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Abstract
The purpose of this paper is to present a methodological procedure to estimate the
parameters of the exponential Ornstein–Uhlenbeck process, also known as the
Schwartz (J. Finance 52(3):923–973, 1997) one-factor model, in situations where the
spot price of the commodity is observable. The proposal consists of looking at the
probability function of the process as a function of the unknown parameters in
discrete time, known as the likelihood function. Then the logarithm of that expression
is calculated as it is easier to work with it. Finally, the problem of determining the
values of the parameters that maximize the sum of the individual log-likelihoods
(joint log-likelihood function) is solved to obtain the estimation equations explicitly.
In that sense, this work is relevant because as spot prices are available, it is possible to
estimate the parameters directly without the necessity of using more elaborate
approaches like the Kalman filter. Finally, the paper applies this methodology to the
concrete case of one precious metal that has an observable spot price and for which
some empirical and theoretical studies suggest that it presents a mean-reverting
pattern, gold. The estimated parameters are consistent with previous works and with
the original data and the least squares method.

JEL Classification: C100; C130; G100; G170

Keywords: Commodities; Commodity modelling; Stochastic process; Exponential
Ornstein–Uhlenbeck process; Maximum log-likelihood method; Parameters
estimation

1 Introduction
Commodities are the essential blocks of humanity, as they are raw materials that are funda-
mental to both the sustainability and development of any civilization. Furthermore, many
countries specialize in their exportation in international physical markets, which implies
that any movement in commodity prices can have significant consequences for them [11].
Finally, in recent years, global commodity financial markets have been rapidly expanding,
and commodity futures are nowadays essential assets in any investor portfolio around

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1718-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1718-4&domain=pdf
mailto:carlos.mejia@uexternado.edu.co


Mejía Vega Advances in Difference Equations  (2018) 2018:269 Page 2 of 14

the world [32]. Considering all these facts, commodity price analysis and modeling have
turned into relevant fields nowadays.

One of the main distinguishing features of most commodity prices against other as-
set prices is the presence of a mean-reverting behavior (see, e.g., Bessembinder et al. [4],
Casassus and Collin-Dufresne [7], Pyndick [21], Routledge et al. [25], and Schwartz [27],
among others, for empirical evidence justifying the usage of mean-reversion for commod-
ity prices). Based on this, commodity modeling has been applying models with this prop-
erty since long time ago [1]. In that sense, the most basic and simplified stochastic process
that describes the characteristic of the process to drift toward a long-term value is known
as the Ornstein–Uhlenbeck process [8]. It was first used in commodity modeling by Gib-
son and Schwartz [12] to model the light sweet (WTI) crude oil net spot instantaneous
convenience yield under the umbrella of the storage theory (see Lautier [18] for a complete
survey of the storage theory till the models of Schwartz [27]).

The Ornstein–Uhlenbeck process (also known as the arithmetic Ornstein–Uhlenbeck
process) is a stochastic process initially proposed by the physicists Leonard Solomon
Ornstein and the physicist George Eugene Uhlenbeck in a paper titled On the theory of
the Brownian motion [33]. This work appeared in volume 36 of the Physical Review in
September 1930. In general terms, and under a filtered probability space [�,F , (Ft≥0),P],
a stochastic process {X(t); t ≥ 0} is said to follow an arithmetic Ornstein–Uhlenbeck pro-
cess if it satisfies the following stochastic differential equation [19]:

dX(t) = θ
[
μ – X(t)

]
dt + σ dW (t), (1)

where dX(t) is an increment of the process X between t and dt, and σ > 0 is the instan-
taneous diffusion term, used to measure the volatility of the process, which is assumed
to be constant. On the other side, μ is the process long-term expected value, and θ > 0 is
the speed or reversion of X(t) toward μ, both also assumed to be constant. Finally, dW (t)
is an increment during the interval (t, t + dt) of a standard Brownian motion under the
real probability measure P, which follows a normal distribution with expected value 0 and
variance t.

Several works have used the Ornstein–Uhlenbeck process to model directly the dy-
namics over time of different commodity spot prices under the umbrella of the so-called
reduced-form one-factor models (for a review of the differences between reduced-form
and equilibrium-structural models in commodity modeling, see Ribeiro and Hodges [22]).
Chaiyapo and Phewchean [8] constitutes a recent study in that sense. In fact, they used
this stochastic process to model the Thai commodity market. Explicitly, they modeled
three types of agricultural commodities (Tapioca Starch, Ribbed Smoke Sheet No. 3, and
Thai Horn Mali Rice) and used futures prices from the Agricultural Futures Exchange of
Thailand (AFET) as proxies of the spot prices. Another recent work is that by Tanaka and
Carrasco Montero [31], who used it to model gold spot prices for valuing a mine invest-
ment project under the real options approach in Peru. Finally, the Ornstein–Uhlenbeck
process has been used to model electricity prices alone or with other components (see,
e.g., Barlow [1], who used it to later derive a nonlinear Ornstein–Uhlenbeck process by
making certain assumptions about the functional form of the supply and demand curve
and then applied it to electricity prices of both Alberta and California electricity markets).

In all these cases, to make forecasts, it was essential to calibrate the model (that is, to es-
timate its parameters). In that sense, there are three accepted methods: least squares [30],
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maximum log-likelihood [34], and jackknife technique [20]. Based on this, Chaiyapo and
Phewchean [8] calibrated their model with the three methods, whereas Tanaka and Car-
rasco Montero [31] used only the least squares method, and Barlow [1] the log-likelihood
one. However, even if the parameters were consistent, one of the general limitations is that
in all these cases, spot prices can have negative values.

By considering this, and inspired by Ross [24] and Bessembinder et al. [4], the engi-
neer Eduardo Schwartz proposed a modification of the geometric Ornstein–Uhlenbeck
developed previously by Dixit and Pyndick [10] in a paper titled The stochastic behav-
ior of commodity prices: Implications for valuation and hedging. This model, known as
the Schwartz [27] reduced-form, equilibrium one-factor model or as the exponential
Ornstein–Uhlenbeck process [3], appeared in volume 52 of The Journal of Finance in July
1997. In general terms, and under a filtered probability space [�,F , (Ft≥0),P], a stochas-
tic process {X(t); t ≥ 0} is said to follow an exponential Ornstein–Uhlenbeck process if it
satisfies the following stochastic differential equation [27]:

dX(t) = θ
{
μ̂ – Ln

[
X(t)

]}
X(t) dt + σX(t) dW (t), (2)

where dX(t) is an increment of the process X between t and t + dt, μ̂ and θ > 0 are two
constants that affect the instantaneous drift component of the process, and dt is an in-
finitesimal increment in time. On the other side, σ > 0 is a third constant that affects the
instantaneous diffusion component of the process. Finally, dW (t) is an increment, during
the interval (t, t + dt), of a standard Brownian motion under the real probability measure
P, which follows a normal distribution with expected value 0 and variance t.

This model has also been used to describe and simulate the general mean-reverting
dynamic over time of several commodities spot prices again under the umbrella of the
reduced-form one-factor models. In fact, Schwartz [27] applied it for WTI crude oil and
for gold and copper. A more recent work of Bastian-Pinto et al. [2] used the same stochas-
tic process to model alternative fuels in Brazil into the real options framework. Explicitly,
they modeled two types of agricultural commodities (sugar and ethanol). Finally, Brajkovic
[6] used this model (as well as the geometric Brownian motion, arithmetic Ornstein–
Uhlenbeck process, and Cox–Ingersoll–Ross process) for modeling coal prices and valued
a baseload coal-fired power plant under the same real options approach.

With this second model, to make forecasts again, it was also essential to calibrate the
model. However, by recognizing the fact that spot prices are not visible (mostly in inter-
national commodity markets), Schwartz [27] decided to calibrate the model by relating
the spot price with futures prices (which are visible) and then applying a filtering process
known as the Kalman filter (for a detailed discussion of the state space models and the
Kalman filter, see Harvey [13]) combined with the maximization of a defined joint log-
likelihood function. This method is known as the expectation maximization algorithm
or the prediction error decomposition (see Harville [14]). Since then, it is the standard
procedure to estimate the parameters of this model (see, e.g., Kellerhals [15]).

However, some commodities, in fact, have an observable spot price (even in the interna-
tional commodity financial markets). It is the case of most precious metals like gold, silver,
platinum, and palladium with their respective spot exchange rates against some currencies
like the United States dollar [29]. Also, the Kalman filter presents some essential limita-
tions regarding local minimums as indicted by Sauvageau and Kumral [26]. Based on this,
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it could be possible to estimate the parameters by more suitable and tractable methods like
the ones mentioned before for the traditional arithmetic Ornstein–Uhlenbeck process.
In that sense, Dias [9] applied the least squares method for the exponential Ornstein–
Uhlenbeck process and obtained the calibration equations explicitly. However, the cali-
bration of this process through the log-likelihood approach has not been entirely devel-
oped and analyzed in commodity modeling. In that sense, Brajkovic [6] estimated the pa-
rameters of the four models mentioned before to see which ones fit better for coal prices
through the joint likelihood function method, but only defined the general problem and
used computational ways to solve it in each case.

Based on this, in this paper, we expose a calibration method that does not require the use
of filtering processes like the Kalman filter, but only the maximization of a defined joint
log-likelihood function. The structure of the paper goes in the following way. In Sect. 1,
general information about the literature is given. In Sect. 2, a general presentation of the
stochastic process is provided. In Sect. 3, the exposition of the general estimation proce-
dure is presented. In Sect. 4, the method is applied to gold prices, and finally, in the last
section, both the conclusion and discussion for futures works are included.

2 The exponential Ornstein–Uhlenbeck process
2.1 Intuition as a deterministic process
A deterministic process X(t) is said to follow a deterministic exponential Ornstein–
Uhlenbeck process if it satisfies the following differential equation:

dX(t) = θ
{
μ̂ – Ln

[
X(t)

]}
X(t) dt, (3)

where the drift term depends on the natural logarithm of the current value of the process
Ln[X(t)], and the natural logarithm of the long-term expected value of the spot price μ̂

acts as the equilibrium level of the process:
• If the natural logarithm of the current value of the process Ln[X(t)] is lower than μ̂,

then the drift will be positive, θ{μ̂ – Ln[X(t)]}X(t) > 0 and dX(t) > 0.
• If the natural logarithm of the current value of the process Ln[X(t)] is higher than μ̂,

then the drift will be negative, θ{μ̂ – Ln[X(t)]}X(t) < 0 and dX(t) < 0.
• This dynamics is known as mean-reverting, where θ > 0 determines the speed of

reversion of the process.

2.2 Analytical solution
Considering that X(t) is an Itô process and applying Itô’s lemma to the function Ln[X(t)]eθ t ,
we get:

d
{
Ln

[
X(t)

]
eθ t} =

(
θμ̂eθ t –

σ 2eθ t

2

)
dt + σ eθ t dW (t). (4)

Given equation (4), the integration from s to t, where 0 ≤ s < t, is performed to obtain
the analytical solution of equation (2) [27]:

Ln
[
X(t)

]
= Ln

[
X(s)

]
e–θ (t–s) +

(
μ̂ –

σ 2

2θ

)
[
1 – e–θ (t–s)] +

∫ t

s

[
σ e–θ (t–u)]dW (u). (5)
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2.3 Gaussian property
From equation (5) the expected value and the variance of the process Ln[X(t)], conditional
to information (Fs)t>s≥0, are given by [27]

E
{
Ln

[
X(t)

]|Fs
}

= Ln
[
X(s)

]
e–θ (t–s) +

(
μ̂ –

σ 2

2θ

)[
1 – e–θ (t–s)], (6)

Var
{
Ln

[
X(t)

]|Fs
}

=
σ 2

2θ

[
1 – e–2θ (t–s)]. (7)

From equations (5), (6), and (7) it is possible to conclude that the process Ln[X(t)], con-
ditional to information (Fs)t>s≥0, follows the normal distribution (it is a Gaussian process)
with expected value Ln[X(s)]e–θ (t–s) +(μ̂– σ 2

2θ
)[1–e–θ (t–s)] and variance σ 2

2θ
[1–e–2θ (t–s)]. The

conditional probability distribution function of Ln[X(t)] under the exponential Ornstein–
Uhlenbeck process is given by

f
{
Ln

[
X(t)

]|θ , μ̂,σ
}

=
1

√
2π σ 2

2θ
[1 – e–2θ (t–s)]

× e
〈
–

{Ln[X(t)] – Ln[X(s)]e–θ (t–s) – (μ̂ – σ 2

2θ
)[1 – e–θ (t–s)]}2

2{ σ 2
2θ

[1 – e–2θ (t–s)]}
〉
. (8)

3 Parameters estimation through the maximum log-likelihood method
3.1 Discretization process
Given the availability of an information set Ft–1 and an observation interval [0, T ], the
exact analytical solution of the exponential Ornstein–Uhlenbeck process in equation (5)
can be discretized over a partition with constant interval �t = T

steps in the following way:

Ln(Xt) = Ln(Xt–1)e–θ�t +
(

μ̂ –
σ 2

2θ

)
(
1 – e–θ�t) + σ

√
1

2θ

(
1 – e–2θ�t

)
εt , (9)

where εt is an error driven by the normal distribution with expected value 0 and variance
1. In that sense, the process Ln(Xt), conditional to information Ft–1, follows the normal
distribution with expected value Ln(Xt–1)e–θ�t + (μ̂ – σ 2

2θ
)(1 – e–θ�t) and variance σ 2

2θ
(1 –

e–2θ�t). Furthermore, equation (9) can be also expressed in the other way:

Ln(Xt) = Ln(Xt–1)e–θ�t +
(

μ̂ –
σ 2

2θ

)(
1 – e–θ�t) + ηt , (10)

where ηt is an error driven by the normal distribution with expected value 0 and vari-
ance σ 2

2θ
(1 – e–2θ�t). The process Ln(Xt), conditional to information Ft–1, again follows the

normal distribution with expected value Ln(Xt–1)e–θ�t + (μ̂ – σ 2

2θ
)(1 – e–θ�t) and variance

σ 2

2θ
(1 – e–2θ�t).

3.2 The joint log-likelihood function
The calibration of the exponential Ornstein–Uhlenbeck process can be done through the
maximum log-likelihood method by searching the estimates that maximize the joint log-
likelihood function using the first-order conditions. Recalling equations (5), (6), (7), (8),
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and (9) or (10), the likelihood function is given by [23]

L
[
θ , μ̂,σ |Ln(Xt)

]
=

1√
2πσ̂ 2

e
{

–
[Ln(Xt) – Ln(Xt–1)e–θ�t – ˆ̂μ(1 – e–θ�t)]2

2σ̂ 2

}
, (11)

where

ˆ̂μ = μ̂ –
σ 2

2θ
, (12)

σ̂ 2 =
σ 2

2θ

(
1 – e–2θ�t). (13)

However, for practical purposes, it is better to use the log-likelihood function given by

Ln
{
L

[
θ , μ̂,σ |Ln(Xt)

]}

= –
1
2

Ln(2π ) – Ln(σ̂ ) –
[Ln(Xt) – Ln(Xt–1)e–θ�t – ˆ̂μ(1 – e–θ�t)]2

2σ̂ 2 . (14)

Finally, given independent observations Ln(X1), Ln(X2), . . . , Ln(Xn), the joint-log likeli-
hood function is given by

n∑

i=1

Ln
{
L

[
θ , μ̂,σ |Ln(Xi)

]}

= –
n
2

Ln(2π ) – nLn(σ̂ ) –
1

2σ̂ 2

n∑

i=1

{[
Ln(Xi) – Ln(Xi–1)e–θ�t – ˆ̂μ(

1 – e–θ�t)]2}. (15)

3.3 First-order conditions
The next step consists in taking the partial derivatives and equal them to zero. In that
sense, the partial derivative with respect to ˆ̂μ is taken:

∂〈∑n
i=1 Ln{L[θ , μ̂,σ |Ln(Xi)]}〉

∂ ˆ̂μ
= 0. (16)

Development:

∂〈∑n
i=1 Ln{L[θ , μ̂,σ |Ln(Xi)]}〉

∂ ˆ̂μ

=
(1 – e–θ�t)

σ̂ 2

n∑

i=1

[
Ln(Xi) – Ln(Xi–1)e–θ�t – ˆ̂μ(

1 – e–θ�t)]. (17)

Equal to zero:

(1 – e–θ�t)
σ̂ 2

n∑

i=1

[
Ln(Xi) – Ln(Xi–1)e–θ�t – ˆ̂μ(

1 – e–θ�t)] = 0, (18)

ˆ̂μ =
∑n

i=1[Ln(Xi)] – e–θ�t ∑n
i=1[Ln(Xi–1)]

n(1 – e–θ�t)
. (19)
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Considering equation (12), we then have:

μ̂ = ˆ̂μ +
σ 2

2θ
. (20)

Next, the partial derivative with respect to θ is taken:

∂〈∑n
i=1 Ln{L[θ , μ̂,σ |Ln(Xi)]}〉

∂θ
= 0. (21)

Development:

∂〈∑n
i=1 Ln{L[θ , μ̂,σ |Ln(Xi)]}〉

∂θ

= –
e–θ�t�t

σ̂ 2

n∑

i=1

{[
Ln(Xi) – ˆ̂μ][

Ln(Xi–1) – ˆ̂μ]
– e–θ�t[Ln(Xi–1) – ˆ̂μ]2}. (22)

Equal to zero:

–
e–θ�t�t

σ̂ 2

n∑

i=1

{[
Ln(Xi) – ˆ̂μ][

Ln(Xi–1) – ˆ̂μ]
– e–θ�t[Ln(Xi–1) – ˆ̂μ]2} = 0, (23)

θ = –
1

�t
Ln

{∑n
i=1[Ln(Xi) Ln(Xi–1)] – ˆ̂μ∑n

i=1[Ln(Xi)] – ˆ̂μ∑n
i=1[Ln(Xi–1)] + n ˆ̂μ2

∑n
i=1[Ln(Xi–1)2] – 2 ˆ̂μ∑n

i=1[Ln(Xi–1)] + n ˆ̂μ2

}
.

(24)

Finally, the partial derivative with respect to σ̂ is taken:

∂〈∑n
i=1 Ln{L[θ , μ̂,σ |Ln(Xi)]}〉

∂σ̂
= 0. (25)

Development:

∂〈∑n
i=1 Ln{L[θ , μ̂,σ |Ln(Xi)]}〉

∂σ̂

= –
n
σ̂

–
1
σ̂ 3

n∑

i=1

{[
Ln(Xi) – Ln(Xi–1)e–θ�t – ˆ̂μ(

1 – e–θ�t)]2}. (26)

Equal to zero:

–
n
σ̂

–
1
σ̂ 3

n∑

i=1

{[
Ln(Xi) – Ln(Xi–1)e–θ�t – ˆ̂μ(

1 – e–θ�t)]2} = 0, (27)

σ̂ 2 =
1
n

{ n∑

i=1

[
Ln(Xi)2] – 2e–θ�t

n∑

i=1

[
Ln(Xi) Ln(Xi–1)

]
+ e–2θ�t

n∑

i=1

[
Ln(Xi–1)2]

– 2 ˆ̂μ(
1 – e–θ�t)

{ n∑

i=1

[
Ln(Xi)

]
– e–θ�t

n∑

i=1

[
Ln(Xi–1)

]
}

+ n ˆ̂μ2(1 – e–θ�t)2
}

. (28)
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Considering equation (13), we then have:

σ 2 = σ̂ 2
[

2θ

(1 – e–2θ�t)

]
. (29)

3.4 Final equations
One of the problems with the last solutions is that each parameter depends on each other.
However, by replacing θ into ˆ̂μ this can be solved:

ˆ̂μ =
a
b

, (30)

where

a =
n∑

i=1

[
Ln(Xi)

] n∑

i=1

[
Ln(Xi–1)2] –

n∑

i=1

[
Ln(Xi–1)

] n∑

i=1

[
Ln(Xi) Ln(Xi–1)

]
, (31)

b = n

{ n∑

i=1

[
Ln(Xi–1)2] –

n∑

i=1

[
Ln(Xi)

][
Ln(Xi–1)

]
}

–

〈{ n∑

i=1

[
Ln(Xi–1)

]
}2

–
n∑

i=1

[
Ln(Xi)

] n∑

i=1

[
Ln(Xi–1)

]
〉

. (32)

Considering this, all the parameters can be obtained through the following steps:
• Obtain ˆ̂μ from (30), (31), and (32).
• Then obtain θ from (24).
• Then obtain σ̂ 2 from (28).
• Then obtain σ 2 from (29).
• Finally, obtain μ̂ from (20).

4 Results for gold and discussion
4.1 Gold spot prices
The Bretton Woods Conference (also known as the United Nations Monetary and Finan-
cial Conference) established a permanent exchange rate between one troy ounce of gold
and the United States dollar. In 1972 the fixed rate system ended, but the logic of an ex-
change rate between the precious metal and the currency persisted in what is now known
as the XAUUSD in Foreign Exchange Markets (FOREX). This exchange rate acts as a spot
price for gold [29]. Daily gold spot prices from January 02, 1975, to December 29, 2017,
are shown in Fig. 1. These data were taken from Bloomberg. On the other side, the nat-
ural logarithm and the logarithm returns of this series are exhibited in Fig. 2 and Fig. 3,
respectively.

The descriptive statistics of the gold spot price, its natural logarithm, and the logarithm
returns both daily and annually (by taking the annual average) are exhibited in Table 1
and Table 2, respectively. The arithmetic mean of the spot price is around of 577 United
States dollars per troy ounce of gold in daily terms and of 574 United States dollars per
troy ounce of gold in annual, whereas the logarithm returns exhibit an annual standard
deviation of 19%.
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Figure 1 Daily gold spot price from January 02, 1975, to December 29, 2017. Source of data: Bloomberg
XAUUSD Currency

Figure 2 Natural logarithm of the daily gold spot price from January 02, 1975, to December 29, 2017. Source
of data: Bloomberg XAUUSD Currency

4.2 Calibration process
The choice of the stochastic process to represent the uncertainties can be supported by
theoretical considerations referenced in the economic theory and by previous works that
applied statistical tests. In that sense, according to microeconomic theory, in the long-
term, the spot price of a commodity should be tied to its long-term marginal production
cost (see Laughton and Jacoby [17]). The latter means that commodities spot prices tend
to revert to a long-term value, besides random short-term fluctuations. On the other side,
Bessembinder et al. [4] used econometric tests to analyze future trends of several com-
modities. They found high mean-reversion patterns for both oil and agriculture prices,
whereas weak ones for precious metals. Furthermore, and specifically for gold prices,
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Figure 3 Daily logarithm returns of the gold spot price from January 02, 1975 to December 29, 2017. Source
of data: Bloomberg XAUUSD Currency

Table 1 Descriptive statistics of the daily gold spot price, its natural logarithm, and its logarithm
returns. Source: Data from Bloomberg XAUUSD

Daily Standard Spot Price Natural Logarithm Logarithm return

Mean 577.27 6.14 0.02%
Standard deviation 416.02 0.65 1.23%
Skewness 1.30 0.38 0.02
Kurtosis 3.46 2.56 14.45

Table 2 Descriptive statistics of the annual gold spot price, its natural logarithm, and its logarithm
returns. Source: Data from Bloomberg XAUUSD

Annual Standard Spot Price Natural Logarithm Logarithm return

Mean 573.70 6.14 4.90%
Standard deviation 415.65 0.65 19.07%
Skewness 1.34 0.41 0.97
Kurtosis 3.56 2.67 5.23

Shafee and Topal [28] found that the first difference of gold spot price was stationary, sug-
gesting a mean-reversion pattern. Based on these past studies, it is possible to think that
the exponential Ornstein–Uhlenbeck process could be a good model for the gold spot
price.

The next step is to calibrate the exponential Ornstein–Uhlenbeck process with the daily
data presented in Sect. 4.1 by taking �t = 1 (to obtain daily parameters) applying equations
(30), (31), (32), (24), (28), (29), and (20). Then, the same procedure is repeated but now
setting �t = 1/250 (to obtain annualized parameters). Finally, the calibration is done with
the average annual data by taking again �t = 1 (to obtain annual parameters). The results
are presented in Table 3.

By looking at Table 3 the annualized and annual parameters are similar, suggesting that
it is possible to obtain parameters of different periodicities from the daily data just by
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Table 3 Parameters of the exponential Ornstein–Uhlenbeck process obtained for the gold spot price
through the maximum log-likelihood method

Miu hat Theta Sigma

Daily 7.22 0.0002 1.23%
Annualized 7.67 0.0420 19.42%
Annual 7.49 0.0497 19.06%

changing the �t with little significant errors for the case of gold. Furthermore, some gen-
eral conclusions are the following:

• The reversion speed θ indicates that the natural logarithm of the gold spot price (and
hence the price) reverts to its long-term expected value in around 1

0.0497 years or 20
years (for the daily and annualized parameters it will be 1

0.0002∗250 or 1
0.0420 years, equal

in both cases to almost 24 years). This low speed of reversion is consistent with
previous research works like those of Schwartz [27], Bessembinder et al. [4], Shafee
and Topal [28], and Tanaka and Carrasco [31].

• On the other side, both the annualized and annual volatilities are of around 19%,
which confirms gold as having moderate price volatility, and it is consistent with the
historical annual standard deviation of the logarithm returns provided before in
Table 2, reflecting the consistency of the calibration process again.

4.3 Comparison with the least squares method
To see if the obtained parameters are not only consistent with previous works and the
information itself, they were also estimated through the least squares method developed
by Dixit and Pyndick [10] and modified by Dias [9]. However, in this case, the regression
was constructed by following equation (10), so that it relates the natural logarithm of the
spot price (rather than the logarithm return) with the natural logarithm of the first lag in
the same way Van den Berg [34] did for the arithmetic Ornstein–Uhlenbeck process. The
regression equation is then given by

Ln(St) = a Ln(St–1) + b + ηt , (33)

where

a = e–θ�t , (34)

b = ˆ̂μ(
1 – e–θ�t), (35)

ˆ̂μ = μ̂ –
σ 2

2θ
, (36)

Std(ηt) = σ

√
(1 – e–2θ�t)

2θ
. (37)

Rewriting the equations gives

θ = –
Ln(a)
�t

, (38)

ˆ̂μ =
b

(1 – a)
, (39)
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Table 4 Coefficients of the exponential Ornstein–Uhlenbeck process obtained for the gold spot
price through the least squares method

a b Std(η)

Daily 0.9998 0.0012 1.23%
Annual 0.9515 0.3451 19.06%

Table 5 Parameters of the exponential Ornstein–Uhlenbeck process obtained for the gold spot price
through the least squares method

Miu hat Theta Sigma

Daily 7.22 0.0002 1.23%
Annualized 7.22 0.0420 19.42%
Annual 7.12 0.0497 19.53%

σ = Std(ηt)

√
–2 Ln(a)

�t(1 – a2)
, (40)

μ̂ = ˆ̂μ +
σ 2

2θ
. (41)

The next step is to calibrate the exponential Ornstein–Uhlenbeck process with the daily
data presented in Sect. 4.1 by taking �t = 1 (to obtain daily parameters), by running the
regression of equation (33), and finally applying equations (38), (39), (40), and (41). Then,
the same procedure is repeated but now setting �t = 1/250 (to obtain annualized param-
eters). Finally, the calibration is done with the average annual data and by taking again
�t = 1 (to obtain annual parameters). The results of the coefficients a and b and of the
standard deviation of the error for both daily and annual data are presented in Table 4. On
the other side, the estimated parameters are shown in Table 5.

By looking at Table 5 it is possible to conclude that the three parameters are similar in
daily, annualized, and annual terms, and so the proposed methodology is also consistent
with the least squares method.

5 Conclusions
One of the main difficulties in commodity modeling is the estimation of the parameters of
the stochastic processes used to model the dynamics over time of both the spot price and
other state variables. One of the main reasons for this is the fact that most of these state
variables are not observable for many commodities (mainly in international markets). In
that sense, the calibration of general processes like the exponential Ornstein–Uhlenbeck
process is done through filtering algorithms like the Kalman filter.

However, for some commodities, like most precious metals, there is an observable spot
price, which influences the search for more explicit and straightforward methods of cali-
bration for processes like the exponential Ornstein–Uhlenbeck process that considers the
spot price as the only state variable. Based on this assumption, in this paper, we derive
the general equations that allow calibrating the model through the log-likelihood meth-
ods. Those expressions were possible to obtain, besides the availability of the spot price,
because the probability function of the process was known, a fact that enables to con-
struct the joint log-likelihood function and to search for the values of the parameters that
maximize that expression. Finally, the parameters obtained for the spot price of gold were
consistent with the historical data and with previous studies and the least squares method.
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Futures works might include restrictions to some of the parameters, as some of them can-
not have negative values and the present methodology does not impose those conditions.
Also, as the maximum log-likelihood method produces a punctual estimator for each pa-
rameter, further extensions could be to define intervals for each estimator given a confi-
dence level.
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