solutions {yi(t)}n

i=1, valid in J , is given by

Wβ (t) =
Wβ (s0)

∏∞
k=0[1 + P(βk(t))(βk(t) – βk+1(t))]

, t ∈ J . (3.25)

Proof Relation (3.20) implies that

Wβ

(
β(t)

)
=
[
1 +

(
t – β(t)

)
P(t)

]
Wβ (t), t ∈ J\{s0}.

Hence,

Wβ (t) =
Wβ (β(t))

1 + (t – β(t))P(t)

=
Wβ (βm(t))

∏m–1
k=0 [1 + P(βk(t))(βk(t) – βk+1(t))]

, m ∈N.

Taking m → ∞, we get

Wβ (t) =
Wβ (s0)

∏∞
k=0[1 + P(βk(t))(βk(t) – βk+1(t))]

, t ∈ J . �

Example 3.20 We calculate the β-Wronskian of the β-difference equation

D2
βy(t) + y(t) = 0. (3.26)

The functions y1(t) = cos1,β (t) and y2(t) = sin1,β (t) are solutions of equation (3.26) subject
to the initial conditions y1(s0) = 1, Dβy1(s0) = 0, y2(s0) = 0, Dβy2(s0) = 1, respectively. Here,
P(t) = (t – β(t)). So, (β(t) – t)P(t) �= 1 for all t �= s0. Since

Wβ (s0) =

∣
∣
∣
∣
∣

cos1,β (s0) sin1,β(s0)
sin1,β (s0) cos1,β(s0)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1 0
0 1

∣
∣
∣
∣
∣

= 1.

Therefore, Wβ (t) = 1∏∞
k=0[1+(βk (t)–βk+1(t))2] .

The following corollary can be deduced directly from Theorem 3.19.

Corollary 3.21 Let {yi}n
i=1 be a set of solutions of equation (3.2) in J . Then Wβ (t) has two

possibilities:
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(i) Wβ (t) �= 0 in J if and only if {yi}n
i=1 is a fundamental set of equation (3.2) valid in J .

(ii) Wβ (t) = 0 in J if and only if {yi}n
i=1 is not a fundamental set of equation (3.2) valid

in J .

3.4 Non-homogeneous linear β-difference equations
The nth-order non-homogeneous linear β-difference equation has the form

a0(t)Dn
βy(t) + a1(t)Dn–1

β y(t) + · · · + an–1(t)Dβy(t) + an(t)y(t) = b(t), (3.27)

where the coefficients aj(t), 0 ≤ j ≤ n, and b(t) are assumed to satisfy the conditions of
Corollary 3.3. We may write this as

Lny = b(t), (3.28)

where, as before, Ln = a0(t)Dn
β + a1(t)Dn–1

β + · · · + an–1(t)Dβ + an(t).
By the theory of differential equations, if y1(t) and y2(t) are two solutions of the non-

homogeneous equation (3.28), then y1 ± y2 is a solution of the corresponding homoge-
neous equation (3.2). Also, by Theorem 3.11, if y1(t), . . . , yn(t) form a fundamental set for
equation (3.2) and ϕ(t) is a particular solution of equation (3.27), then for any solution of
equation (3.27), there are constants c1, . . . , cn such that

y(t) = ϕ(t) + c1y1(t) + · · · + cnyn(t). (3.29)

Therefore, if we can find any particular solution ϕ(t) of equation (3.27), then (3.29) gives
a general formula for all solutions of equation (3.27).

Theorem 3.22 Let ϕi be a particular solution of Lny = bi(t), i = 1, . . . , m. Then
∑m

i=1 ζiϕi is
a particular solution of the equation Lny =

∑m
i=1 ζibi(t), where ζ1, . . . , ζm are constants.

Proof The proof is straightforward. �

3.4.1 Method of undetermined coefficients
We will illustrate the method of undetermined coefficients when the coefficients aj (0 ≤
j ≤ n) of the non-homogeneous linear β-difference equation (3.27) are constants by simple
examples.

Example 3.23 Find a particular solution of

D2
βy(t) – 3Dβy(t) – 4y(t) = 3e2,β (t). (3.30)

Assume that

ϕ(t) = ζ e2,β(t), (3.31)

where the coefficient ζ is a constant to be determined. To find ζ , we calculate

Dβϕ(t) = 2ζ e2,β(t), D2
βϕ(t) = 4ζ e2,β (t) (3.32)
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by substituting with equations (3.31), (3.32) in equation (3.30). Thus a particular solution
is

ϕ(t) = –1/2e2,β (t).

In the following example, we refer the reader to see the different cases of the roots of the
characteristic equation of second-order linear homogeneous β-difference equation when
the coefficients are constants, see [6].

Example 3.24 Find the general solution of

D2
βy – 3Dβy – 4y = 2 sin1,β(t). (3.33)

The corresponding homogeneous equation of (3.33) is

D2
βy – 3Dβy – 4y = 0. (3.34)

Then the characteristic polynomial of (3.34) is

P(λ) = λ2 – 3λ – 4 = 0. (3.35)

Therefore,

yh(t) = c1e4,β(t) + c2e–1,β(t).

Now, assume that

ϕ(t) = ζ1 sin1,β (t) + ζ2 cos1,β (t), (3.36)

where ζ1 and ζ2 are to be determined. Then

Dβϕ(t) = ζ1 cos1,β(t) – ζ2 sin1,β(t),

D2
βϕ(t) = –ζ1 sin1,β(t) – ζ2 cos1,β(t).

(3.37)

By substituting with equations (3.36), (3.37) in equation (3.33), we get a particular solution

ϕ(t) = –5/17 sin1,β(t) + 3/17 cos1,β (t).

Then the general solution of (3.33) is

y(t) = c1e4,β(t) + c2e–1,β (t) – 5/17 sin1,β(t) + 3/17 cos1,β (t).

In the following example, we show the solution in the case of b(t) being a linear combi-
nation of exponential and trigonometric functions.
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Example 3.25 Find the general solution of

D2
βy – 2Dβy – 3y = 2e1,β (t) – 10 sin1,β(t). (3.38)

The corresponding homogeneous equation of (3.38) has the solution

yh(t) = c1e3,β(t) + c2e–1,β(t).

The non-homogeneous term is the linear combination 2e1,β (t) – 10 sin1,β (t) of the two
functions given by e1,β (t) and sin1,β(t).

Let

ϕ(t) = c1e1,β (t) + c2 sin1,β (t) + c3 cos1,β (t) (3.39)

be a particular solution of (3.38). Then

Dβϕ(t) = c1e1,β (t) + c2 cos1,β(t) – c3 sin1,β(t),

D2
βϕ(t) = c1e1,β (t) – c2 sin1,β(t) – c3 cos1,β(t),

(3.40)

where c1, c2, c3 are undetermined coefficients. By substituting with (3.39), (3.40) in (3.38),
we have the particular solution ϕ(t) = –1/2e1,β (t) + 2 sin1,β (t) – cos1,β(t). Thus the general
solution of (3.38) is

y(t) = c1e3,β(t) + c2e–1,β (t) – 1/2e1,β (t) + 2 sin1,β (t) – cos1,β (t).

Example 3.26 Find the general solution of

D2
βy – 3Dβy + 2y = e3,β (t) sin4,β(t). (3.41)

The corresponding homogeneous equation of (3.41) has the solution

yh(t) = c1e2,β(t) + c2e1,β(t).

Let

ϕ(t) = Ae3,β(t) sin4,β (t) + Be3,β (t) cos4,β(t) (3.42)

be a particular solution of (3.41), where A and B are constants. Then

Dβϕ(t) = 3Ae3,β (t) sin4,β(t) + 4Ae3,β
(
β(t)

)
cos4,β(t)

– 3Be3,β(t) cos4,β (t) – 4Be3,β
(
β(t)

)
sin4,β (t), (3.43)

D2
βϕ(t) = 9Ae3,β (t) sin4,β(t) + 12Ae3,β

(
β(t)

)
cos4,β (t)

+ 12Ae3,β
(
β(t)

)
cos4,β

(
β(t)

)
– 16Ae3,β

(
β(t)

)
sin4,β(t)

+ 9Be3,β(t) cos4,β (t) – 12Be3,β
(
β(t)

)
sin4,β (t)

– 12Be3,β
(
β(t)

)
sin4,β

(
β(t)

)
– 16Be3,β

(
β(t)

)
cos4,β(t). (3.44)
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By substituting with (3.42), (3.43) and (3.44) in (3.41), we get A = 1
2 and B = 0. Then the

particular solution is ϕ(t) = 1/2e3,β (t) sin4,β (t). Thus the general solution of (3.41) is

y(t) = c1e2,β(t) + c2e1,β (t) + 1/2e3,β (t) sin4,β (t).

3.4.2 Method of variation of parameters
We use the method of variation of parameters to obtain a particular solution ϕ(t) of the
non-homogeneous linear β-difference equation (3.27), which can be applied in the case
of the coefficients aj (0 ≤ j ≤ n) being functions or constants. It depends on replacing the
constants cr in relation (3.29) by the functions ζr(t). Hence, we try to find a solution of the
form

ϕ(t) = ζ1(t)y1(t) + · · · + ζn(t)yn(t). (3.45)

Our objective is to determine the functions ζr(t). We have

Di–1
β ϕ(t) =

n∑

j=1

ζj(t)Di–1
β yj(t), 1 ≤ i ≤ n, (3.46)

provided that

n∑

j=1

Dβζj(t)Di–1
β yj

(
β(t)

)
= 0, 1 ≤ i ≤ n – 1. (3.47)

Putting i = n in (3.46) and operating on it by Dβ , we obtain

Dn
βϕ(t) =

n∑

j=1

ζj(t)Dn
βyj(t) + Dβζj(t)Dn–1

β yj
(
β(t)

)
. (3.48)

Since ϕ(t) satisfies equation (3.27), it follows that

a0(t)Dn
βϕ(t) + a1(t)Dn–1

β ϕ(t) + · · · + an(t)ϕ(t) = b(t). (3.49)

Substitute by (3.46) and (3.48) in (3.49) and in view of equation (3.2), we obtain

n∑

j=1

Dβζj(t)Dn–1
β yj

(
β(t)

)
=

b(t)
a0(t)

.

Thus, we get the following system:

Dβζ1(t)y1
(
β(t)

)
+ · · · + Dβζn(t)yn

(
β(t)

)
= 0,

...

Dβζ1(t)Dn–2
β y1

(
β(t)

)
+ · · · + Dβζn(t)Dn–2

β yn
(
β(t)

)
= 0,

Dβζ1(t)Dn–1
β y1

(
β(t)

)
+ · · · + Dβζn(t)Dn–1

β yn
(
β(t)

)
=

b(t)
a0(t)

.

(3.50)
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Consequently,

Dβζr(t) =
Wr(β(t))
Wβ (β(t))

× b(t)
a0(t)

, t ∈ I,

where 1 ≤ r ≤ n and Wr(β(t)) is the determinant obtained from Wβ (β(t)) by replacing the
rth column by (0, . . . , 0, 1). It follows that

ζr(t) =
∫ t

s0

Wr(β(τ ))
Wβ (β(τ ))

× b(τ )
a0(τ )

dβτ , r = 1, . . . , n.

Example 3.27 Consider the equation

D2
βy(t) + z2y(t) = b(t), (3.51)

where z ∈ C \ {0}. It is known that cosz,β(t) and sinz,β (t) are the solutions of the corre-
sponding homogeneous equation of (3.51). We can easily show that

ϕ(t) =
1
z

[

sinz,β (t)
∫ t

s0

b(τ ) Cosz,β
(
β(τ )

)
dβτ – cosz,β(t)

∫ t

s0

b(τ ) Sinz,β
(
β(τ )

)
dβτ

]

.

It follows that every solution of equation (3.51) has the form

y(t) = c1 cosz,β(t) + c2 sinz,β (t)

+
1
z

[

sinz,β (t)
∫ t

s0

b(τ ) Cosz,β
(
β(τ )

)
dβτ – cosz,β (t)

∫ t

s0

b(τ ) Sinz,β
(
β(τ )

)
dβτ

]

.

3.4.3 Annihilator method
In this section, we can use annihilator method to obtain the particular solution of non-
homogeneous linear β-difference equation (3.27) when the coefficients aj (0 ≤ j ≤ n) are
constants.

Definition 3.28 We say that f : I → C can be annihilated provided that we can find an
operator of the form

L(D) = ρnDn
β + ρn–1Dn–1

β + · · · + ρ0I

such that L(D)f (t) = 0, t ∈ I , where ρi, 0 ≤ i ≤ n are constants, not all zero.

Example 3.29 Since (Dβ – 4I)e4,β (t) = 0, Dβ – 4I is an annihilator for e4,β (t).

Table 1 indicates a list of some functions and their annihilators.

Example 3.30 Consider the equation

D2
βy(t) – 4Dβy(t) + 3y(t) = e5,β (t). (3.52)

Equation (3.52) can be rewritten in the form

(Dβ – 3I)(Dβ – I)y(t) = e5,β (t).
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Table 1 A list of some functions and their annihilators

Functions Annihilator

1 Dβ

t D2
β

eρ ,β (t) Dβ – ρI
cosρ ,β (t) D2

β + ρ2I
sinρ ,β (t) D2

β + ρ2I

Multiplying both sides by the annihilator (Dβ –5I), we get that if y(t) is a solution of (3.52),
then y(t) satisfies

(Dβ – 3I)(Dβ – I)(Dβ – 5I)y(t) = 0.

Hence,

y(t) = c1e3,β(t) + c2e1,β (t) + c3e5,β (t).

One can see that ϕ(t) = (1/8)e5,β (t) is a solution of equation (3.52). Therefore, the general
solution of equation (3.52) has the following form:

y(t) = c1e3,β(t) + c2e1,β (t) + (1/8)e5,β (t).

4 Conclusion
In this paper, the sufficient conditions for the existence and uniqueness of solutions of
the β-Cauchy problem were given. Also, a fundamental set of solutions for the homoge-
neous linear β-difference equations when the coefficients aj (0 ≤ j ≤ n) are constants was
constructed. Moreover, β-Wronskian and its properties were introduced. Finally, the un-
determined coefficients, the variation of parameters, and the annihilator methods for the
non-homogeneous case were presented.
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