Theory of n th-order linear general quantum difference equations

Nashat Faried ${ }^{1}$, Enas M. Shehata ${ }^{2 *}$ and Rasha M. El Zafarani ${ }^{1}$

"Correspondence:
enasmohyi@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Science, Menoufia University, Shibin El-Koom, Egypt Full list of author information is available at the end of the article

Abstract

In this paper, we derive the solutions of homogeneous and non-homogeneous n th-order linear general quantum difference equations based on the general quantum difference operator D_{β} which is defined by $D_{\beta} f(t)=(f(\beta(t))-f(t)) /(\beta(t)-t)$, $\beta(t) \neq t$, where β is a strictly increasing continuous function defined on an interval $I \subseteq \mathbb{R}$ that has only one fixed point $s_{0} \in I$. We also give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of these equations. Furthermore, we present the fundamental set of solutions when the coefficients are constants, the β-Wronskian associated with D_{β}, and Liouville's formula for the β-difference equations. Finally, we introduce the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous β-difference equations.

MSC: Primary 39A10; 39A13; 39A70; secondary 47B39
Keywords: A general quantum difference operator; n th-order linear general quantum difference equations; β-Wronskian; Homogeneous quantum difference equations; Non-homogeneous quantum difference equations

1 Introduction

Quantum difference operator allows us to deal with sets of non-differentiable functions. Its applications are used in many mathematical fields such as the calculus of variations, orthogonal polynomials, basic hypergeometric functions, quantum mechanics, and the theory of scale relativity; see, e.g., $[3,5,7,13,14]$.

The general quantum difference operator D_{β} generalizes the Jackson q-difference operator D_{q} and the Hahn difference operator $D_{q, \omega}$, see $[1,2,4,8,12]$. It is defined, in [10, p. 6], by

$$
D_{\beta} f(t)= \begin{cases}\frac{f(\beta(t))-f(t)}{\beta(t)-t}, & t \neq s_{0} \\ f^{\prime}\left(s_{0}\right), & t=s_{0}\end{cases}
$$

where $f: I \rightarrow \mathbb{X}$ is a function defined on an interval $I \subseteq \mathbb{R}, \mathbb{X}$ is a Banach space, and $\beta: I \rightarrow I$ is a strictly increasing continuous function defined on I that has only one fixed point $s_{0} \in I$ and satisfies the inequality $\left(t-s_{0}\right)(\beta(t)-t) \leq 0$ for all $t \in I$. The function f is said to be β-differentiable on I if the ordinary derivative f^{\prime} exists at s_{0}. The general quantum difference calculus was introduced in [10]. The exponential, trigonometric, and
hyperbolic functions associated with D_{β} were presented in [9]. The existence and uniqueness of solutions of the first-order β-initial value problem were established in [11]. In [6], the existence and uniqueness of solutions of the β-Cauchy problem of the second-order β-difference equations were proved. Also, a fundamental set of solutions for the secondorder linear homogeneous β-difference equations when the coefficients are constants was constructed, and the different cases of the roots of their characteristic equations were studied. Moreover, the Euler-Cauchy β-difference equation was derived.

The organization of this paper is briefly summarized in the following. In Sect. 2, we present the needed preliminaries of the β-calculus from [6, 9-11]. In Sect. 3, we give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of the n th-order β-difference equations. Also, we construct the fundamental set of solutions for the homogeneous linear β-difference equations when the coefficients a_{j} $(0 \leq j \leq n)$ are constants. Furthermore, we introduce the β-Wronskian which is an effective tool to determine whether the set of solutions is a fundamental set or not and prove its properties. Finally, we study the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous linear β-difference equations.
Throughout this paper, J is a neighborhood of the unique fixed point s_{0} of $\beta, S\left(y_{0}, b\right)=$ $\left\{y \in \mathbb{X}:\left\|y-y_{0}\right\| \leq b\right\}$, and $R=\left\{(t, y) \in I \times \mathbb{X}:\left|t-s_{0}\right| \leq a,\left\|y-y_{0}\right\| \leq b\right\}$ is a rectangle, where a, b are fixed positive real numbers, \mathbb{X} is a Banach space. Furthermore, $D_{\beta}^{n} f=D_{\beta}\left(D_{\beta}^{n-1} f\right)$, $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, where f is β-differentiable n times over I, \mathbb{N} is the set of natural numbers. We use the symbol T for the transpose of the vector or the matrix.

2 Preliminaries

Lemma 2.1 ([10]) The following statements are true:
(i) The sequence of functions $\left\{\beta^{k}(t)\right\}_{k=0}^{\infty}$ converges uniformly to the constant function $\hat{\beta}(t):=s_{0}$ on every compact interval $V \subseteq I$ containing s_{0}.
(ii) The series $\sum_{k=0}^{\infty}\left|\beta^{k}(t)-\beta^{k+1}(t)\right|$ is uniformly convergent to $\left|t-s_{0}\right|$ on every compact interval $V \subseteq$ I containing s_{0}.

Lemma 2.2 ([10]) Iff :I $\rightarrow \mathbb{X}$ is a continuous function at s_{0}, then the sequence $\left\{f\left(\beta^{k}(t)\right)\right\}_{k=0}^{\infty}$ converges uniformly to $f\left(s_{0}\right)$ on every compact interval $V \subseteq I$ containing s_{0}.

Theorem 2.3 ([10]) Iff : $I \rightarrow \mathbb{X}$ is continuous at s_{0}, then the series $\sum_{k=0}^{\infty} \|\left(\beta^{k}(t)-\beta^{k+1}(t)\right) \times$ $f\left(\beta^{k}(t)\right) \|$ is uniformly convergent on every compact interval $V \subseteq I$ containing s_{0}.

Theorem 2.4 ([10]) Assume that $f: I \rightarrow \mathbb{X}$ and $g: I \rightarrow \mathbb{R}$ are β-differentiable at $t \in I$. Then:
(i) The product fg: $I \rightarrow \mathbb{X}$ is β-differentiable at t and

$$
\begin{aligned}
D_{\beta}(f g)(t) & =\left(D_{\beta} f(t)\right) g(t)+f(\beta(t)) D_{\beta} g(t) \\
& =\left(D_{\beta} f(t)\right) g(\beta(t))+f(t) D_{\beta} g(t),
\end{aligned}
$$

(ii) f / g is β-differentiable at t and

$$
D_{\beta}(f / g)(t)=\frac{\left(D_{\beta} f(t)\right) g(t)-f(t) D_{\beta} g(t)}{g(t) g(\beta(t))}
$$

provided that $g(t) g(\beta(t)) \neq 0$.

Theorem 2.5 ([10]) Assume that $f: I \rightarrow \mathbb{X}$ is continuous at s_{0}. Then the function F defined by

$$
\begin{equation*}
F(t)=\sum_{k=0}^{\infty}\left(\beta^{k}(t)-\beta^{k+1}(t)\right) f\left(\beta^{k}(t)\right), \quad t \in I \tag{2.1}
\end{equation*}
$$

is a β-antiderivative off with $F\left(s_{0}\right)=0$. Conversely, a β-antiderivative F off vanishing at s_{0} is given by (2.1).

Definition 2.6 ([10]) The β-integral of $f: I \rightarrow \mathbb{X}$ from a to $b, a, b \in I$, is defined by

$$
\int_{a}^{b} f(t) d_{\beta} t=\int_{s_{0}}^{b} f(t) d_{\beta} t-\int_{s_{0}}^{a} f(t) d_{\beta} t
$$

where

$$
\int_{s_{0}}^{x} f(t) d_{\beta} t=\sum_{k=0}^{\infty}\left(\beta^{k}(x)-\beta^{k+1}(x)\right) f\left(\beta^{k}(x)\right), \quad x \in I,
$$

provided that the series converges at $x=a$ and $x=b . f$ is called β-integrable on I if the series converges at a and b for all $a, b \in I$. Clearly, if f is continuous at $s_{0} \in I$, then f is β-integrable on I.

Definition 2.7 ([9]) The β-exponential functions $e_{p, \beta}(t)$ and $E_{p, \beta}(t)$ are defined by

$$
\begin{equation*}
e_{p, \beta}(t)=\frac{1}{\prod_{k=0}^{\infty}\left[1-p\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right]} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{p, \beta}(t)=\prod_{k=0}^{\infty}\left[1+p\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right], \tag{2.3}
\end{equation*}
$$

where $p: I \rightarrow \mathbb{C}$ is a continuous function at $s_{0}, e_{p, \beta}(t)=\frac{1}{E_{-p, \beta}(t)}$.
The both products in (2.2) and (2.3) are convergent to a non-zero number for every $t \in I$ since $\sum_{k=0}^{\infty}\left|p\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right|$ is uniformly convergent.

Definition 2.8 ([9]) The β-trigonometric functions are defined by

$$
\begin{aligned}
& \cos _{p, \beta}(t)=\frac{e_{i p, \beta}(t)+e_{-i p, \beta}(t)}{2}, \\
& \sin _{p, \beta}(t)=\frac{e_{i p, \beta}(t)-e_{-i p, \beta}(t)}{2 i}, \\
& \operatorname{Cos}_{p, \beta}(t)=\frac{E_{i p, \beta}(t)+E_{-i p, \beta}(t)}{2}, \\
& \text { and } \quad \operatorname{Sin}_{p, \beta}(t)=\frac{E_{i p, \beta}(t)-E_{-i p, \beta}(t)}{2 i} .
\end{aligned}
$$

Theorem 2.9 ([9]) The β-exponential functions $e_{p, \beta}(t)$ and $E_{p, \beta}(t)$ are the unique solutions of the first-order β-difference equations

$$
\begin{aligned}
& D_{\beta} y(t)=p(t) y(t), \quad y\left(s_{0}\right)=1, \\
& D_{\beta} y(t)=p(t) y(\beta(t)), \quad y\left(s_{0}\right)=1,
\end{aligned}
$$

respectively.

Theorem 2.10 ([9]) Assume that $f: I \rightarrow \mathbb{X}$ is continuous at s_{0}. Then the solution of the following equation $D_{\beta} y(t)=p(t) y(t)+f(t), y\left(s_{0}\right)=y_{0} \in \mathbb{X}$, has the form

$$
y(t)=e_{p, \beta}(t)\left[y_{0}+\int_{s_{0}}^{t} f(\tau) E_{-p, \beta}(\beta(\tau)) d_{\beta} \tau\right] .
$$

Theorem 2.11 ([11]) Let $z \in \mathbb{C}$ be a constant. Then the function $\phi(t)$ defined by

$$
\phi(t)=\sum_{k=0}^{\infty} z^{k} \alpha_{k}(t)
$$

is the unique solution of the β-IVP

$$
D_{\beta} y(t)=z y(t), \quad y\left(s_{0}\right)=1,
$$

where

$$
\alpha_{k}(t)= \begin{cases}\sum_{i_{1}, i_{2}, i_{3}, \ldots, i_{k-1}=0}^{\infty}\left(\prod_{l=1}^{k-1}(\beta, \beta)_{\sum_{j=1}^{l} i_{j}}\right)\left(\beta^{\sum_{j=1}^{k-1} i_{j}}(t)-s_{0}\right), & \text { if } k \geq 2 \\ t-s_{0}, & \text { if } k=1 \\ 1, & \text { if } k=0\end{cases}
$$

with $(\beta, \beta)_{i}=\beta^{i}(t)-\beta^{i+1}(t)$.

Proposition 2.12 ([11]) Let $z \in \mathbb{C}$. The β-exponential function $e_{z, \beta}(t)$ has the expansion

$$
e_{z, \beta}(t)=\sum_{k=0}^{\infty} z^{k} \alpha_{k}(t)
$$

Theorem 2.13 ([11]) Assume that $: R \rightarrow \mathbb{X}$ is continuous at $\left(s_{0}, y_{0}\right) \in R$ and satisfies the Lipschitz condition (with respect to y)

$$
\left\|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right\| \leq L\left\|y_{1}-y_{2}\right\| \quad \text { for all }\left(t, y_{1}\right),\left(t, y_{2}\right) \in R
$$

where L is a positive constant. Then the sequence defined by

$$
\begin{equation*}
\phi_{k+1}(t)=y_{0}+\int_{s_{0}}^{t} f\left(\tau, \phi_{k}(\tau)\right) d_{\beta} \tau, \quad \phi_{0}(t)=y_{0}, \quad\left|t-s_{0}\right| \leq \delta, k \geq 0 \tag{2.4}
\end{equation*}
$$

converges uniformly on the interval $\left|t-s_{0}\right| \leq \delta$ to a function ϕ, the unique solution of the β-IVP

$$
\begin{equation*}
D_{\beta} y(t)=f(t, y), \quad y\left(s_{0}\right)=y_{0}, \quad t \in I \tag{2.5}
\end{equation*}
$$

where $\delta=\min \left\{a, \frac{b}{L b+M}, \frac{\rho}{L}\right\}$ with $\rho \in(0,1)$ and $M=\sup _{(t, y) \in R}\|f(t, y)\|<\infty, \rho \in(0,1)$.
Theorem 2.14 ([6]) Let $f_{i}\left(t, y_{1}, y_{2}\right): I \times \prod_{i=1}^{2} S_{i}\left(x_{i}, b_{i}\right) \rightarrow \mathbb{X}, s_{0} \in I$ such that the following conditions are satisfied:
(i) For $y_{i} \in S_{i}\left(x_{i}, b_{i}\right), i=1,2, f_{i}\left(t, y_{1}, y_{2}\right)$ are continuous at $t=s_{0}$.
(ii) There is a positive constant A such that, for $t \in I, y_{i}, \tilde{y}_{i} \in S_{i}\left(x_{i}, b_{i}\right), i=1,2$, the following Lipschitz condition is satisfied:

$$
\left\|f_{i}\left(t, y_{1}, y_{2}\right)-f_{i}\left(t, \tilde{y}_{1}, \tilde{y}_{2}\right)\right\| \leq A \sum_{i=1}^{2}\left\|y_{i}-\tilde{y}_{i}\right\| .
$$

Then there exists a unique solution of the β-initial value problem β-IVP

$$
D_{\beta} y_{i}(t)=f_{i}\left(t, y_{1}(t), y_{2}(t)\right), \quad y_{i}\left(s_{0}\right)=x_{i} \in \mathbb{X}, \quad i=1,2, t \in I .
$$

Corollary 2.15 ([6]) Let $f\left(t, y_{1}, y_{2}\right)$ be a function defined on $I \times \prod_{i=1}^{2} S_{i}\left(x_{i}, b_{i}\right)$ such that the following conditions are satisfied:
(i) For any values of $y_{i} \in S_{i}\left(x_{i}, b_{i}\right), i=1,2, f$ is continuous at $t=s_{0}$.
(ii) f satisfies the Lipschitz condition

$$
\left\|f\left(t, y_{1}, y_{2}\right)-f\left(t, \tilde{y}_{1}, \tilde{y}_{2}\right)\right\| \leq A \sum_{i=1}^{2}\left\|y_{i}-\tilde{y}_{i}\right\|,
$$

where $A>0, y_{i}, \tilde{y}_{i} \in S_{i}\left(x_{i}, b_{i}\right), i=1,2$, and $t \in I$. Then

$$
D_{\beta}^{2} y(t)=f\left(t, y(t), D_{\beta} y(t)\right), \quad D_{\beta}^{i-1} y\left(s_{0}\right)=x_{i}, \quad i=1,2,
$$

has a unique solution on $\left[s_{0}, s_{0}+\delta\right]$.

Corollary 2.16 ([6]) Assume that the functions $a_{j}(t): I \rightarrow \mathbb{C}, j=0,1,2$, and $b(t): I \rightarrow \mathbb{X}$ satisfy the following conditions:
(i) $a_{j}(t), j=0,1,2$, and $b(t)$ are continuous at s_{0} with $a_{0}(t) \neq 0$ for all $t \in I$,
(ii) $a_{j}(t) / a_{0}(t)$ is bounded on $I, j=1,2$. Then

$$
a_{0}(t) D_{\beta}^{2} y(t)+a_{1}(t) D_{\beta} y(t)+a_{2}(t) y(t)=b(t), \quad D_{\beta}^{i-1} y\left(s_{0}\right)=x_{i}, \quad x_{i} \in \mathbb{X}, i=1,2
$$

has a unique solution on a subinterval $J \subseteq I, s_{0} \in J$.

3 Main results

In this section, we give the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem of the n th-order β-difference equations. We also present the fundamental set of solutions for the homogeneous linear β-difference equations when the coefficients $a_{j}(0 \leq j \leq n)$ are constants. Furthermore, we introduce the β-Wronskian. Finally, we study the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous linear β-difference equations.

3.1 Existence and uniqueness of solutions

Theorem 3.1 Let I be an interval containing $s_{0}, f_{i}\left(t, y_{1}, \ldots, y_{n}\right): I \times \prod_{i=1}^{n} S_{i}\left(x_{i}, b_{i}\right) \rightarrow \mathbb{X}$, such that the following conditions are satisfied:
(i) For $y_{i} \in S_{i}\left(x_{i}, b_{i}\right), i=1, \ldots, n, f_{i}\left(t, y_{1}, \ldots, y_{n}\right)$ are continuous at $t=s_{0}$.
(ii) There is a positive constant A such that, for $t \in I, y_{i}, \tilde{y}_{i} \in S_{i}\left(x_{i}, b_{i}\right), i=1, \ldots, n$, the following Lipschitz condition is satisfied:

$$
\left\|f_{i}\left(t, y_{1}, \ldots, y_{n}\right)-f_{i}\left(t, \tilde{y}_{1}, \ldots, \tilde{y}_{n}\right)\right\| \leq A \sum_{i=1}^{n}\left\|y_{i}-\tilde{y}_{i}\right\| .
$$

Then there exists a unique solution of the β-initial value problem β-IVP

$$
D_{\beta} y_{i}(t)=f_{i}\left(t, y_{1}(t), \ldots, y_{n}(t)\right), \quad y_{i}\left(s_{0}\right)=x_{i} \in \mathbb{X}, \quad i=1, \ldots, n, t \in I
$$

Proof See the proof of Theorem 2.14.

The proof of the following two corollaries is the same as the proof of Corollaries 2.15, 2.16 .

Corollary 3.2 Let $f\left(t, y_{1}, \ldots, y_{n}\right)$ be a function defined on $I \times \prod_{i=1}^{n} S_{i}\left(x_{i}, b_{i}\right)$ such that the following conditions are satisfied:
(i) For any values of $y_{r} \in S_{r}\left(x_{r}, b_{r}\right), f$ is continuous at $t=s_{0}$.
(ii) f satisfies the Lipschitz condition

$$
\left\|f\left(t, y_{1}, \ldots, y_{n}\right)-f\left(t, \tilde{y}_{1}, \ldots, \tilde{y}_{n}\right)\right\| \leq A \sum_{i=1}^{n}\left\|y_{i}-\tilde{y}_{i}\right\|,
$$

where $A>0, y_{i}, \tilde{y}_{i} \in S_{i}\left(x_{i}, b_{i}\right), i=1, \ldots, n$, and $t \in I$. Then

$$
\begin{align*}
& D_{\beta}^{n} y(t)=f\left(t, y(t), D_{\beta} y(t), \ldots, D_{\beta}^{n-1} y(t)\right), \\
& D_{\beta}^{i-1} y\left(s_{0}\right)=x_{i}, \quad i=1, \ldots, n, \tag{3.1}
\end{align*}
$$

has a unique solution on $\left[s_{0}, s_{0}+\delta\right]$.

The following corollary gives us the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem (3.1).

Corollary 3.3 Assume that the functions $a_{j}(t): I \rightarrow \mathbb{C}, j=0,1, \ldots, n$, and $b(t): I \rightarrow \mathbb{X}$ satisfy the following conditions:
(i) $a_{j}(t), j=0,1, \ldots, n$, and $b(t)$ are continuous at s_{0} with $a_{0}(t) \neq 0$ for all $t \in I$,
(ii) $a_{j}(t) / a_{0}(t)$ is bounded on $I, j=1, \ldots, n$. Then

$$
\begin{aligned}
& a_{0}(t) D_{\beta}^{n} y(t)+a_{1}(t) D_{\beta}^{n-1} y(t)+\cdots+a_{n}(t) y(t)=b(t), \\
& D_{\beta}^{i-1} y\left(s_{0}\right)=x_{i}, \quad i=1, \ldots, n,
\end{aligned}
$$

has a unique solution on a subinterval $J \subset I$ containing s_{0}.

3.2 Homogeneous linear $\boldsymbol{\beta}$-difference equations

Consider the n th-order homogeneous linear β-difference equation

$$
\begin{equation*}
a_{0}(t) D_{\beta}^{n} y(t)+a_{1}(t) D_{\beta}^{n-1} y(t)+\cdots+a_{n-1}(t) D_{\beta} y(t)+a_{n}(t) y(t)=0 \tag{3.2}
\end{equation*}
$$

where the coefficients $a_{j}(t), 0 \leq j \leq n$, are assumed to satisfy the conditions of Corollary 3.3. Equation (3.2) may be written as $L_{n} y=0$, where

$$
L_{n}=a_{0}(t) D_{\beta}^{n}+a_{1}(t) D_{\beta}^{n-1}+\cdots+a_{n-1}(t) D_{\beta}+a_{n}(t)
$$

The following lemma is an immediate consequence of Corollary 3.3.
Lemma 3.4 Ify is a solution of equation (3.2) such that $D_{\beta}^{i-1} y\left(s_{0}\right)=0,1 \leq i \leq n$, then $y(t)=$ 0 for all $t \in J$.

Theorem 3.5 The nth-order homogeneous linear scalar β-difference equation (3.2) is equivalent to the first-order homogeneous linear system of the form

$$
D_{\beta} Y(t)=A(t) Y(t),
$$

where

$$
Y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & & 1 \\
-\frac{a_{n}}{a_{0}} & -\frac{a_{n-1}}{a_{0}} & \ldots & -\frac{a_{1}}{a_{0}}
\end{array}\right)
$$

Proof Let

$$
\begin{align*}
& y_{1}=y \\
& y_{2}=D_{\beta} y \\
& \vdots \tag{3.3}\\
& y_{n-1}=D_{\beta}^{n-2} y \\
& y_{n}=D_{\beta}^{n-1} y
\end{align*}
$$

β-differentiating (3.3), we have

$$
\begin{equation*}
D_{\beta} y=D_{\beta} y_{1}, \quad D_{\beta}^{2} y=D_{\beta} y_{2}, \quad \ldots, \quad D_{\beta}^{n-1} y=D_{\beta} y_{n-1}, \quad D_{\beta}^{n} y=D_{\beta} y_{n} \tag{3.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
D_{\beta} y_{1}=y_{2}, \quad D_{\beta} y_{2}=y_{3}, \quad \ldots, \quad D_{\beta} y_{n-1}=y_{n} \tag{3.5}
\end{equation*}
$$

Since $a_{0}(t) \neq 0$ on J, (3.2) is equivalent to

$$
D_{\beta}^{n} y=-\frac{a_{n}(t)}{a_{0}(t)} y-\frac{a_{n-1}(t)}{a_{0}(t)} D_{\beta} y-\cdots-\frac{a_{1}(t)}{a_{0}(t)} D_{\beta}^{n-1} y
$$

from (3.3) and (3.4), we have

$$
\begin{equation*}
D_{\beta} y_{n}=-\frac{a_{n}(t)}{a_{0}(t)} y_{1}-\frac{a_{n-1}(t)}{a_{0}(t)} y_{2}-\cdots-\frac{a_{1}(t)}{a_{0}(t)} y_{n} . \tag{3.6}
\end{equation*}
$$

Combining (3.5) and (3.6), we get

$$
\begin{align*}
& D_{\beta} y_{1}=y_{2} \\
& \vdots \\
& D_{\beta} y_{n-1}=y_{n} \tag{3.7}\\
& D_{\beta} y_{n}=-\frac{a_{n}(t)}{a_{0}(t)} y_{1}-\frac{a_{n-1}(t)}{a_{0}(t)} y_{2}-\cdots-\frac{a_{1}(t)}{a_{0}(t)} y_{n}
\end{align*}
$$

This is equivalent to the homogeneous linear vector β-difference equation

$$
\begin{equation*}
D_{\beta} Y(t)=A(t) Y(t), \tag{3.8}
\end{equation*}
$$

where

$$
Y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \quad \text { and } \quad A=\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & & 1 \\
-\frac{a_{n}}{a_{0}} & -\frac{a_{n-1}}{a_{0}} & \ldots & -\frac{a_{1}}{a_{0}}
\end{array}\right)
$$

Theorem 3.6 Consider equation (3.2) and the corresponding system (3.8). Iff is a solution of (3.2) on J, then $\phi=\left(f, D_{\beta} f, \ldots, D_{\beta}^{n-1} f\right)^{T}$ is a solution of (3.8) on J. Conversely, if $\phi=$ $\left(\phi_{1}, \ldots, \phi_{n}\right)^{T}$ is a solution of (3.8) on J, then its first component ϕ_{1} is a solution f of (3.2) on J and $\phi=\left(f, D_{\beta} f, \ldots, D_{\beta}^{n-1} f\right)^{T}$.

Proof Suppose that f satisfies equation (3.2). Then

$$
\begin{equation*}
a_{0}(t) D_{\beta}^{n} f(t)+\cdots+a_{n-1}(t) D_{\beta} f(t)+a_{n}(t) f(t)=0, \quad t \in J \tag{3.9}
\end{equation*}
$$

Consider

$$
\begin{equation*}
\phi(t)=\left(\phi_{1}(t), \ldots, \phi_{n}(t)\right)^{T}=\left(f(t), D_{\beta} f(t), \ldots, D_{\beta}^{n-1} f(t)\right)^{T} . \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10), we have

$$
\begin{align*}
& D_{\beta} \phi_{1}(t)=\phi_{2}(t), \\
& \vdots \\
& D_{\beta} \phi_{n-1}(t)=\phi_{n}(t), \tag{3.11}\\
& D_{\beta} \phi_{n}(t)=-\frac{a_{n}(t)}{a_{0}(t)} \phi_{1}(t)-\frac{a_{n-1}(t)}{a_{0}(t)} \phi_{2}(t)-\cdots-\frac{a_{1}(t)}{a_{0}(t)} \phi_{n}(t) .
\end{align*}
$$

Comparing (3.11) with (3.7), ϕ defined by (3.10) satisfies system (3.7). Conversely, suppose that $\phi(t)=\left(\phi_{1}(t), \ldots, \phi_{n}(t)\right)^{T}$ satisfies system (3.7) on J. Then (3.11) holds for all $t \in J$. The first $n-1$ equations of (3.11) give

$$
\begin{align*}
& \phi_{2}(t)=D_{\beta} \phi_{1}(t) \\
& \phi_{3}(t)=D_{\beta} \phi_{2}(t)=D_{\beta}^{2} \phi_{1}(t) \tag{3.12}\\
& \vdots \\
& \phi_{n}(t)=D_{\beta} \phi_{n-1}(t)=D_{\beta}^{2} \phi_{n-2}(t)=\cdots=D_{\beta}^{n-1} \phi_{1}(t)
\end{align*}
$$

and so $D_{\beta} \phi_{n}(t)=D_{\beta}^{n} \phi_{1}(t)$. The last equation of (3.11) becomes

$$
a_{0}(t) D_{\beta}^{n} \phi_{1}(t)+a_{1}(t) D_{\beta}^{n-1} \phi_{1}(t)+\cdots+a_{n-1}(t) D_{\beta} \phi_{1}(t)+a_{n}(t) \phi_{1}(t)=0
$$

Thus ϕ_{1} is a solution f of equation (3.2); and moreover, (3.12) shows that $\phi(t)=$ $\left(f(t), D_{\beta} f(t), \ldots, D_{\beta}^{n-1} f(t)\right)^{T}$.

The following corollary is an immediate consequence of Theorem 3.6.

Corollary 3.7 If f is the solution of equation (3.2) on J satisfying the initial condition $D_{\beta}^{i-1} f\left(s_{0}\right)=x_{i}, 1 \leq i \leq n$, then $\phi=\left(f, D_{\beta} f, \ldots, D_{\beta}^{n-1} f\right)^{T}$ is the solution of system (3.8) on J satisfying the initial condition $\phi\left(s_{0}\right)=\left(x_{1}, \ldots, x_{n}\right)^{T}$. Conversely, if $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)^{T}$ is the solution of (3.8) on J satisfying the initial condition $\phi\left(s_{0}\right)=\left(x_{1}, \ldots, x_{n}\right)^{T}$, then ϕ_{1} is the solution f of (3.2) on J satisfying the initial condition $D_{\beta}^{i-1} f\left(s_{0}\right)=x_{i}, 1 \leq i \leq n$.

Theorem 3.8 A linear combination $y=\sum_{k=1}^{m} c_{k} y_{k}$ of m solutions y_{1}, \ldots, y_{m} of the homogeneous linear β-difference equation (3.2) is also a solution of it, where c_{1}, \ldots, c_{m} are arbitrary constants.

Proof The proof is straightforward.

Definition 3.9 (A fundamental set) A set of n linearly independent solutions of the n thorder homogeneous linear β-difference equation (3.2) is called a fundamental set of equation (3.2).

By the theory of differential equations, we can easily prove the following theorems.
Theorem 3.10 If the solutions y_{1}, \ldots, y_{n} of the homogeneous linear β-difference equation (3.2) are linearly independent on J, then the corresponding solutions

$$
\phi_{1}=\left(y_{1}, D_{\beta} y_{1}, \ldots, D_{\beta}^{n-1} y_{1}\right)^{T}, \quad \ldots, \quad \phi_{n}=\left(y_{n}, D_{\beta} y_{n}, \ldots, D_{\beta}^{n-1} y_{n}\right)^{T}
$$

of system (3.8) are linearly independent on J; and conversely.

Theorem 3.11 Any arbitrary solution y of homogeneous linear β-difference equation (3.2) on J can be represented as a suitable linear combination of a fundamental set of solutions y_{1}, \ldots, y_{n} of (3.2).

Now, we are concerned with constructing the fundamental set of solutions of equation (3.2) when the coefficients are constants. Equation (3.2) can be written as

$$
\begin{equation*}
L_{n} y(t)=a_{0} D_{\beta}^{n} y(t)+a_{1} D_{\beta}^{n-1} y(t)+\cdots+a_{n} y(t)=0 \tag{3.13}
\end{equation*}
$$

where $a_{j}, 0 \leq j \leq n$, are constants. From Theorem 3.5, equation (3.13) is equivalent to the system

$$
\begin{equation*}
D_{\beta} Y(t)=A Y(t) \tag{3.14}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & & 1 \\
-\frac{a_{n}}{a_{0}} & -\frac{a_{n-1}}{a_{0}} & \ldots & -\frac{a_{1}}{a_{0}}
\end{array}\right)
$$

The characteristic polynomial of equation (3.13) is given by

$$
\begin{equation*}
P(\lambda)=\operatorname{det}(\lambda \mathcal{I}-A)=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n} \tag{3.15}
\end{equation*}
$$

where \mathcal{I} is the unit square matrix of order $n, \lambda_{i}, 1 \leq i \leq k$, are distinct roots of $p(\lambda)=0$ of multiplicity m_{i}, so that $\sum_{i=1}^{k} m_{i}=n$.

Theorem 3.12 Let A be a constant $n \times n$ matrix. Then the function $\Phi(t)$ defined by

$$
\Phi(t)=\sum_{r=0}^{\infty} A^{r} \alpha_{r}(t)
$$

is the unique solution of the $\beta-I V P$

$$
D_{\beta} Y(t)=A Y(t), \quad Y\left(s_{0}\right)=\mathcal{I}
$$

where \mathcal{I} is the unit square matrix of order n and

$$
\alpha_{r}(t)= \begin{cases}\sum_{i_{1}, i_{2}, i_{3}, \ldots, i_{r-1}=0}^{\infty}\left(\prod_{l=1}^{r-1}(\beta, \beta)_{\sum_{j=1}^{l} i_{j}}\right)\left(\beta^{\sum_{j=1}^{r-1} i_{j}}(t)-s_{0}\right), & \text { if } r \geq 2 \\ t-s_{0} & \text { if } r=1 \\ \mathcal{I}, & \text { if } r=0\end{cases}
$$

with $(\beta ; \beta)_{i}=\beta_{i}(t)-\beta_{i+1}(t)$.

Proof By using the successive approximations, with choosing $\Phi_{0}(t)=\mathcal{I}$, we have the desired result. See the proof of Theorem 2.11.

Corollary 3.13 Let A be a constant $n \times n$ matrix with characteristic polynomial (3.15), then $\Phi(t)=e_{A, \beta}(t)=\sum_{r=0}^{\infty} A^{r} \alpha_{r}(t)$ is the unique solution of (3.13) satisfying the initial conditions

$$
\Phi\left(s_{0}\right)=\mathcal{I}, \quad D_{\beta} \Phi\left(s_{0}\right)=A, \quad \ldots, \quad D_{\beta}^{n-1} \Phi\left(s_{0}\right)=A^{n-1}
$$

Proof The proof is straightforward.

We have from the previous that

$$
y_{i}(t)=e_{\lambda_{i}, \beta}(t)=\sum_{r=0}^{\infty} \lambda_{i}^{r} \alpha_{r}(t), \quad 1 \leq i \leq k
$$

forms a fundamental set of solutions of equation (3.13).
Example 3.14 Consider the homogeneous linear system

$$
D_{\beta} Y(t)=\left(\begin{array}{ccc}
3 & 1 & -1 \tag{3.16}\\
1 & 3 & -1 \\
3 & 3 & -1
\end{array}\right) Y(t)
$$

Let $Y(t)=\gamma e_{\lambda, \beta}(t)$, where $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)^{T}$ is a constant vector. The characteristic equation is

$$
\lambda^{3}-5 \lambda^{2}+8 \lambda-4=0
$$

where $\lambda_{1}=1, \lambda_{2}=\lambda_{3}=2$. Then

$$
y_{1}(t)=\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right) e_{1, \beta}(t), \quad y_{2}(t)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) e_{2, \beta}(t) \quad \text { and } \quad y_{3}(t)=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) e_{2, \beta}(t)
$$

are the solutions of (3.16). The general solution of system (3.16) is

$$
Y(t)=c_{1}\left(\begin{array}{c}
e_{1, \beta}(t) \\
e_{1, \beta}(t) \\
3 e_{1, \beta}(t)
\end{array}\right)+c_{2}\left(\begin{array}{c}
e_{2, \beta}(t) \\
-e_{2, \beta}(t) \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
e_{2, \beta}(t) \\
0 \\
e_{2, \beta}(t)
\end{array}\right),
$$

where c_{1}, c_{2}, and c_{3} are arbitrary constants.
Example 3.15 Consider the homogeneous linear system

$$
D_{\beta} Y(t)=\left(\begin{array}{ccc}
4 & 3 & 1 \tag{3.17}\\
-4 & -4 & -2 \\
8 & 12 & 6
\end{array}\right) Y(t)
$$

Assume that $Y=\gamma e_{\lambda, \beta}(t)$. The characteristic equation is

$$
\lambda^{3}-6 \lambda^{2}+12 \lambda-8=0
$$

where $\lambda_{1}=\lambda_{2}=\lambda_{3}=2$. Then

$$
y_{1}(t)=\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right) e_{2, \beta}(t) \quad \text { and } \quad y_{2}(t)=\left(\begin{array}{c}
0 \\
1 \\
-3
\end{array}\right) e_{2, \beta}(t)
$$

Let $y_{3}(t)=(\gamma t+\nu) e_{2, \beta}(t)$,

$$
\gamma=\left(\begin{array}{c}
k_{1} \\
k_{2} \\
-2 k_{1}-3 k_{2}
\end{array}\right) \quad \text { and } \quad v=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

where k_{1} and k_{1} are constants, and also γ and v satisfy

$$
(A-\lambda \mathcal{I}) \gamma=0
$$

and

$$
(A-\lambda \mathcal{I}) v=\gamma
$$

Therefore,

$$
y_{3}(t)=\left[\left(\begin{array}{c}
1 \\
-2 \\
4
\end{array}\right) t+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right] e_{2, \beta}(t)
$$

The general solution of system (3.17) is

$$
Y(t)=c_{1}\left(\begin{array}{c}
e_{2, \beta}(t) \\
0 \\
-2 e_{2, \beta}(t)
\end{array}\right)+c_{2}\left(\begin{array}{c}
0 \\
e_{2, \beta}(t) \\
-3 e_{2, \beta}(t)
\end{array}\right)+c_{3}\left(\begin{array}{c}
t e_{2, \beta}(t) \\
-2 t e_{2, \beta}(t) \\
(4 t+1) e_{2, \beta}(t)
\end{array}\right)
$$

where c_{1}, c_{2}, c_{3} are arbitrary constants.

$3.3 \boldsymbol{\beta}$-Wronskian

Definition 3.16 Let y_{1}, \ldots, y_{n} be β-differentiable functions $(n-1)$ times defined on I, then we define the β-Wronskian of the functions y_{1}, \ldots, y_{n} by

$$
W_{\beta}\left(y_{1}, \ldots, y_{n}\right)(t)=\left|\begin{array}{ccc}
y_{1}(t) & \ldots & y_{n}(t) \\
D_{\beta} y_{1}(t) & \ldots & D_{\beta} y_{n}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{n-1} y_{1}(t) & \ldots & D_{\beta}^{n-1} y_{n}(t)
\end{array}\right|
$$

Throughout this paper, we write W_{β} instead of $W_{\beta}\left(y_{1}, \ldots, y_{n}\right)$.

Lemma 3.17 Let $y_{1}(t), \ldots, y_{n}(t)$ be n-times β-differentiable functions defined on I. Then, for any $t \in I, t \neq s_{0}$,

$$
D_{\beta} W_{\beta}\left(y_{1}, \ldots, y_{n}\right)(t)=\left|\begin{array}{ccc}
y_{1}(\beta(t)) & \ldots & y_{n}(\beta(t)) \tag{3.18}\\
D_{\beta} y_{1}(\beta(t)) & \ldots & D_{\beta} y_{n}(\beta(t)) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{n-2} y_{1}(\beta(t)) & \ldots & D_{\beta}^{n-2} y_{n}(\beta(t)) \\
D_{\beta}^{n} y_{1}(t) & \ldots & D_{\beta}^{n} y_{n}(t)
\end{array}\right| .
$$

Proof We prove by induction on n. The lemma is trivial when $n=1$. Then suppose that it is true for $n=k$. Our objective is to show that it holds for $n=k+1$.
We expand $W_{\beta}\left(y_{1}, \ldots, y_{k+1}\right)$ in terms of the first row to obtain

$$
W_{\beta}\left(y_{1}, \ldots, y_{k+1}\right)=\sum_{j=1}^{k+1}(-1)^{j+1} y_{j}(t) W_{\beta}^{(j)}(t)
$$

where

$$
W_{\beta}^{(j)}= \begin{cases}W_{\beta}\left(D_{\beta} y_{2}, \ldots, D_{\beta} y_{k+1}\right), & j=1 \\ W_{\beta}\left(D_{\beta} y_{1}, \ldots, D_{\beta} y_{j-1}, D_{\beta} y_{j+1}, \ldots, D_{\beta} y_{k+1}\right), & 2 \leq j \leq k \\ W_{\beta}\left(D_{\beta} y_{1}, \ldots, D_{\beta} y_{k}\right), & j=k+1\end{cases}
$$

Consequently,

$$
D_{\beta} W_{\beta}\left(y_{1}, \ldots, y_{k+1}\right)(t)=\sum_{j=1}^{k+1}(-1)^{j+1} D_{\beta} y_{j}(t) W_{\beta}^{(j)}(t)+\sum_{j=1}^{k+1}(-1)^{j+1} y_{j}(\beta(t)) D_{\beta} W_{\beta}^{(j)}(t)
$$

We have

$$
\sum_{j=1}^{k+1}(-1)^{j+1} D_{\beta} y_{j}(t) W_{\beta}^{(j)}(t)=\left|\begin{array}{ccc}
D_{\beta} y_{1}(t) & \ldots & D_{\beta} y_{k+1}(t) \\
D_{\beta} y_{1}(t) & \ldots & D_{\beta} y_{k+1}(t) \\
D_{\beta}^{2} y_{1}(t) & \ldots & D_{\beta}^{2} y_{k+1}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{k-1} y_{1}(t) & \ldots & D_{\beta}^{k-1} y_{k+1}(t) \\
D_{\beta}^{k} y_{1}(t) & \ldots & D_{\beta}^{k} y_{k+1}(t)
\end{array}\right|=0
$$

and from the induction hypothesis we have

$$
\begin{gathered}
\sum_{j=1}^{k+1}(-1)^{j+1} y_{j}(\beta(t)) D_{\beta} W_{\beta}^{(j)}(t) \\
\quad=\sum_{j=1}^{k+1}(-1)^{j+1} y_{j}(\beta(t))
\end{gathered}
$$

$$
\times\left|\begin{array}{cccccc}
D_{\beta} y_{1}(\beta(t)) & \ldots & D_{\beta} y_{j-1}(\beta(t)) & D_{\beta} y_{j+1}(\beta(t)) & \ldots & D_{\beta} y_{k+1}(\beta(t)) \tag{3.19}\\
D_{\beta}^{2} y_{1}(\beta(t)) & \ldots & D_{\beta}^{2} y_{j-1}(\beta(t)) & D_{\beta}^{2} y_{j+1}(\beta(t)) & \ldots & D_{\beta}^{2} y_{k+1}(\beta(t)) \\
\vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
D_{\beta}^{k-1} y_{1}(\beta(t)) & \ldots & D_{\beta}^{k-1} y_{j-1}(\beta(t)) & D_{\beta}^{k-1} y_{j+1}(\beta(t)) & \ldots & D_{\beta}^{k-1} y_{k+1}(\beta(t)) \\
D_{\beta}^{k+1} y_{1}(t) & \ldots & D_{\beta}^{k+1} y_{j-1}(t) & D_{\beta}^{k+1} y_{j+1}(t) & \ldots & D_{\beta}^{k+1} y_{k+1}(t)
\end{array}\right|,
$$

where at $j=1$ the determinant of (3.19) starts with $D_{\beta} y_{2}(\beta(t))$ and at $j=k+1$ the determinant ends with $D_{\beta}^{k+1} y_{k}(t)$. So,

$$
\sum_{j=1}^{k+1}(-1)^{j+1} y_{j}(\beta(t)) D_{\beta} W_{\beta}^{(j)}(t)=\left|\begin{array}{ccc}
y_{1}(\beta(t)) & \ldots & y_{k+1}(\beta(t)) \\
D_{\beta} y_{1}(\beta(t)) & \ldots & D_{\beta} y_{k+1}(\beta(t)) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{k-1} y_{1}(\beta(t)) & \ldots & D_{\beta}^{k-1} y_{k+1}(\beta(t)) \\
D_{\beta}^{k+1} y_{1}(t) & \ldots & D_{\beta}^{k+1} y_{k+1}(t)
\end{array}\right|
$$

Thus, we have

$$
D_{\beta} W_{\beta}\left(y_{1}, \ldots, y_{k+1}\right)(t)=\left|\begin{array}{ccc}
y_{1}(\beta(t)) & \ldots & y_{k+1}(\beta(t)) \\
D_{\beta} y_{1}(\beta(t)) & \ldots & D_{\beta} y_{k+1}(\beta(t)) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{k-1} y_{1}(\beta(t)) & \ldots & D_{\beta}^{k-1} y_{k+1}(\beta(t)) \\
D_{\beta}^{k+1} y_{1}(t) & \ldots & D_{\beta}^{k+1} y_{k+1}(t)
\end{array}\right|
$$

as required.

Theorem 3.18 If $y_{1}(t), \ldots, y_{n}(t)$ are solutions of equation (3.2) in J, then their β-Wronskian satisfies the first-order β-difference equation

$$
\begin{equation*}
D_{\beta} W_{\beta}(t)=-P(t) W_{\beta}(t), \quad \forall t \in J \backslash\left\{s_{0}\right\}, \tag{3.20}
\end{equation*}
$$

where

$$
P(t)=\sum_{k=0}^{n-1}(t-\beta(t))^{k} a_{k+1}(t) / a_{0}(t)
$$

Proof First, we show by induction that the following relation

$$
D_{\beta} W_{\beta}\left(y_{1}, \ldots, y_{n}\right)=\sum_{k=1}^{n}(-1)^{k-1}(t-\beta(t))^{k-1}\left|\begin{array}{ccc}
y_{1}(t) & \ldots & y_{n}(t) \tag{3.21}\\
D_{\beta} y_{1}(t) & \ldots & D_{\beta} y_{n}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{n-k-1} y_{1}(t) & \ldots & D_{\beta}^{n-k-1} y_{n}(t) \\
D_{\beta}^{n-k+1} y_{1}(t) & \ldots & D_{\beta}^{n-k+1} y_{n}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{n} y_{1}(t) & \ldots & D_{\beta}^{n} y_{n}(t)
\end{array}\right|
$$

holds. Indeed, clearly (3.21) is true at $n=1$. Assume that (3.21) is true for $n=m$. From Lemma 3.17,

$$
\begin{aligned}
D_{\beta} W_{\beta}\left(y_{1}, \ldots, y_{m+1}\right)(t) & =\left|\begin{array}{ccc}
y_{1}(\beta(t)) & \ldots & y_{m+1}(\beta(t)) \\
D_{\beta} y_{1}(\beta(t)) & \ldots & D_{\beta} y_{m+1}(\beta(t)) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{m-1} y_{1}(\beta(t)) & \ldots & D_{\beta}^{m-1} y_{m+1}(\beta(t)) \\
D_{\beta}^{m+1} y_{1}(t) & \ldots & D_{\beta}^{m+1} y_{m+1}(t)
\end{array}\right| \\
& =\sum_{j=1}^{m+1}(-1)^{j+1} y_{j}(\beta(t)) W_{\beta}^{*(j)}(t),
\end{aligned}
$$

where

$$
W_{\beta}^{*(j)}= \begin{cases}D_{\beta} W_{\beta}\left(D_{\beta} y_{2}, \ldots, D_{\beta} y_{m+1}\right), & j=1, \\ D_{\beta} W_{\beta}\left(D_{\beta} y_{1}, D_{\beta} y_{j-1}, D_{\beta} y_{j+1}, \ldots, D_{\beta} y_{m+1}\right), & 2 \leq j \leq m \\ D_{\beta} W_{\beta}\left(D_{\beta} y_{1}, \ldots, D_{\beta} y_{m}\right), & j=m+1\end{cases}
$$

One can see that $W_{\beta}^{*(j)}(t)=\sum_{k=1}^{m}(-1)^{k-1}(t-\beta(t))^{k-1} R_{j k}$, where

$$
\begin{aligned}
& R_{j k}=\left|\begin{array}{cccccc}
D_{\beta} y_{1}(t) & \ldots & D_{\beta} y_{j-1}(t) & D_{\beta} y_{j+1}(t) & \ldots & D_{\beta} y_{m+1}(t) \\
D_{\beta}^{2} y_{1}(t) & \ldots & D_{\beta}^{2} y_{j-1}(t) & D_{\beta}^{2} y_{j+1}(t) & \ldots & D_{\beta}^{2} y_{m+1}(t) \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
D_{\beta}^{m-k} y_{1}(t) & \ldots & D_{\beta}^{m-k} y_{j-1}(t) & D_{\beta}^{m-k} y_{j+1}(t) & \ldots & D_{\beta}^{m-k} y_{m+1}(t) \\
D_{\beta}^{m-k+2} y_{1}(t) & \ldots & D_{\beta}^{m-k+2} y_{j-1}(t) & D_{\beta}^{m-k+2} y_{j+1}(t) & \ldots & D_{\beta}^{m-k+2} y_{m+1}(t) \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
D_{\beta}^{m+1} y_{1}(t) & \ldots & D_{\beta}^{m+1} y_{j-1}(t) & D_{\beta}^{m+1} y_{j+1}(t) & \ldots & D_{\beta}^{m+1} y_{m+1}(t)
\end{array}\right|, \\
& 2 \leq j \leq m, \\
& R_{j k}=\left|\begin{array}{ccc}
D_{\beta} y_{2}(t) & \ldots & D_{\beta} y_{m+1}(t) \\
D_{\beta}^{2} y_{2}(t) & \ldots & D_{\beta}^{2} y_{m+1}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{m-k} y_{2}(t) & \ldots & D_{\beta}^{m-k} y_{m+1}(t) \\
D_{\beta}^{m-k+2} y_{2}(t) & \ldots & D_{\beta}^{m-k+2} y_{m+1}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{m+1} y_{2}(t) & \ldots & D_{\beta}^{m+1} y_{m+1}(t)
\end{array}\right|, \quad j=1, \\
& R_{j k}=\left|\begin{array}{ccc}
D_{\beta} y_{1}(t) & \ldots & D_{\beta} y_{m}(t) \\
D_{\beta}^{2} y_{1}(t) & \ldots & D_{\beta}^{2} y_{m}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{m-k} y_{1}(t) & \ldots & D_{\beta}^{m-k} y_{m}(t) \\
D_{\beta}^{m-k+2} y_{1}(t) & \ldots & D_{\beta}^{m-k+2} y_{m}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{m+1} y_{1}(t) & \ldots & D_{\beta}^{m+1} y_{m}(t)
\end{array}\right|, \quad j=m+1 .
\end{aligned}
$$

It follows that

$$
\begin{align*}
D_{\beta} W_{\beta}\left(y_{1}, \ldots, y_{m+1}\right)= & \sum_{j=1}^{m+1}(-1)^{j+1}\left[y_{j}(t)-(t-\beta(t)) D_{\beta} y_{j}(t)\right] \\
& \times \sum_{k=1}^{m}(-1)^{k-1}(t-\beta(t))^{k-1} R_{j k} \\
= & \sum_{k=1}^{m}(-1)^{k-1}(t-\beta(t))^{k-1} \sum_{j=1}^{m+1}(-1)^{j+1} y_{j}(t) R_{j k} \\
& +\sum_{k=1}^{m}(-1)^{k}(t-\beta(t))^{k} \sum_{j=1}^{m+1}(-1)^{j+1} D_{\beta} y_{j}(t) R_{j k} \\
= & \sum_{k=1}^{m}(-1)^{k-1}(t-\beta(t))^{k-1} M(k)+\sum_{k=1}^{m}(-1)^{k}(t-\beta(t))^{k} L(k) \tag{3.22}
\end{align*}
$$

where

$$
\begin{align*}
& M(k)=\sum_{j=1}^{m+1}(-1)^{j+1} y_{j}(t) R_{j k}=\left|\begin{array}{ccc}
y_{1}(t) & \ldots & y_{m+1}(t) \\
D_{\beta} y_{1}(t) & \ldots & D_{\beta} y_{m+1}(t) \\
D_{\beta}^{2} y_{1}(t) & \ldots & D_{\beta}^{2} y_{m+1}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{m-k} y_{1}(t) & \ldots & D_{\beta}^{m-k} y_{m+1}(t) \\
D_{\beta}^{m-k+2} y_{1}(t) & \ldots & D_{\beta}^{m-k+2} y_{m+1}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{m+1} y_{1}(t) & \ldots & D_{\beta}^{m+1} y_{m+1}(t)
\end{array}\right|, \tag{3.23}\\
& L(k)=\sum_{j=1}^{m+1}(-1)^{j+1} D_{\beta} y_{j}(t) R_{j k}=\left\{\begin{array}{lll}
0, & & \text { if }(k=1, \ldots, m-1), \\
\left|\begin{array}{ccc}
D_{\beta} y_{1}(t) & \ldots & D_{\beta} y_{m+1}(t) \\
D_{\beta}^{2} y_{1}(t) & \ldots & D_{\beta}^{2} y_{m+1}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{m+1} y_{1}(t) & \ldots & D_{\beta}^{m+1} y_{m+1}(t)
\end{array}\right|, \quad \text { if } k=m .
\end{array}\right. \tag{3.24}
\end{align*}
$$

Using relations (3.23) and (3.24) and substituting in (3.22), we obtain relation (3.21) at $n=m+1$. Since $D_{\beta}^{n} y_{j}(t)=-\sum_{i=1}^{n}\left(a_{i}(t) / a_{0}(t)\right) D_{\beta}^{n-i} y_{j}(t)$, it follows that

$$
D_{\beta} W_{\beta}(t)=\sum_{k=1}^{n}(-1)^{k-1}(t-\beta(t))^{k-1}\left(\frac{-a_{k}(t)}{a_{0}(t)}\right)\left|\begin{array}{ccc}
y_{1}(t) & \ldots & y_{n}(t) \\
D_{\beta} y_{1}(t) & \ldots & D_{\beta} y_{n}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{n-k-1} y_{1}(t) & \ldots & D_{\beta}^{n-k-1} y_{n}(t) \\
D_{\beta}^{n-k+1} y_{1}(t) & \ldots & D_{\beta}^{n-k+1} y_{n}(t) \\
\vdots & \ddots & \vdots \\
D_{\beta}^{n-1} y_{1}(t) & \ldots & D_{\beta}^{n-1} y_{n}(t) \\
D_{\beta}^{n-k} y_{1}(t) & \ldots & D_{\beta}^{n-k} y_{n}(t)
\end{array}\right|
$$

$$
\begin{aligned}
& =\sum_{k=1}^{n}(-1)^{2(k-1)}(t-\beta(t))^{k-1}\left(\frac{-a_{k}(t)}{a_{0}(t)}\right) W_{\beta}(t) \\
& =-\sum_{k=0}^{n-1}(t-\beta(t))^{k}\left(\frac{a_{k+1}(t)}{a_{0}(t)}\right) W_{\beta}(t)=-P(t) W_{\beta}(t),
\end{aligned}
$$

which is the desired result.

The following theorem gives us Liouville's formula for β-difference equations.

Theorem 3.19 Assume that $(\beta(t)-t) P(t) \neq 1, t \in J$. Then the β-Wronskian of any set of solutions $\left\{y_{i}(t)\right\}_{i=1}^{n}$, valid in J, is given by

$$
\begin{equation*}
W_{\beta}(t)=\frac{W_{\beta}\left(s_{0}\right)}{\prod_{k=0}^{\infty}\left[1+P\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right]}, \quad t \in J \tag{3.25}
\end{equation*}
$$

Proof Relation (3.20) implies that

$$
W_{\beta}(\beta(t))=[1+(t-\beta(t)) P(t)] W_{\beta}(t), \quad t \in J \backslash\left\{s_{0}\right\}
$$

Hence,

$$
\begin{aligned}
W_{\beta}(t) & =\frac{W_{\beta}(\beta(t))}{1+(t-\beta(t)) P(t)} \\
& =\frac{W_{\beta}\left(\beta^{m}(t)\right)}{\prod_{k=0}^{m-1}\left[1+P\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right]}, \quad m \in \mathbb{N} .
\end{aligned}
$$

Taking $m \rightarrow \infty$, we get

$$
W_{\beta}(t)=\frac{W_{\beta}\left(s_{0}\right)}{\prod_{k=0}^{\infty}\left[1+P\left(\beta^{k}(t)\right)\left(\beta^{k}(t)-\beta^{k+1}(t)\right)\right]}, \quad t \in J
$$

Example 3.20 We calculate the β-Wronskian of the β-difference equation

$$
\begin{equation*}
D_{\beta}^{2} y(t)+y(t)=0 \tag{3.26}
\end{equation*}
$$

The functions $y_{1}(t)=\cos _{1, \beta}(t)$ and $y_{2}(t)=\sin _{1, \beta}(t)$ are solutions of equation (3.26) subject to the initial conditions $y_{1}\left(s_{0}\right)=1, D_{\beta} y_{1}\left(s_{0}\right)=0, y_{2}\left(s_{0}\right)=0, D_{\beta} y_{2}\left(s_{0}\right)=1$, respectively. Here, $P(t)=(t-\beta(t))$. So, $(\beta(t)-t) P(t) \neq 1$ for all $t \neq s_{0}$. Since

$$
W_{\beta}\left(s_{0}\right)=\left|\begin{array}{cc}
\cos _{1, \beta}\left(s_{0}\right) & \sin _{1, \beta}\left(s_{0}\right) \\
\sin _{1, \beta}\left(s_{0}\right) & \cos _{1, \beta}\left(s_{0}\right)
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1
$$

Therefore, $W_{\beta}(t)=\frac{1}{\prod_{k=0}^{\infty}\left[1+\left(\beta^{k}(t)-\beta^{k+1}(t)\right)^{2}\right]}$.
The following corollary can be deduced directly from Theorem 3.19.
Corollary 3.21 Let $\left\{y_{i}\right\}_{i=1}^{n}$ be a set of solutions of equation (3.2) in J. Then $W_{\beta}(t)$ has two possibilities:
(i) $W_{\beta}(t) \neq 0$ in J if and only if $\left\{y_{i}\right\}_{i=1}^{n}$ is a fundamental set of equation (3.2) valid in J.
(ii) $W_{\beta}(t)=0$ in J if and only if $\left\{y_{i}\right\}_{i=1}^{n}$ is not a fundamental set of equation (3.2) valid in J.

3.4 Non-homogeneous linear $\boldsymbol{\beta}$-difference equations

The n th-order non-homogeneous linear β-difference equation has the form

$$
\begin{equation*}
a_{0}(t) D_{\beta}^{n} y(t)+a_{1}(t) D_{\beta}^{n-1} y(t)+\cdots+a_{n-1}(t) D_{\beta} y(t)+a_{n}(t) y(t)=b(t), \tag{3.27}
\end{equation*}
$$

where the coefficients $a_{j}(t), 0 \leq j \leq n$, and $b(t)$ are assumed to satisfy the conditions of Corollary 3.3. We may write this as

$$
\begin{equation*}
L_{n} y=b(t) \tag{3.28}
\end{equation*}
$$

where, as before, $L_{n}=a_{0}(t) D_{\beta}^{n}+a_{1}(t) D_{\beta}^{n-1}+\cdots+a_{n-1}(t) D_{\beta}+a_{n}(t)$.
By the theory of differential equations, if $y_{1}(t)$ and $y_{2}(t)$ are two solutions of the nonhomogeneous equation (3.28), then $y_{1} \pm y_{2}$ is a solution of the corresponding homogeneous equation (3.2). Also, by Theorem 3.11, if $y_{1}(t), \ldots, y_{n}(t)$ form a fundamental set for equation (3.2) and $\varphi(t)$ is a particular solution of equation (3.27), then for any solution of equation (3.27), there are constants c_{1}, \ldots, c_{n} such that

$$
\begin{equation*}
y(t)=\varphi(t)+c_{1} y_{1}(t)+\cdots+c_{n} y_{n}(t) . \tag{3.29}
\end{equation*}
$$

Therefore, if we can find any particular solution $\varphi(t)$ of equation (3.27), then (3.29) gives a general formula for all solutions of equation (3.27).

Theorem 3.22 Let φ_{i} be a particular solution of $L_{n} y=b_{i}(t), i=1, \ldots, m$. Then $\sum_{i=1}^{m} \zeta_{i} \varphi_{i}$ is a particular solution of the equation $L_{n} y=\sum_{i=1}^{m} \zeta_{i} b_{i}(t)$, where $\zeta_{1}, \ldots, \zeta_{m}$ are constants.

Proof The proof is straightforward.

3.4.1 Method of undetermined coefficients

We will illustrate the method of undetermined coefficients when the coefficients a_{j} ($0 \leq$ $j \leq n$) of the non-homogeneous linear β-difference equation (3.27) are constants by simple examples.

Example 3.23 Find a particular solution of

$$
\begin{equation*}
D_{\beta}^{2} y(t)-3 D_{\beta} y(t)-4 y(t)=3 e_{2, \beta}(t) . \tag{3.30}
\end{equation*}
$$

Assume that

$$
\begin{equation*}
\varphi(t)=\zeta e_{2, \beta}(t) \tag{3.31}
\end{equation*}
$$

where the coefficient ζ is a constant to be determined. To find ζ, we calculate

$$
\begin{equation*}
D_{\beta} \varphi(t)=2 \zeta e_{2, \beta}(t), \quad D_{\beta}^{2} \varphi(t)=4 \zeta e_{2, \beta}(t) \tag{3.32}
\end{equation*}
$$

by substituting with equations (3.31), (3.32) in equation (3.30). Thus a particular solution is

$$
\varphi(t)=-1 / 2 e_{2, \beta}(t) .
$$

In the following example, we refer the reader to see the different cases of the roots of the characteristic equation of second-order linear homogeneous β-difference equation when the coefficients are constants, see [6].

Example 3.24 Find the general solution of

$$
\begin{equation*}
D_{\beta}^{2} y-3 D_{\beta} y-4 y=2 \sin _{1, \beta}(t) \tag{3.33}
\end{equation*}
$$

The corresponding homogeneous equation of (3.33) is

$$
\begin{equation*}
D_{\beta}^{2} y-3 D_{\beta} y-4 y=0 \tag{3.34}
\end{equation*}
$$

Then the characteristic polynomial of (3.34) is

$$
\begin{equation*}
P(\lambda)=\lambda^{2}-3 \lambda-4=0 . \tag{3.35}
\end{equation*}
$$

Therefore,

$$
y_{h}(t)=c_{1} e_{4, \beta}(t)+c_{2} e_{-1, \beta}(t) .
$$

Now, assume that

$$
\begin{equation*}
\varphi(t)=\zeta_{1} \sin _{1, \beta}(t)+\zeta_{2} \cos _{1, \beta}(t) \tag{3.36}
\end{equation*}
$$

where ζ_{1} and ζ_{2} are to be determined. Then

$$
\begin{gather*}
D_{\beta} \varphi(t)=\zeta_{1} \cos _{1, \beta}(t)-\zeta_{2} \sin _{1, \beta}(t), \tag{3.37}\\
D_{\beta}^{2} \varphi(t)=-\zeta_{1} \sin _{1, \beta}(t)-\zeta_{2} \cos _{1, \beta}(t)
\end{gather*}
$$

By substituting with equations (3.36), (3.37) in equation (3.33), we get a particular solution

$$
\varphi(t)=-5 / 17 \sin _{1, \beta}(t)+3 / 17 \cos _{1, \beta}(t) .
$$

Then the general solution of (3.33) is

$$
y(t)=c_{1} e_{4, \beta}(t)+c_{2} e_{-1, \beta}(t)-5 / 17 \sin _{1, \beta}(t)+3 / 17 \cos _{1, \beta}(t) .
$$

In the following example, we show the solution in the case of $b(t)$ being a linear combination of exponential and trigonometric functions.

Example 3.25 Find the general solution of

$$
\begin{equation*}
D_{\beta}^{2} y-2 D_{\beta} y-3 y=2 e_{1, \beta}(t)-10 \sin _{1, \beta}(t) \tag{3.38}
\end{equation*}
$$

The corresponding homogeneous equation of (3.38) has the solution

$$
y_{h}(t)=c_{1} e_{3, \beta}(t)+c_{2} e_{-1, \beta}(t)
$$

The non-homogeneous term is the linear combination $2 e_{1, \beta}(t)-10 \sin _{1, \beta}(t)$ of the two functions given by $e_{1, \beta}(t)$ and $\sin _{1, \beta}(t)$.

Let

$$
\begin{equation*}
\varphi(t)=c_{1} e_{1, \beta}(t)+c_{2} \sin _{1, \beta}(t)+c_{3} \cos _{1, \beta}(t) \tag{3.39}
\end{equation*}
$$

be a particular solution of (3.38). Then

$$
\begin{align*}
& D_{\beta} \varphi(t)=c_{1} e_{1, \beta}(t)+c_{2} \cos _{1, \beta}(t)-c_{3} \sin _{1, \beta}(t) \tag{3.40}\\
& D_{\beta}^{2} \varphi(t)=c_{1} e_{1, \beta}(t)-c_{2} \sin _{1, \beta}(t)-c_{3} \cos _{1, \beta}(t)
\end{align*}
$$

where c_{1}, c_{2}, c_{3} are undetermined coefficients. By substituting with (3.39), (3.40) in (3.38), we have the particular solution $\varphi(t)=-1 / 2 e_{1, \beta}(t)+2 \sin _{1, \beta}(t)-\cos _{1, \beta}(t)$. Thus the general solution of (3.38) is

$$
y(t)=c_{1} e_{3, \beta}(t)+c_{2} e_{-1, \beta}(t)-1 / 2 e_{1, \beta}(t)+2 \sin _{1, \beta}(t)-\cos _{1, \beta}(t) .
$$

Example 3.26 Find the general solution of

$$
\begin{equation*}
D_{\beta}^{2} y-3 D_{\beta} y+2 y=e_{3, \beta}(t) \sin _{4, \beta}(t) \tag{3.41}
\end{equation*}
$$

The corresponding homogeneous equation of (3.41) has the solution

$$
y_{h}(t)=c_{1} e_{2, \beta}(t)+c_{2} e_{1, \beta}(t)
$$

Let

$$
\begin{equation*}
\varphi(t)=A e_{3, \beta}(t) \sin _{4, \beta}(t)+B e_{3, \beta}(t) \cos _{4, \beta}(t) \tag{3.42}
\end{equation*}
$$

be a particular solution of (3.41), where A and B are constants. Then

$$
\begin{align*}
D_{\beta} \varphi(t)= & 3 A e_{3, \beta}(t) \sin _{4, \beta}(t)+4 A e_{3, \beta}(\beta(t)) \cos _{4, \beta}(t) \\
& -3 B e_{3, \beta}(t) \cos _{4, \beta}(t)-4 B e_{3, \beta}(\beta(t)) \sin _{4, \beta}(t), \tag{3.43}\\
D_{\beta}^{2} \varphi(t)= & 9 A e_{3, \beta}(t) \sin _{4, \beta}(t)+12 A e_{3, \beta}(\beta(t)) \cos _{4, \beta}(t) \\
& +12 A e_{3, \beta}(\beta(t)) \cos _{4, \beta}(\beta(t))-16 A e_{3, \beta}(\beta(t)) \sin _{4, \beta}(t) \\
& +9 B e_{3, \beta}(t) \cos _{4, \beta}(t)-12 B e_{3, \beta}(\beta(t)) \sin _{4, \beta}(t) \\
& -12 B e_{3, \beta}(\beta(t)) \sin _{4, \beta}(\beta(t))-16 B e_{3, \beta}(\beta(t)) \cos _{4, \beta}(t) . \tag{3.44}
\end{align*}
$$

By substituting with (3.42), (3.43) and (3.44) in (3.41), we get $A=\frac{1}{2}$ and $B=0$. Then the particular solution is $\varphi(t)=1 / 2 e_{3, \beta}(t) \sin _{4, \beta}(t)$. Thus the general solution of (3.41) is

$$
y(t)=c_{1} e_{2, \beta}(t)+c_{2} e_{1, \beta}(t)+1 / 2 e_{3, \beta}(t) \sin _{4, \beta}(t) .
$$

3.4.2 Method of variation of parameters

We use the method of variation of parameters to obtain a particular solution $\varphi(t)$ of the non-homogeneous linear β-difference equation (3.27), which can be applied in the case of the coefficients $a_{j}(0 \leq j \leq n)$ being functions or constants. It depends on replacing the constants c_{r} in relation (3.29) by the functions $\zeta_{r}(t)$. Hence, we try to find a solution of the form

$$
\begin{equation*}
\varphi(t)=\zeta_{1}(t) y_{1}(t)+\cdots+\zeta_{n}(t) y_{n}(t) . \tag{3.45}
\end{equation*}
$$

Our objective is to determine the functions $\zeta_{r}(t)$. We have

$$
\begin{equation*}
D_{\beta}^{i-1} \varphi(t)=\sum_{j=1}^{n} \zeta_{j}(t) D_{\beta}^{i-1} y_{j}(t), \quad 1 \leq i \leq n, \tag{3.46}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\sum_{j=1}^{n} D_{\beta} \zeta_{j}(t) D_{\beta}^{i-1} y_{j}(\beta(t))=0, \quad 1 \leq i \leq n-1 \tag{3.47}
\end{equation*}
$$

Putting $i=n$ in (3.46) and operating on it by D_{β}, we obtain

$$
\begin{equation*}
D_{\beta}^{n} \varphi(t)=\sum_{j=1}^{n} \zeta_{j}(t) D_{\beta}^{n} y_{j}(t)+D_{\beta} \zeta_{j}(t) D_{\beta}^{n-1} y_{j}(\beta(t)) \tag{3.48}
\end{equation*}
$$

Since $\varphi(t)$ satisfies equation (3.27), it follows that

$$
\begin{equation*}
a_{0}(t) D_{\beta}^{n} \varphi(t)+a_{1}(t) D_{\beta}^{n-1} \varphi(t)+\cdots+a_{n}(t) \varphi(t)=b(t) \tag{3.49}
\end{equation*}
$$

Substitute by (3.46) and (3.48) in (3.49) and in view of equation (3.2), we obtain

$$
\sum_{j=1}^{n} D_{\beta} \zeta_{j}(t) D_{\beta}^{n-1} y_{j}(\beta(t))=\frac{b(t)}{a_{0}(t)}
$$

Thus, we get the following system:

$$
\begin{align*}
& D_{\beta} \zeta_{1}(t) y_{1}(\beta(t))+\cdots+D_{\beta} \zeta_{n}(t) y_{n}(\beta(t))=0, \\
& \vdots \\
& D_{\beta} \zeta_{1}(t) D_{\beta}^{n-2} y_{1}(\beta(t))+\cdots+D_{\beta} \zeta_{n}(t) D_{\beta}^{n-2} y_{n}(\beta(t))=0, \tag{3.50}\\
& D_{\beta} \zeta_{1}(t) D_{\beta}^{n-1} y_{1}(\beta(t))+\cdots+D_{\beta} \zeta_{n}(t) D_{\beta}^{n-1} y_{n}(\beta(t))=\frac{b(t)}{a_{0}(t)} .
\end{align*}
$$

Consequently,

$$
D_{\beta} \zeta_{r}(t)=\frac{W_{r}(\beta(t))}{W_{\beta}(\beta(t))} \times \frac{b(t)}{a_{0}(t)}, \quad t \in I
$$

where $1 \leq r \leq n$ and $W_{r}(\beta(t))$ is the determinant obtained from $W_{\beta}(\beta(t))$ by replacing the rth column by $(0, \ldots, 0,1)$. It follows that

$$
\zeta_{r}(t)=\int_{s_{0}}^{t} \frac{W_{r}(\beta(\tau))}{W_{\beta}(\beta(\tau))} \times \frac{b(\tau)}{a_{0}(\tau)} d_{\beta} \tau, \quad r=1, \ldots, n
$$

Example 3.27 Consider the equation

$$
\begin{equation*}
D_{\beta}^{2} y(t)+z^{2} y(t)=b(t) \tag{3.51}
\end{equation*}
$$

where $z \in \mathbb{C} \backslash\{0\}$. It is known that $\cos _{z, \beta}(t)$ and $\sin _{z, \beta}(t)$ are the solutions of the corresponding homogeneous equation of (3.51). We can easily show that

$$
\varphi(t)=\frac{1}{z}\left[\sin _{z, \beta}(t) \int_{s_{0}}^{t} b(\tau) \operatorname{Cos}_{z, \beta}(\beta(\tau)) d_{\beta} \tau-\cos _{z, \beta}(t) \int_{s_{0}}^{t} b(\tau) \operatorname{Sin}_{z, \beta}(\beta(\tau)) d_{\beta} \tau\right]
$$

It follows that every solution of equation (3.51) has the form

$$
\begin{aligned}
y(t)= & c_{1} \cos _{z, \beta}(t)+c_{2} \sin _{z, \beta}(t) \\
& +\frac{1}{z}\left[\sin _{z, \beta}(t) \int_{s_{0}}^{t} b(\tau) \operatorname{Cos}_{z, \beta}(\beta(\tau)) d_{\beta} \tau-\cos _{z, \beta}(t) \int_{s_{0}}^{t} b(\tau) \operatorname{Sin}_{z, \beta}(\beta(\tau)) d_{\beta} \tau\right] .
\end{aligned}
$$

3.4.3 Annihilator method

In this section, we can use annihilator method to obtain the particular solution of nonhomogeneous linear β-difference equation (3.27) when the coefficients $a_{j}(0 \leq j \leq n)$ are constants.

Definition 3.28 We say that $f: I \rightarrow \mathbb{C}$ can be annihilated provided that we can find an operator of the form

$$
L(D)=\rho_{n} D_{\beta}^{n}+\rho_{n-1} D_{\beta}^{n-1}+\cdots+\rho_{0} \mathcal{I}
$$

such that $L(D) f(t)=0, t \in I$, where $\rho_{i}, 0 \leq i \leq n$ are constants, not all zero.
Example 3.29 Since $\left(D_{\beta}-4 \mathcal{I}\right) e_{4, \beta}(t)=0, D_{\beta}-4 \mathcal{I}$ is an annihilator for $e_{4, \beta}(t)$.

Table 1 indicates a list of some functions and their annihilators.

Example 3.30 Consider the equation

$$
\begin{equation*}
D_{\beta}^{2} y(t)-4 D_{\beta} y(t)+3 y(t)=e_{5, \beta}(t) \tag{3.52}
\end{equation*}
$$

Equation (3.52) can be rewritten in the form

$$
\left(D_{\beta}-3 \mathcal{I}\right)\left(D_{\beta}-\mathcal{I}\right) y(t)=e_{5, \beta}(t) .
$$

Table 1 A list of some functions and their annihilators

Functions	Annihilator
1	D_{β}
t	D_{β}^{2}
$e_{\rho, \beta}(t)$	$D_{\beta}-\rho \mathcal{I}$
$\cos _{\rho, \beta}(t)$	$D_{\beta}^{2}+\rho^{2} \mathcal{I}$
$\sin _{\rho, \beta}(t)$	$D_{\beta}^{2}+\rho^{2} \mathcal{I}$

Multiplying both sides by the annihilator $\left(D_{\beta}-5 \mathcal{I}\right)$, we get that if $y(t)$ is a solution of (3.52), then $y(t)$ satisfies

$$
\left(D_{\beta}-3 \mathcal{I}\right)\left(D_{\beta}-\mathcal{I}\right)\left(D_{\beta}-5 \mathcal{I}\right) y(t)=0 .
$$

Hence,

$$
y(t)=c_{1} e_{3, \beta}(t)+c_{2} e_{1, \beta}(t)+c_{3} e_{5, \beta}(t) .
$$

One can see that $\varphi(t)=(1 / 8) e_{5, \beta}(t)$ is a solution of equation (3.52). Therefore, the general solution of equation (3.52) has the following form:

$$
y(t)=c_{1} e_{3, \beta}(t)+c_{2} e_{1, \beta}(t)+(1 / 8) e_{5, \beta}(t) .
$$

4 Conclusion

In this paper, the sufficient conditions for the existence and uniqueness of solutions of the β-Cauchy problem were given. Also, a fundamental set of solutions for the homogeneous linear β-difference equations when the coefficients $a_{j}(0 \leq j \leq n)$ are constants was constructed. Moreover, β-Wronskian and its properties were introduced. Finally, the undetermined coefficients, the variation of parameters, and the annihilator methods for the non-homogeneous case were presented.

Acknowledgements

The authors sincerely thank the referees for their valuable suggestions and comments.

Funding

Not applicable

Competing interests

The authors declare that they have no competing interests.
Authors' contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt. ${ }^{2}$ Department of Mathematics, Faculty of Science, Menoufia University, Shibin El-Koom, Egypt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 16 January 2018 Accepted: 18 July 2018 Published online: 02 August 2018

References

1. Annaby, M.H., Hamza, A.E., Aldowah, K.A.: Hahn difference operator and associated Jackson-Nörlund integrals. J. Optim. Theory Appl. 154, 133-153 (2012)
2. Annaby, M.H., Mansour, Z.S.: q-Fractional Calculus and Equations. Springer, Berlin (2012)
3. Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize the Jacobi polynomials. Mem. Am. Math. Soc. 54, 1-55 (1985)
4. Bangerezako, G.: An Introduction to q-Difference Equations. Bujumbura (2008)
5. Cresson, J., Frederico, G., Torres, D.F.M.: Constants of motion for non-differentiable quantum variational problems. Topol. Methods Nonlinear Anal. 33, 217-231 (2009)
6. Faried, N., Shehata, E.M., El Zafarani, R.M.: On homogeneous second order linear general quantum difference equations. J. Inequal. Appl. 2017, 198 (2017). https://doi.org/10.1186/s13660-017-1471-3
7. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (1990)
8. Hamza, A.E., Ahmed, S.M.: Theory of linear Hahn difference equations. J. Adv. Math. 4(2), 441-461 (2013)
9. Hamza, A.E., Sarhan, A.M., Shehata, E.M.: Exponential, trigonometric and hyperbolic functions associated with a general quantum difference operator. Adv. Dyn. Syst. Appl. 12(1), 25-38 (2017)
10. Hamza, A.E., Sarhan, A.M., Shehata, E.M., Aldowah, K.A.: A general quantum difference calculus. Adv. Differ. Equ. 2015, 182 (2015). https://doi.org/10.1186/s13660-015-0518-3
11. Hamza, A.E., Shehata, E.M.: Existence and uniqueness of solutions of general quantum difference equations. Adv. Dyn Syst. Appl. 11, 45-58 (2016)
12. Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)
13. Malinowska, A.B., Torres, D.F.M.: Quantum Variational Calculus. Briefs in Electrical and Computer Engineering-Control, Automation and Robotics. Springer, Berlin (2014)
14. Nottale, L.: Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity. World Scientific, Singapore (1993)

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

