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Abstract
We consider a pathogen dynamics model with antibodies and both
pathogen-to-susceptible and infected-to-susceptible transmissions. We consider two
types of infected cells, latently infected cells, and actively infected cells. The model
considers three types of discrete or distributed delays to characterize the time
between the pathogen or the infected cell contacts a susceptible cell and the
creation of mature pathogens. We deduct the basic reproduction number and
antibody response activation number which determine the existence and stability of
the steady states. The global stability analysis of the steady states is established using
Lyapunov method. The theoretical results are confirmed by numerical simulations.
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1 Introduction
Modeling and analysis of within-host human pathogen dynamics have been studied in
several works (see, e.g., [1–23]). These works can help researchers to better understand the
pathogen dynamical behavior and to provide new suggestions for clinical treatment. A vast
amount of the mathematical models presented in the literature focused on modeling the
interaction between three main compartments, susceptible cells (s), infected cells (y), and
pathogens (p). B cell is one of the central components of the immune system against viral
infections. The B cells create antibodies to neutralize the pathogens. Murase et al. [24]
considered the effect of antibodies (x) on the pathogen infection model as follows:

ṡ(t) = ω – ds(t) – π1s(t)p(t),

ẏ(t) = π1s(t)p(t) – λy(t),

ṗ(t) = nλy(t) – cp(t) – ap(t)x(t),

ẋ(t) = rp(t)x(t) – mx(t).

(1)

The susceptible cells are produced at rate ω, die at rate ds, and become infected at rate
π1sp, where π1 is the pathogen-susceptible incidence rate constant. λ is the death rate
constant of the infected cells, a is the neutralization rate constant of the pathogens, and
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c is the death rate constant of the pathogens. The infected cell releases a number n of
pathogens during its lifespan. The B cells are proliferated and die at rates rpx and mx, re-
spectively, where r and m are constants. The effect of antibody immune response on the
pathogen dynamics has been studied in several works (see, e.g., [24–29]). In these works,
it was assumed that the susceptible cells become infected by contacting with pathogens
(pathogen-to-susceptible transmission). In [30–33], it was reported that the pathogens
can also spread by infected-to-susceptible transmission. However, in these works the an-
tibody immune response was neglected. In very recent works [34, 35], and [36], both
pathogen-to-susceptible and infected-to-susceptible transmissions were incorporated in
the pathogen dynamics models with antibody immune response. However, the latently
infected cells were neglected in these models.

It is worth stressing that the introduction of delay equations has been widely applied to
model complex systems in biology. Indeed, the introduction of delay terms can be viewed
as a first step towards modeling multiscale dynamics and heterogeneity features in popu-
lation dynamics [37].

In the present paper we investigate the global stability of pathogen dynamics models
with antibodies and both pathogen-to-susceptible and infected-to-susceptible transmis-
sions. We consider both latently infected cells and actively infected cells. We incorpo-
rate three types of discrete or distributed time delays to describe the time between the
pathogen or the actively infected cell contacts a susceptible cell and the emission of new
mature pathogens. We calculate two bifurcation parameters R0 (the basic reproduction
number) and R1 (the antibody response activation number) which determine the exis-
tence and global stability of all steady states. Numerical simulations are performed to con-
firm the theoretical results.

2 Model with discrete-time delays
We investigate the following pathogen dynamics model with discrete-time delays:

ṡ(t) = ω – ds(t) – s(t)
[
π1p(t) + π2y(t)

]
,

u̇(t) = ρe–ε1τ1 s(t – τ1)
[
π1p(t – τ1) + π2y(t – τ1)

]
– (α + λu)u(t),

ẏ(t) = (1 – ρ)e–ε2τ2 s(t – τ2)
[
π1p(t – τ2) + π2y(t – τ2)

]
– λy(t) + αu(t),

ṗ(t) = nλe–ε3τ3 y(t – τ3) – cp(t) – ap(t)x(t),

ẋ(t) = rp(t)x(t) – mx(t).

(2)

The model assumes that the susceptible cells are infected by pathogens at rate π1s(t)p(t)
and by infected cells at rate π2s(t)y(t). The fractions ρ and (1 – ρ) with 0 < ρ < 1 are the
proportions of infection that lead to latency and activation, respectively. λu is the death
rate constant of the latently infected cells. Latently infected cells are activated at rate αu(t).
Here, τ1 is the time between pathogen entry a susceptible cell to become latent infected,
and τ2 is the time between pathogen entry a susceptible cell and the production of imma-
ture pathogens. The immature pathogens need time τ3 to be mature. The factors e–ε1τ1 ,
e–ε2τ2 , and e–ε3τ3 represent the probability of surviving to the age of τ1, τ2, and τ3, respec-
tively, where ε1, ε2, and, ε3 are positive constants.
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We consider the initial conditions

s(θ ) = φ1(θ ), u(θ ) = φ2(θ ), y(θ ) = φ3(θ ),

p(θ ) = φ4(θ ), x(θ ) = φ5(θ ),

φj(θ ) ≥ 0, θ ∈ [–κ , 0],

φj ∈ C
(
[–κ , 0],R≥0

)
, j = 1, . . . , 5,

(3)

where κ = max{τ1, τ2, τ3} and C is the Banach space of continuous functions mapping the
interval [–κ , 0] into R≥0 with norm ‖φj‖ = sup–κ≤θ≤0 |φj(θ )|. Then system (2) has a unique
solution for t > 0 [38].

2.1 Properties of solution
Lemma 1 The solutions of system (2) with initial conditions (3) are nonnegative and ulti-
mately bounded for t > 0.

Proof We have from Eq. (2)1 that ṡ|s=0 = ω > 0. Therefore s(t) > 0 for all t ≥ 0. Moreover,
for t ∈ [0,κ], we have

u(t) = φ2(0)e–(α+λu)t +
∫ t

0
e–(α+λu)(t–θ ){ρe–ε1τ1 s(θ – τ1)

[
π1p(θ – τ1) + π2y(θ – τ1)

]}
dθ

≥ 0,

y(t) = φ3(0)e–λt

+
∫ t

0
e–λ(t–θ ){(1 – ρ)e–ε2τ2 s(θ – τ2)

[
π1p(θ – τ2) + π2y(θ – τ2)

]
+ αu(θ )

}
dθ ≥ 0,

p(t) = φ4(0)e–
∫ t

0 (c+ax(υ)) dυ + nλe–ε3τ3

∫ t

0
e–

∫ t
θ (c+ax(υ)) dυy(θ – τ3) dθ ≥ 0,

x(t) = φ5(0)e–mt+r
∫ t

0 p(υ) dυ ≥ 0.

By recursive argument we get u(t) ≥ 0, y(t) ≥ 0 and p(t) ≥ 0 ∀t ≥ 0. The nonnegativity
of the model’s solutions implies that ṡ(t) ≤ ω – ds(t) and then limt→∞ sup s(t) ≤ ω

d . Let us
define X1(t) = ρe–ε1τ1 s(t – τ1) + (1 – ρ)e–ε2τ2 s(t – τ2) + u(t) + y(t). Then

Ẋ1(t) = ρe–ε1τ1
{
ω – ds(t – τ1) – π1s(t – τ1)p(t – τ1) – π2s(t – τ1)y(t – τ1)

}

+ (1 – ρ)e–ε2τ2
{
ω – ds(t – τ2) – π1s(t – τ2)p(t – τ2) – π2s(t – τ2)y(t – τ2)

}

+ ρe–ε1τ1 s(t – τ1)
[
π1p(t – τ1) + π2y(t – τ1)

]
– (α + λu)u(t)

+ (1 – ρ)e–ε2τ2 s(t – τ2)
[
π1p(t – τ2) + π2y(t – τ2)

]
– λy(t) + αu(t)

= ωρe–ε1τ1 + ω(1 – ρ)e–ε2τ2

– ρe–ε1τ1 ds(t – τ1) – (1 – ρ)e–ε2τ2 ds(t – τ2) – λuu(t) – λy(t)

≤ ω – σ1
[
ρe–ε1τ1 s(t – τ1) + (1 – ρ)e–ε2τ2 s(t – τ2) + u(t) + y(t)

]

= ω – σ1X1(t),
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where σ1 = min {d,λu,λ}. It follows that limt→∞ sup X1(t) ≤ M1, where M1 = ω
σ1

. Since s(t) >
0, u(t) ≥ 0, and y(t) ≥ 0, then limt→∞ sup u(t) ≤ M1 and limt→∞ sup y(t) ≤ M1. Moreover,
let X2(t) = p(t) + a

r x(t). Then

Ẋ2(t) = nλe–ε3τ3 y(t – τ3) – cp(t) –
am
r

x(t)

≤ nλM1 – σ2X2(t),

where σ2 = min {c, m}. Then limt→∞ sup X2(t) ≤ M2, where M2 = nλM1
σ2

. The nonnegativity
of the solution implies that limt→∞ sup p(t) ≤ M2 and limt→∞ sup x(t) ≤ M3, where M3 =
r
a M2. This shows the ultimate boundedness of s(t), u(t), y(t), p(t), and x(t). �

2.2 Steady states and threshold parameters
In the following, we derive the basic reproduction number from system (2) by using the
next-generation method and calculate the steady states. We first define the matrices F and
V as follows:

F =

⎡

⎢
⎣

0 ρπ2s0e–ε1τ1 ρπ1s0e–ε1τ1

0 (1 – ρ)π2s0e–ε2τ2 (1 – ρ)π1s0e–ε2τ2

0 0 0

⎤

⎥
⎦ , V =

⎡

⎢
⎣

α + λu 0 0
–α λ 0
0 –nλe–ε3τ3 c

⎤

⎥
⎦ ,

where s0 = ω
d . Then

FV
–1 =

⎡

⎢
⎣

ψ1 ψ2 ψ3

ψ4 ψ5 ψ6

0 0 0

⎤

⎥
⎦ ,

where

ψ1 =
αρπ2s0e–ε1τ1

(α + λu)λ
+

αρπ1s0ne–ε1τ1 e–ε3τ3

(α + λu)c
,

ψ2 =
ρπ2s0e–ε1τ1

λ
+

ρπ1s0ne–ε1τ1 e–ε3τ3

c
,

ψ3 =
ρπ1s0e–ε1τ1

c
,

ψ4 =
α(1 – ρ)π2s0e–ε2τ2

(α + λu)λ
+

α(1 – ρ)π1s0ne–ε2τ2 e–ε3τ3

(α + λu)c
,

ψ5 =
(1 – ρ)π2s0e–ε2τ2

λ
+

(1 – ρ)π1s0ne–ε2τ2 e–ε3τ3

c
,

ψ6 =
(1 – ρ)π1s0e–ε2τ2

c
.

The basic reproduction number R0 can be computed as the spectral radius of FV–1:

R0 =
nπ1s0γ

c
+

π2s0eε3τ3γ

λ
,

where

γ =
(

αρ

α + λu
e–ε1τ1–ε3τ3 + (1 – ρ)e–ε2τ2–ε3τ3

)
. (4)
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The parameter R0 can be written as R0 = R01 + R02, where

R01 =
nπ1s0γ

c
, R02 =

π2s0eε3τ3γ

λ
.

The model has three steady states:
(i) The pathogen-free steady state �0 = (s0, 0, 0, 0, 0).

(ii) The infected steady state without antibodies �1 = (s1, u1, y1, p1, 0), where

s1 =
s0

R0
, y1 =

cd
nπ1λe–ε3τ3 + cπ2

(R0 – 1),

u1 =
ρωe–ε1τ1

(α + λu)R0
(R0 – 1), p1 =

nλe–ε3τ3

c
y1.

(iii) The infected steady state with antibodies �2 = (s2, u2, y2, p2, x2), where

s2 =
(α + λu)u2

ρe–ε1τ1 (π1p2 + π2y2)
, y2 =

–B +
√

B2 – 4AC
2A

,

u2 =
ωρe–ε1τ1 (π1m + π2ry2)

(α + λu)[rd + (π1m + π2ry2)]
, p2 =

m
r

,

x2 =
c
a

(
nλe–ε3τ3 y2

cp2
– 1

)
,

(5)

and

A = λπ2r, B = λ(rd + π1m) –
γωπ2r
e–ε3τ3

, C = –
γωπ1m

e–ε3τ3
. (6)

We note that �2 exists if nλe–ε3τ3 y2
cp2

> 1. Now we can define antibody immune response
activation number as follows:

R1 =
nλe–ε3τ3 y2

cp2
. (7)

It follows that x2 = c
a (R1 – 1). Thus, an infected steady state with antibodies �2 =

(s2, u2, y2, p2, x2) exists when R1 > 1.

Lemma 2 Let R0 > 1, then (i) if R1 ≤ 1, then p1 ≤ p2, and (ii) if R1 > 1, then p1 > p2.

Proof (i) Let R1 ≤ 1, then nλe–ε3τ3 y2
cp2

≤ 1. Using Eq. (5), we obtain

nλe–ε3τ3

cp2

(
–B +

√
B2 – 4AC
2A

)
≤ 1,

which implies that

(
2Acp2

nλe–ε3τ3
+ B

)2

≥ B2 – 4AC.
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Using Eq. (6), we get

4cm2eε3τ3π2(nλπ1 + cπ2eε3τ3 )
n2p2

(p2 – p1) ≥ 0.

Thus p1 ≤ p2. The proof of (ii) can be done in a similar way. �

2.3 Global properties
We define a function G(θ ) = θ – 1 – ln θ and use the notation (s, u, y, p, x) = (s(t), u(t), y(t),
p(t), x(t)).

Theorem 1 The pathogen-free steady state �0 of system (2) is globally asymptotically sta-
ble when R0 ≤ 1.

Proof Define U0(s, u, y, p, x) as follows:

U0 = γ s0G
(

s
s0

)
+

α

α + λu
e–ε3τ3 u + e–ε3τ3 y

+
(1 – R02)

n
p +

a(1 – R02)
rn

x

+ e–ε1τ1–ε3τ3
αρ

α + λu

∫ τ1

0

(
π1s(t – θ )p(t – θ ) + π2s(t – θ )y(t – θ )

)
dθ

+ e–ε2τ2–ε3τ3 (1 – ρ)
∫ τ2

0

(
π1s(t – θ )p(t – θ ) + π2s(t – θ )y(t – θ )

)
dθ

+ e–ε3τ3 (1 – R02)λ
∫ τ3

0
y(t – θ ) dθ ,

where γ is defined by Eq. (4). We have U0(s, u, y, p, x) > 0 for all s, u, y, p, x > 0, while
U0(s0, 0, 0, 0, 0) = 0. Calculate dU0

dt along the solution of system (2) as follows:

dU0

dt
= γ

(
1 –

s0

s

)
{ω – ds – π1sp – π2sy}

+ e–ε3τ3
α

α + λu

{
ρe–ε1τ1 s(t – τ1)

[
π1p(t – τ1) + π2y(t – τ1)

]
– (α + λu)u

}

+ e–ε3τ3
{

(1 – ρ)e–ε2τ2 s(t – τ2)
[
π1p(t – τ2) + π2y(t – τ2)

]
– λy + αu

}

+
(1 – R02)

n
{

nλy(t – τ3)e–ε3τ3 – cp – apx
}

+
a(1 – R02)

rn
{rpx – mx}

+ e–ε1τ1–ε3τ3
αρ

α + λu

{
π1sp + π2sy – π1s(t – τ1)p(t – τ1) – π2s(t – τ1)y(t – τ1)

}

+ e–ε2τ2–ε3τ3 (1 – ρ)
{
π1sp + π2sy – π1s(t – τ2)p(t – τ2) – π2s(t – τ2)y(t – τ2)

}

+ λe–ε3τ3 (1 – R02)
{

y – y(t – τ3)
}

. (8)

Equation (8) can be simplified as follows:

dU0

dt
= –γ

d(s – s0)2

s
+ γ (π1s0p + π2s0y) – λe–ε3τ3 y

–
c(1 – R02)

n
p –

am(1 – R02)
rn

x + λ(1 – R02)e–ε3τ3 y
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= –γ
d(s – s0)2

s
+

(
γπ1s0 –

c(1 – R02)
n

)
p

+
(
γπ2s0 – λe–ε3τ3R02

)
y –

am(1 – R02)
rn

x.

We have

γπ1s0 –
c
n

(1 – R02) =
c
n

(R0 – 1), γπ2s0 – λe–ε3τ3R02 = 0.

Therefore, we obtain

dU0

dt
= –γ

d(s – s0)2

s
+

c
n

(R0 – 1)p +
am
rn

(R02 – 1)x.

Thus, dU0
dt ≤ 0 when R0 ≤ 1 for all s, p, x > 0. Moreover, dU0

dt = 0 if and only if x(t) = 0,
p(t) = 0, and s(t) = s0. Let D0 = {(s, u, y, p, x) : dU0

dt = 0} and D′
0 be the largest invariant subset

of D0. The solutions of system (2) tend to D′
0 [38]. For each element in D′

0, we have p(t) = 0.
Thus Eq. (2)4 yields

ṗ(t) = 0 = nλe–ε3τ3 y(t – τ3).

Then y(t) = 0. From Eq. (2)3 we have

0 = αu(t).

Then u(t) = 0. It follows that D′
0 contains a single point that is {�0}. From LaSalle’s invari-

ance principle, �0 is globally asymptotically stable when R0 ≤ 1. �

Theorem 2 For system (2), assume that R1 ≤ 1 < R0, then �1 is globally asymptotically
stable.

Proof Let U1(s, u, y, p, x) be given as follows:

U1 = γ s1G
(

s
s1

)
+

α

α + λu
e–ε3τ3 u1G

(
u
u1

)
+ e–ε3τ3 y1G

(
y
y1

)

+
γπ1s1p1

nλe–ε3τ3 y1
p1G

(
p
p1

)
+

γ aπ1s1p1

rnλe–ε3τ3 y1
x

+ e–ε1τ1–ε3τ3
αρ

α + λu
π1s1p1

∫ τ1

0
G

(
s(t – θ )p(t – θ )

s1p1

)
dθ

+ e–ε2τ2–ε3τ3 (1 – ρ)π1s1p1

∫ τ2

0
G

(
s(t – θ )p(t – θ )

s1p1

)
dθ

+ e–ε1τ1–ε3τ3
αρ

α + λu
π2s1y1

∫ τ1

0
G

(
s(t – θ )y(t – θ )

s1y1

)
dθ

+ e–ε2τ2–ε3τ3 (1 – ρ)π2s1y1

∫ τ2

0
G

(
s(t – θ )y(t – θ )

s1y1

)
dθ

+ γπ1s1p1

∫ τ3

0
G

(
y(t – θ )

y1

)
dθ .
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We have U1(s, u, y, p, x) > 0 for all s, u, y, p, x > 0 and U1(s1, u1, y1, p1, 0) = 0. Calculating dU1
dt ,

we obtain

dU1

dt
= γ

(
1 –

s1

s

)
(ω – ds – π1sp – π2sy)

+ e–ε3τ3
α

α + λu

(
1 –

u1

u

){
ρe–ε1τ1 s(t – τ1)

[
π1p(t – τ1) + π2y(t – τ1)

]

– (α + λu)u
}

+ e–ε3τ3

(
1 –

y1

y

)
{

(1 – ρ)e–ε2τ2 s(t – τ2)
[
π1p(t – τ2) + π2y(t – τ2)

]
– λy + αu

}

+ γ
π1s1p1

nλe–ε3τ3 y1

(
1 –

p1

p

)
(
nλe–ε3τ3 y(t – τ3) – cp – apx

)

+ γ
aπ1s1p1

rnλe–ε3τ3 y1
(rpx – mx)

+ e–ε1τ1–ε3τ3
αρ

α + λu
π1s1p1

[
sp

s1p1
–

s(t – τ1)p(t – τ1)
s1p1

+ ln

(
s(t – τ1)p(t – τ1)

sp

)]

+ e–ε2τ2–ε3τ3 (1 – ρ)π1s1p1

[
sp

s1p1
–

s(t – τ2)p(t – τ2)
s1p1

+ ln

(
s(t – τ2)p(t – τ2)

sp

)]

+ e–ε1τ1–ε3τ3
αρ

α + λu
π2s1y1

[
sy

s1y1
–

s(t – τ1)y(t – τ1)
s1y1

+ ln

(
s(t – τ1)y(t – τ1)

sy

)]

+ e–ε2τ2–ε3τ3 (1 – ρ)π2s1y1

[
sy

s1y1
–

s(t – τ2)y(t – τ2)
s1y1

+ ln

(
s(t – τ2)y(t – τ2)

sy

)]

+ γπ1s1p1

[
y
y1

–
y(t – τ3)

y1
+ ln

(
y(t – τ3)

y

)]
. (9)

Simplifying Eq. (9) and applying the steady state conditions for �1

ω = ds1 + π1s1p1 + π2s1y1,

e–ε1τ1–ε3τ3
αρ

α + λu
[π1s1p1 + π2s1y1] = αe–ε3τ3 u1,

e–ε1τ1–ε3τ3
αρ

α + λu
[π1s1p1 + π2s1y1] + e–ε2τ2–ε3τ3 (1 – ρ)[π1s1p1 + π2s1y1] = λe–ε3τ3 y1,

p1 =
nλe–ε3τ3 y1

c
,

we get

dU1

dt
= γ

(
1 –

s1

s

)
(ds1 – ds) + γ

(
1 –

s1

s

)
(π1s1p1 + π2s1y1)

– e–ε1τ1–ε3τ3
αρ

α + λu

(
π1s1p1

s(t – τ1)p(t – τ1)u1

s1p1u
+ π2s1y1

s(t – τ1)y(t – τ1)u1

s1y1u

)

+ e–ε1τ1–ε3τ3
αρ

α + λu
(π1s1p1 + π2s1y1)

– e–ε2τ2–ε3τ3 (1 – ρ)
(

π1s1p1
s(t – τ2)p(t – τ2)y1

s1p1y
+ π2s1y1

s(t – τ2)y(t – τ2)
s1y

)

+ e–ε1τ1–ε3τ3
αρ

α + λu
(π1s1p1 + π2s1y1) + e–ε2τ2–ε3τ3 (1 – ρ)(π1s1p1 + π2s1y1)
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– e–ε1τ1–ε3τ3
αρ

α + λu
(π1s1p1 + π2s1y1)

uy1

u1y
+ γπ1s1p1

(
1 –

y(t – τ3)p1

y1p

)

+
a
c
γπ1s1(p1 – p2)x + e–ε1τ1–ε3τ3

αρ

α + λu
π1s1p1 ln

(
s(t – τ1)p(t – τ1)

sp

)

+ e–ε2τ2–ε3τ3 (1 – ρ)π1s1p1 ln

(
s(t – τ2)p(t – τ2)

sp

)

+ e–ε1τ1–ε3τ3
αρ

α + λu
π2s1y1 ln

(
s(t – τ1)y(t – τ1)

sy

)

+ e–ε2τ2–ε3τ3 (1 – ρ)π2s1y1 ln

(
s(t – τ2)y(t – τ2)

sy

)

+ γπ1s1p1 ln

(
y(t – τ3)

y

)
.

Consider the following equalities with (i = 1):

ln

(
s(t – τ1)p(t – τ1)

sp

)

= ln

(
s(t – τ1)p(t – τ1)ui

sipiu

)
+ ln

(
uyi

uiy

)
+ ln

(
ypi

yip

)
+ ln

(
si

s

)
,

ln

(
s(t – τ2)p(t – τ2)

sp

)
= ln

(
s(t – τ2)p(t – τ2)yi

sipiy

)
+ ln

(
ypi

yip

)
+ ln

(
si

s

)
,

ln

(
s(t – τ1)y(t – τ1)

sy

)
= ln

(
s(t – τ1)y(t – τ1)ui

siyiu

)
+ ln

(
uyi

uiy

)
+ ln

(
si

s

)
,

ln

(
s(t – τ2)y(t – τ2)

sy

)
= ln

(
s(t – τ2)y(t – τ2)

siy

)
+ ln

(
si

s

)
,

ln

(
y(t – τ3)

y

)
= ln

(
y(t – τ3)pi

yip

)
+ ln

(
yip
ypi

)
,

(10)

we obtain

dU1

dt
= –γ

d(s – s1)2

s
– γ (π1s1p1 + π2s1y1)G

(
s1

s

)

– e–ε1τ1–ε3τ3
αρ

α + λu
π1s1p1G

(
s(t – τ1)p(t – τ1)u1

s1p1u

)

– e–ε1τ1–ε3τ3
αρ

α + λu
π2s1y1G

(
s(t – τ1)y(t – τ1)u1

s1y1u

)

– e–ε2τ2–ε3τ3 (1 – ρ)π1s1p1G
(

s(t – τ2)p(t – τ2)y1

s1p1y

)

– e–ε2τ2–ε3τ3 (1 – ρ)π2s1y1G
(

s(t – τ2)y(t – τ2)
s1y

)

– e–ε1τ1–ε3τ3
αρ

α + λu
(π1s1p1 + π2s1y1)G

(
y1u
yu1

)

– γπ1s1p1G
(

y(t – τ3)p1

y1p

)
+

a
c
γπ1s1(p1 – p2)x.
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From Lemma 2, we have p1 ≤ p2 when R1 ≤ 1. Thus, dU1
dt ≤ 0 and dU1

dt = 0 occur at the
infected steady state without antibodies �1. Let D′

1 be the largest invariant subset of the set
D1 = {(s, u, y, p, x) : dU1

dt = 0}. Thus, the solutions of system (2) tend to D′
1. It is clear that D1 =

{�1}. Using LaSalle’s invariance principle, we conclude that �1 is globally asymptotically
stable when R1 ≤ 1 and R0 > 1. �

Theorem 3 For system (2), suppose that R1 > 1, then �2 is globally asymptotically stable.

Proof Consider U2(s, u, y, p, x):

U2 = γ s2G
(

s
s2

)
+

α

α + λu
e–ε3τ3 u2G

(
u
u2

)
+ e–ε3τ3 y2G

(
y
y2

)

+ γ
π1s2p2

nλe–ε3τ3 y2
p2G

(
p
p2

)
+ γ

aπ1s2p2

rnλe–ε3τ3 y2
x2G

(
x
x2

)

+ e–ε1τ1–ε3τ3
αρ

α + λu
π1s2p2

∫ τ1

0
G

(
s(t – θ )p(t – θ )

s2p2

)
dθ

+ e–ε2τ2–ε3τ3 (1 – ρ)π1s2p2

∫ τ2

0
G

(
s(t – θ )p(t – θ )

s2p2

)
dθ

+ e–ε1τ1–ε3τ3
αρ

α + λu
π2s2y2

∫ τ1

0
G

(
s(t – θ )y(t – θ )

s2y2

)
dθ

+ e–ε2τ2–ε3τ3 (1 – ρ)π2s2y2

∫ τ2

0
G

(
s(t – θ )y(t – θ )

s2y2

)
dθ

+ γπ1s2p2

∫ τ3

0
G

(
y(t – θ )

y2

)
dθ .

We have U2(s, u, y, p, x) > 0 for all s, u, y, p, x > 0, while U2(s, u, y, p, x) reaches its global min-
imum at �2. Calculate dU2

dt as follows:

dU2

dt
= γ

(
1 –

s2

s

)
(ω – ds – π1sp – π2sy)

+ e–ε3τ3
α

α + λu

(
1 –

u2

u

)

× {
ρe–ε1τ1 s(t – τ1)

[
π1p(t – τ1) + π2y(t – τ1)

]
– (α + λu)u

}

+ e–ε3τ3

(
1 –

y2

y

){
(1 – ρ)e–ε2τ2 s(t – τ2)

[
π1p(t – τ2) + π2y(t – τ2)

]
– λy + αu

}

+ γ
π1s2p2

nλe–ε3τ3 y2

(
1 –

p2

p

)(
nλy(t – τ3)e–ε3τ3 – cp – apx

)

+ γ
aπ1s2p2

rnλe–ε3τ3 y2

(
1 –

x2

x

)
(rpx – mx)

+ e–ε1τ1–ε3τ3
αρ

α + λu
π1s2p2

[
sp

s2p2
–

s(t – τ1)p(t – τ1)
s2p2

+ ln

(
s(t – τ1)p(t – τ1)

sp

)]

+ e–ε2τ2–ε3τ3 (1 – ρ)π1s2p2

[
sp

s2p2
–

s(t – τ2)p(t – τ2)
s2p2

+ ln

(
s(t – τ2)p(t – τ2)

sp

)]

+ e–ε1τ1–ε3τ3
αρ

α + λu
π2s2y2

[
sy

s2y2
–

s(t – τ1)y(t – τ1)
s2y2

+ ln

(
s(t – τ1)y(t – τ1)

sy

)]
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+ e–ε2τ2–ε3τ3 (1 – ρ)π2s2y2

[
sy

s2y2
–

s(t – τ2)y(t – τ2)
s2y2

+ ln

(
s(t – τ2)y(t – τ2)

sy

)]

+ γπ1s2p2

[
y
y2

–
y(t – τ3)

y2
+ ln

(
y(t – τ3)

y

)]
. (11)

Simplifying Eq. (11) and applying the steady state conditions for �2:

ω = ds2 + π1s2p2 + π2s2y2,

e–ε1τ1–ε3τ3
αρ

α + λu
[π1s2p2 + π2s2y2] = αe–ε3τ3 u2,

e–ε1τ1–ε3τ3
αρ

α + λu
[π1s2p2 + π2s2y2] + e–ε2τ2–ε3τ3 (1 – ρ)[π1s2p2 + π2s2y2] = λe–ε3τ3 y2,

p2 =
m
r

, nλe–ε3τ3 y2 = cp2 + ap2x2,

we get

dU2

dt
= γ

(
1 –

s2

s

)
(ds2 – ds) + γ

(
1 –

s2

s

)
(π1s2p2 + π2s2y2)

– e–ε1τ1–ε3τ3
αρ

α + λu

(
π1s2p2

s(t – τ1)p(t – τ1)u2

s2p2u
+ π2s2y2

s(t – τ1)y(t – τ1)u2

s2y2u

)

+ e–ε1τ1–ε3τ3
αρ

α + λu
(π1s2p2 + π2s2y2)

– e–ε2τ2–ε3τ3 (1 – ρ)
(

π1s2p2
s(t – τ2)p(t – τ2)y2

s2p2y
+ π2s2y2

s(t – τ2)y(t – τ2)
s2y

)

+ e–ε1τ1–ε3τ3
αρ

α + λu
(π1s2p2 + π2s2y2) + e–ε2τ2–ε3τ3 (1 – ρ)(π1s2p2 + π2s2y2)

– e–ε1τ1–ε3τ3
αρ

α + λu
(π1s2p2 + π2s2y2)

uy2

u2y
+ γπ1s2p2

(
1 –

y(t – τ3)p2

y2p

)

+ e–ε1τ1–ε3τ3
αρ

α + λu
π1s2p2 ln

(
s(t – τ1)p(t – τ1)

sp

)

+ e–ε2τ2–ε3τ3 (1 – ρ)π1s2p2 ln

(
s(t – τ2)p(t – τ2)

sp

)

+ e–ε1τ1–ε3τ3
αρ

α + λu
π2s2y2 ln

(
s(t – τ1)y(t – τ1)

sy

)

+ e–ε2τ2–ε3τ3 (1 – ρ)π2s2y2 ln

(
s(t – τ2)y(t – τ2)

sy

)

+ γπ1s2p2 ln

(
y(t – τ3)

y

)
.

Applying equalities (10) when (i = 2), we obtain

dU2

dt
= –γ

d(s – s2)2

s
– γ (π1s2p2 + π2s2y2)G

(
s2

s

)

– e–ε1τ1–ε3τ3
αρ

α + λu
π1s2p2G

(
s(t – τ1)p(t – τ1)u2

s2p2u

)

– e–ε1τ1–ε3τ3
αρ

α + λu
π2s2y2G

(
s(t – τ1)y(t – τ1)u2

s2y2u

)
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– e–ε2τ2–ε3τ3 (1 – ρ)π1s2p2G
(

s(t – τ2)p(t – τ2)y2

s2p2y

)

– e–ε2τ2–ε3τ3 (1 – ρ)π2s2y2G
(

s(t – τ2)y(t – τ2)
s2y

)

– e–ε1τ1–ε3τ3
αρ

α + λu
(π1s2p2 + π2s2y2)G

(
y2u
yu2

)

– γπ1s2p2G
(

y(t – τ3)p2

y2p

)
.

Since R1 > 1, then s2, u2, y2, p2, and x2 > 0. We obtain dU2
dt ≤ 0, and then the solutions of

system (2) tend to D′
2, the largest invariant subset of D2 = {(s, u, y, p, x) : dU2

dt = 0}. Clearly,
dU2
dt = 0 when s = s2, u = u2, y = y2, and p = p2. Since p = p2 in D′

2, then

ṗ = 0 = nλe–ε3τ3 y2 – cp2 – ap2x,

which gives x = x2. Therefore, dU2
dt = 0 when s = s2, u = u2, y = y2, p = p2, and x = x2. The

global asymptotic stability of �2 is conducted from LaSalle’s invariance principle. �

3 Model with distributed delays
We consider a pathogen dynamics model with distributed delays:

ṡ(t) = ω – ds(t) – s(t)
[
π1p(t) + π2y(t)

]
,

u̇(t) = ρ

∫ h1

0
f1(τ )e–μ1τ s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]
dτ – (α + λu)u(t),

ẏ(t) = (1 – ρ)
∫ h2

0
f2(τ )e–μ2τ s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]
dτ – λy(t) + αu(t),

ṗ(t) = nλ

∫ h3

0
f3(τ )e–μ3τ y(t – τ ) dτ – cp(t) – ap(t)x(t),

ẋ(t) = rp(t)x(t) – mx(t),

(12)

where f1(τ )e–μ1τ is probability that susceptible host cells contacted by the pathogens at
time t – τ survived τ time units and became latently infected at time t, f2(τ )e–μ2τ is prob-
ability that susceptible host cells contacted by the pathogens at time t – τ survived τ time
units and became actively infected at time t, and f3(τ )e–μ3τ is the probability that an imma-
ture pathogen at time t – τ survived τ time units to become a mature pathogen at time t.
The probability distribution functions fj(τ ), j = 1, . . . , 3, satisfy the following conditions:

(i) fj(τ ) > 0, (ii)
∫ hj

0 fj(τ ) dτ = 1, (iii)
∫ hj

0 fj(τ )e�τ dτ < ∞, where � > 0.
Let �j(τ ) = fj(τ )e–μjτ and ηj =

∫ hj
0 �j(τ ) dτ , j = 1, 2, 3, thus 0 < ηj ≤ 1.

The initial conditions for system (12) are the same as given by (3) where κ =
max{h1, h2, h3}.

3.1 Properties of solution
Lemma 3 The solutions (s(t), u(t), y(t), p(t), x(t)) of system (12) with initial conditions (3)
are nonnegative and ultimately bounded for t > 0.
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Proof From Lemma 1 we have s(t) > 0 for all t ≥ 0. For t ∈ [0,κ], we have

u(t) = φ2(0)e–(α+λu)t

+
∫ t

0

{
ρ

∫ h1

0
�1(τ )s(θ – τ )

[
π1p(θ – τ ) + π2y(θ – τ )

]
}

e–(α+λu)(t–θ ) dτ dθ ,

y(t) = φ3(0)e–λt +
∫ t

0

{
(1 – ρ)

∫ h2

0
�2(τ )s(θ – τ )

[
π1p(θ – τ ) + π2y(θ – τ )

]
dτ

+ αu(θ )
}

e–λ(t–θ ) dθ ,

p(t) = φ4(0)e–
∫ t

0 (c+ax(υ)) dυ + nλ

∫ t

0
e–

∫ t
θ (c+ax(υ)) dυ

∫ h3

0
�3(τ )y(θ – τ ) dτ dθ ,

x(t) = φ5(0)e–mt+r
∫ t

0 p(θ ) dθ .

We obtain by recursive argument that u(t) ≥ 0, y(t) ≥ 0, p(t) ≥ 0, and x(t) ≥ 0 ∀t ≥ 0.
Clearly limt→∞ sup s(t) ≤ ω

d . Let us define Y1(t) = ρ
∫ h1

0 �1(τ )s(t – τ ) dτ + (1 – ρ) ×
∫ h2

0 �2(τ )s(t – τ ) dτ + u(t) + y(t). Then

Ẏ1(t) = ρ

∫ h1

0
�1(τ )

{
ω – ds(t – τ ) – s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]}
dτ

+ (1 – ρ)
∫ h2

0
�2(τ )

{
ω – ds(t – τ ) – s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]}
dτ

+ ρ

∫ h1

0
�1(τ )s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]
dτ – (α + λu)u(t)

+ (1 – ρ)
∫ h2

0
�2(τ )s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]
dτ – λy(t) + αu(t)

= ωρ

∫ h1

0
�1(τ ) dτ + ω(1 – ρ)

∫ h2

0
�2(τ ) dτ – ρ d

∫ h1

0
�1(τ )s(t – τ ) dτ

– (1 – ρ) d
∫ h2

0
�2(τ )s(t – τ ) dτ – λuu(t) – λy(t)

≤ ω – σ1

(
ρ

∫ h1

0
�1(τ )s(t – τ ) dτ + (1 – ρ)

∫ h2

0
�2(τ )s(t – τ ) dτ + u(t) + y(t)

)

= ω – σ1Y1(t),

where σ1 = min {d,λu,λ}. It follows that limt→∞ sup Y1(t) ≤ M̃1, where M̃1 = ω
σ1

. Since s(t) >
0, u(t) ≥ 0, and y(t) ≥ 0, then limt→∞ sup u(t) ≤ M̃1 and limt→∞ sup y(t) ≤ M̃1. Further, let
us consider Y2(t) = p(t) + a

r x(t). Then

Ẏ2(t) = nλ

∫ h3

0
�3(τ )y(t – τ ) dτ – cp(t) –

am
r

x(t)

≤ nλM̃1 – σ2Y2(t),

where σ2 = min {c, m}. Then limt→∞ sup Y2(t) ≤ M̃2, where M̃2 = nλM̃1
σ2

. The nonnegativity
of the solution implies that limt→∞ sup p(t) ≤ M̃2 and limt→∞ sup x(t) ≤ M̃3, where M̃3 =
r
a M̃2. This shows the ultimate boundedness of s(t), u(t), y(t), p(t), and x(t). �
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3.2 Steady states and threshold parameters
For system (12) the matrices F and V are given by

F =

⎡

⎢
⎣

0 ρπ2s0η1 ρπ1s0η1

0 (1 – ρ)π2s0η2 (1 – ρ)π1s0η2

0 0 0

⎤

⎥
⎦ , V =

⎡

⎢
⎣

α + λu 0 0
–α λ 0
0 –nλη3 c

⎤

⎥
⎦ ,

and then

FV
–1 =

⎡

⎢
⎣

ψ̃1 ψ̃2 ψ̃3

ψ̃4 ψ̃5 ψ̃6

0 0 0

⎤

⎥
⎦ ,

where

ψ̃1 =
αρ

(α + λu)λ
π2s0η1 +

αρ

(α + λu)c
nπ1s0η1η3,

ψ̃2 =
ρ

λ
π2s0η1 +

ρ

c
nπ1s0η1η3,

ψ̃3 =
ρ

c
π1s0η1,

ψ̃4 =
α(1 – ρ)
(α + λu)λ

π2s0η2 +
α(1 – ρ)
(α + λu)c

nπ1s0η2η3,

ψ̃5 =
(1 – ρ)

λ
π2s0η2 +

(1 – ρ)
c

nπ1s0η2η3,

ψ̃6 =
(1 – ρ)

c
π1s0η2.

Thus, R̃0 is given by

R̃0 = R̃01 + R̃02,

where

R̃01 =
nπ1s0γ̃

c
, R̃02 =

π2s0γ̃

λη3
and γ̃ =

(
αρ

α + λu
η1η3 + (1 – ρ)η2η3

)
. (13)

The model has three steady states:
(i) The pathogen-free steady state �0 = (s0, 0, 0, 0, 0).

(ii) The infected steady state without antibodies �1 = (s1, u1, y1, p1, 0), where

s1 =
s0

R̃0
, y1 =

cd
nπ1λη3 + cπ2

(R̃0 – 1),

u1 =
ωρη1

(α + λu)R̃0
(R̃0 – 1), p1 =

nλη3

c
y1.
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(iii) The infected steady state with antibodies �2 = (s2, u2, y2, p2, x2), where

s2 =
(α + λu)u2

ρη1(π1p2 + π2y2)
, y2 =

–B̃ +
√

B̃2 – 4ÃC̃
2Ã

,

u2 =
ωρη1(π1m + π2ry2)

(α + λu)[rd + (π1m + π2ry2)]
, p2 =

m
r

,

x2 =
c
a

(
nλη3y2

cp2
– 1

)
,

(14)

where

Ã = λπ2r, B̃ = λ(rd + π1m) –
γ̃ ωπ2r

η3
,

C̃ = –
γ̃ ωπ1m

η3
.

(15)

We note that �2 exists when nλη3y2
cp2

> 1. Now we define

R̃1 =
nλη3y2

cp2
. (16)

Hence, x2 = c
a (R̃1 – 1). Thus, an infected steady state with antibodies �2 = (s2, u2, y2,

p2, x2) exists when R̃1 > 1.

Lemma 4 Let R̃0 > 1, then (i) if R̃1 ≤ 1, then p1 ≤ p2, and (ii) if R̃1 > 1, then p1 > p2.

Proof (i) Let R̃1 ≤ 1, then nλη3y2
cp2

≤ 1. Using Eq. (14), we obtain

nλη3

cp2

(
–B̃ +

√
B̃2 – 4ÃC̃
2Ã

)
≤ 1,

which gives

(
2Ãcp2

nλη3
+ B̃

)2

≥ B̃2 – 4ÃC̃.

Using Eq. (15), we get

4m2cπ2(nλη3π1 + cπ2)
n2(η3)2p2

(p2 – p1) ≥ 0.

It follows that p1 ≤ p2. In a similar way, we can prove (ii). �

3.3 Global properties
Theorem 4 The pathogen-free steady state �0 of system (12) is globally asymptotically
stable when R̃0 ≤ 1.
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Proof Let V0(s, u, y, p, x) be given as follows:

V0 = γ̃ s0G
(

s
s0

)
+

η3α

α + λu
u + η3y +

(1 – R̃02)
n

p +
a(1 – R̃02)

rn
x

+
η3αρ

α + λu

∫ h1

0
�1(τ )

∫ τ

0

(
π1s(t – θ )p(t – θ ) + π2s(t – θ )y(t – θ )

)
dθ dτ

+ η3(1 – ρ)
∫ h2

0
�2(τ )

∫ τ

0

(
π1s(t – θ )p(t – θ ) + π2s(t – θ )y(t – θ )

)
dθ dτ

+ λ(1 – R̃02)
∫ h3

0
�3(τ )

∫ τ

0
y(t – θ ) dθ dτ ,

where γ̃ is defined by Eq. (13). We get V0(s, u, y, p, x) > 0 for all s, u, y, p, x > 0, V0(s0, 0,
0, 0, 0) = 0 and

dV0

dt
= γ̃

(
1 –

s0

s

)
(ω – ds – π1sp – π2sy)

+
η3α

(α + λu)

{
ρ

∫ h1

0
�1(τ )s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]
dτ – (α + λu)u

}

+ η3

{
(1 – ρ)

∫ h2

0
�2(τ )s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]
dτ – λy + αu

}

+
(1 – R̃02)

n

(
nλ

∫ h3

0
�3(τ )y(t – τ ) dτ – cp – apx

)
+

a(1 – R̃02)
rn

(rpx – mx)

+
η3αρ

α + λu

∫ h1

0
�1(τ )

{
s[π1p + π2y] – s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]}
dτ

+ η3(1 – ρ)
∫ h2

0
�2(τ )

{
s[π1p + π2y] – s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]}
dτ

+ λ(1 – R̃02)
∫ h3

0
�3(τ )

(
y – y(t – τ )

)
dτ

= –γ̃
d(s – s0)2

s
+ γ̃ (π1s0p + π2s0y) –

c(1 – R̃02)
n

p –
am(1 – R̃02)

rn
x – λη3R̃02y

= –γ̃
d(s – s0)2

s
+

c
n

(R̃0 – 1)p +
am
rn

(R̃02 – 1)x.

Thus, dV0
dt ≤ 0 when R̃0 ≤ 1 for all s, p, x > 0. Similar to Theorem 1, we get dV0

dt = 0 at �0.
Therefore, �0 is globally asymptotically stable when R̃0 ≤ 1. �

Theorem 5 For system (12), suppose that R̃1 ≤ 1 < R̃0, then �1 is globally asymptotically
stable.

Proof Let us consider V1(s, u, y, p, x):

V1 = γ̃ s1G
(

s
s1

)
+

αη3

α + λu
u1G

(
u
u1

)
+ η3y1G

(
y
y1

)

+ γ̃
π1s1p1

nλη3y1
p1G

(
p
p1

)
+ γ̃

aπ1s1p1

rnλη3y1
x
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+
η3αρ

α + λu
π1s1p1

∫ h1

0
�1(τ )

∫ τ

0
G

(
s(t – θ )p(t – θ )

s1p1

)
dθ dτ

+ η3(1 – ρ)π1s1p1

∫ h2

0
�2(τ )

∫ τ

0
G

(
s(t – θ )p(t – θ )

s1p1

)
dθ dτ

+
η3αρ

α + λu
π2s1y1

∫ h1

0
�1(τ )

∫ τ

0
G

(
s(t – θ )y(t – θ )

s1y1

)
dθ dτ

+ η3(1 – ρ)π2s1y1

∫ h2

0
�2(τ )

∫ τ

0
G

(
s(t – θ )y(t – θ )

s1y1

)
dθ dτ

+ γ̃ π1s1p1
1
η3

∫ h3

0
�3(τ )

∫ τ

0
G

(
y(t – θ )

y1

)
dθ dτ .

We have V1(s, u, y, p, x) > 0 for all s, u, y, p, x > 0 and V1(s1, u1, y1, p1, 0) = 0. Calculating dV1
dt ,

we obtain

dV1

dt
= γ̃

(
1 –

s1

s

)
(ω – ds – π1sp – π2sy)

+
η3α

α + λu

(
1 –

u1

u

){
ρ

∫ h1

0
�1(τ )s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]
dτ

– (α + λu)u
}

+ η3

(
1 –

y1

y

){
(1 – ρ)

∫ h2

0
�2(τ )s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]
dτ

–λy + αu
}

+ γ̃
π1s1p1

nλη3y1

(
1 –

p1

p

)(
nλ

∫ h3

0
�3(τ )y(t – τ ) dτ – cp – apx

)

+γ̃
aπ1s1p1

rnλη3y1
(rpx – mx)

+
η3αρ

α + λu
π1s1p1

∫ h1

0
�1(τ )

[
sp

s1p1
–

s(t – τ )p(t – τ )
s1p1

+ ln

(
s(t – τ )p(t – τ )

sp

)]
dτ

+ η3(1 – ρ)π1s1p1

∫ h2

0
�2(τ )

[
sp

s1p1
–

s(t – τ )p(t – τ )
s1p1

+ ln

(
s(t – τ )p(t – τ )

sp

)]
dτ

+
η3αρ

α + λu
π2s1y1

∫ h1

0
�1(τ )

[
sy

s1y1
–

s(t – τ )y(t – τ )
s1y1

+ ln

(
s(t – τ )y(t – τ )

sy

)]
dτ

+ η3(1 – ρ)π2s1y1

∫ h2

0
�2(τ )

[
sy

s1y1
–

s(t – τ )y(t – τ )
s1y1

+ ln

(
s(t – τ )y(t – τ )

sy

)]
dτ

+ γ̃ π1s1p1
1
η3

∫ h3

0
�3(τ )

[
y
y1

–
y(t – τ )

y1
+ ln

(
y(t – τ )

y

)]
dτ . (17)
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Simplifying Eq. (17) and applying the steady state conditions for �1

ω = ds1 + π1s1p1 + π2s1y1,
η1η3αρ

α + λu
(π1s1p1 + π2s1y1) = αη3u1,

η1η3αρ

α + λu
(π1s1p1 + π2s1y1) + η2η3(1 – ρ)(π1s1p1 + π2s1y1) = λη3y1,

p1 =
nλη3

c
y1,

we get

dV1

dt
= γ̃

(
1 –

s1

s

)
(ds1 – ds) + γ̃

(
1 –

s1

s

)
(π1s1p1 + π2s1y1)

+
η1η3αρ

α + λu
(π1s1p1 + π2s1y1)

–
η3αρ

α + λu

∫ h1

0
�1(τ )

(
π1s1p1

s(t – τ )p(t – τ )u1

s1p1u
+ π2s1y1

s(t – τ )y(t – τ )u1

s1y1u

)
dτ

– η3(1 – ρ)
∫ h2

0
�2(τ )

(
π1s1p1

s(t – τ )p(t – τ )y1

s1p1y
+ π2s1y1

s(t – τ )y(t – τ )
s1y

)
dτ

+
η1η3αρ

α + λu
(π1s1p1 + π2s1y1) + η2η3(1 – ρ)(π1s1p1 + π2s1y1)

–
η1η3αρ

α + λu
(π1s1p1 + π2s1y1)

uy1

u1y
+ γ̃ π1s1p1

(
1 –

1
η3

∫ h3

0
�3(τ )

y(t – τ )p1

y1p
dτ

)

+ γ̃
aπ1s1

c
(p1 – p2)x +

η3αρ

α + λu
π1s1p1

∫ h1

0
�1(τ ) ln

(
s(t – τ )p(t – τ )

sp

)
dτ

+ η3(1 – ρ)π1s1p1

∫ h2

0
�2(τ ) ln

(
s(t – τ )p(t – τ )

sp

)
dτ

+
η3αρ

α + λu
π2s1y1

∫ h1

0
�1(τ ) ln

(
s(t – τ )y(t – τ )

sy

)
dτ

+ η3(1 – ρ)π2s1y1

∫ h2

0
�2(τ ) ln

(
s(t – τ )y(t – τ )

sy

)
dτ

+ γ̃ π1s1p1
1
η3

∫ h3

0
�3(τ ) ln

(
y(t – τ )

y

)
dτ .

Consider the following equalities with (i = 1):

ln

(
s(t – τ )p(t – τ )

sp

)
= ln

(
s(t – τ )p(t – τ )ui

sipiu

)
+ ln

(
uyi

uiy

)
+ ln

(
ypi

yip

)
+ ln

(
si

s

)
,

ln

(
s(t – τ )p(t – τ )

sp

)
= ln

(
s(t – τ )p(t – τ )yi

sipiy

)
+ ln

(
ypi

yip

)
+ ln

(
si

s

)
,

ln

(
s(t – τ )y(t – τ )

sy

)
= ln

(
s(t – τ )y(t – τ )ui

siyiu

)
+ ln

(
uyi

uiy

)
+ ln

(
si

s

)
, (18)

ln

(
s(t – τ )y(t – τ )

sy

)
= ln

(
s(t – τ )y(t – τ )

siy

)
+ ln

(
si

s

)
,

ln

(
y(t – τ )

y

)
= ln

(
y(t – τ )pi

yip

)
+ ln

(
yip
ypi

)
,
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we obtain

dV1

dt
= –γ̃

d(s – s1)2

s
– γ̃ (π1s1p1 + π2s1y1)G

(
s1

s

)

–
η3αρ

α + λu
π1s1p1

∫ h1

0
�1(τ )G

(
s(t – τ )p(t – τ )u1

s1p1u

)
dτ

–
η3αρ

α + λu
π2s1y1

∫ h1

0
�1(τ )G

(
s(t – τ )y(t – τ )u1

s1y1u

)
dτ

– η3(1 – ρ)π1s1p1

∫ h2

0
�2(τ )G

(
s(t – τ )p(t – τ )y1

s1p1y

)
dτ

– η3(1 – ρ)π2s1y1

∫ h2

0
�2(τ )G

(
s(t – τ )y(t – τ )

s1y

)
dτ

–
η1η3αρ

α + λu
(π1s1p1 + π2s1y1)G

(
y1u
yu1

)

– γ̃ π1s1p1
1
η3

∫ h3

0
�3(τ )G

(
y(t – τ )p1

y1p

)
dτ + γ̃

aπ1s1

c
(p1 – p2)x.

From Lemma 4, we have if R̃1 ≤ 1 then p1 ≤ p2. Thus dV1
dt ≤ 0 and dV1

dt = 0 occur at the in-
fected steady state without antibodies �1. Thus, �1 is globally asymptotically stable when
R̃1 ≤ 1 and R̃0 > 1. �

Theorem 6 For system (12), suppose that R̃1 > 1, then �2 is globally asymptotically stable.

Proof Define V2(s, u, y, p, x) as follows:

V2 = γ̃ s2G
(

s
s2

)
+

αη3

α + λu
u2G

(
u
u2

)
+ η3y2G

(
y
y2

)

+ γ̃
π1s2p2

nλη3y2
p2G

(
p
p2

)
+ γ̃

aπ1s2p2

rnλη3y2
x2G

(
x
x2

)

+
η3αρ

α + λu
π1s2p2

∫ h1

0
�1(τ )

∫ τ

0
G

(
s(t – θ )p(t – θ )

s2p2

)
dθ dτ

+ η3(1 – ρ)π1s2p2

∫ h2

0
�2(τ )

∫ τ

0
G

(
s(t – θ )p(t – θ )

s2p2

)
dθ dτ

+
η3αρ

α + λu
π2s2y2

∫ h1

0
�1(τ )

∫ τ

0
G

(
s(t – θ )y(t – θ )

s2y2

)
dθ dτ

+ η3(1 – ρ)π2s2y2

∫ h2

0
�2(τ )

∫ τ

0
G

(
s(t – θ )y(t – θ )

s2y2

)
dθ dτ

+ γ̃ π1s2p2
1
η3

∫ h3

0
�3(τ )

∫ τ

0
G

(
y(t – θ )

y2

)
dθ dτ .

We have V2(s, u, y, p, x) > 0 for all s, u, y, p, x > 0, while V2(s, u, y, p, x) reaches its global min-
imum at �2. Calculate dV2

dt as follows:

dV2

dt
= γ̃

(
1 –

s2

s

)
(ω – ds – π1sp – π2sy) +

αη3

α + λu

(
1 –

u2

u

)

×
{
ρ

∫ h1

0
�1(τ )s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]
dτ – (α + λu)u

}
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+ η3

(
1 –

y2

y

)

×
{

(1 – ρ)
∫ h2

0
�2(τ )s(t – τ )

[
π1p(t – τ ) + π2y(t – τ )

]
dτ – λy + αu

}

+ γ̃
π1s2p2

nλη3y2

(
1 –

p2

p

)(
nλ

∫ h3

0
�3(τ )y(t – τ ) dτ – cp – apx

)

+ γ̃
aπ1s2p2

rnλη3y2

(
1 –

x2

x

)
(rpx – mx) +

η3αρ

α + λu
π1s2p2

×
∫ h1

0
�1(τ )

[
sp

s2p2
–

s(t – τ )p(t – τ )
s2p2

+ ln

(
s(t – τ )p(t – τ )

sp

)]
dτ

+ η3(1 – ρ)π1s2p2

×
∫ h2

0
�2(τ )

[
sp

s2p2
–

s(t – τ )p(t – τ )
s2p2

+ ln

(
s(t – τ )p(t – τ )

sp

)]
dτ

+
η3αρ

α + λu
π2s2y2

∫ h1

0
�1(τ )

[
sy

s2y2
–

s(t – τ )y(t – τ )
s2y2

+ ln

(
s(t – τ )y(t – τ )

sy

)]
dτ

+ η3(1 – ρ)π2s2y2

×
∫ h2

0
�2(τ )

[
sy

s2y2
–

s(t – τ )y(t – τ )
s2y2

+ ln

(
s(t – τ )y(t – τ )

sy

)]
dτ

+ γ̃ π1s2p2
1
η3

∫ h3

0
�3(τ )

[
y
y2

–
y(t – τ )

y2
+ ln

(
y(t – τ )

y

)]
dτ . (19)

Simplifying Eq. (19) and applying the steady state conditions for �2

ω = ds2 + π1s2p2 + π2s2y2,
η1η3αρ

α + λu
(π1s2p2 + π2s2y2) = αη3u2,

η1η3αρ

α + λu
(π1s2p2 + π2s2y2) + η2η3(1 – ρ)(π1s2p2 + π2s2y2) = λη3y2,

p2 =
m
r

, nλη3y2 = cp2 + ap2x2,

we get

dV2

dt
= γ̃

(
1 –

s2

s

)
(ds2 – ds) + γ̃

(
1 –

s2

s

)
(π1s2p2 + π2s2y2)

–
η3αρ

α + λu

∫ h1

0
�1(τ )

(
π1s2p2

s(t – τ )p(t – τ )u2

s2p2u
+ π2s2y2

s(t – τ )y(t – τ )u2

s2y2u

)
dτ

+
η1η3αρ

α + λu
(π1s2p2 + π2s2y2)

– η3(1 – ρ)
∫ h2

0
�2(τ )

(
π1s2p2

s(t – τ )p(t – τ )y2

s2p2y
+ π2s2y2

s(t – τ )y(t – τ )
s2y

)
dτ

+
η1η3αρ

α + λu
(π1s2p2 + π2s2y2) + η1η3(1 – ρ)(π1s2p2 + π2s2y2)

–
η1η3αρ

α + λu
(π1s2p2 + π2s2y2)

uy2

u2y
+ γ̃ π1s2p2

(
1 –

1
η3

∫ h3

0
�3(τ )

y(t – τ )p2

y2p
dτ

)
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+
η3αρ

α + λu
π1s2p2

∫ h1

0
�1(τ ) ln

(
s(t – τ )p(t – τ )

sp

)
dτ

+ η3(1 – ρ)π1s2p2

∫ h2

0
�2(τ ) ln

(
s(t – τ )p(t – τ )

sp

)
dτ

+
η3αρ

α + λu
π2s2y2

∫ h1

0
�1(τ ) ln

(
s(t – τ )y(t – τ )

sy

)
dτ

+ η3(1 – ρ)π2s2y2

∫ h2

0
�2(τ ) ln

(
s(t – τ )y(t – τ )

sy

)
dτ

+ γ̃ π1s2p2
1
η3

∫ h3

0
�3(τ ) ln

(
y(t – τ )

y

)
dτ .

Considering equalities (18) with (i = 2), we obtain

dV2

dt
= –γ̃

d(s – s2)2

s
– γ̃ (π1s2p2 + π2s2y2)G

(
s2

s

)

–
η3αρ

α + λu
π1s2p2

∫ h1

0
�1(τ )G

(
s(t – τ )p(t – τ )u2

s2p2u

)
dτ

–
η3αρ

(α + λu)
π2s2y2

∫ h1

0
�1(τ )G

(
s(t – τ )y(t – τ )u2

s2y2u

)
dτ

– η3(1 – ρ)π1s2p2

∫ h2

0
�2(τ )G

(
s(t – τ )p(t – τ )y2

s2p2y

)
dτ

– η3(1 – ρ)π2s2y2

∫ h2

0
�2(τ )G

(
s(t – τ )y(t – τ )

s2y

)
dτ

–
η1η3αρ

α + λu
(π1s2p2 + π2s2y2)G

(
y2u
yu2

)

– γ̃ π1s2p2
1
η3

∫ h3

0
�3(τ )G

(
y(t – τ )p2

y2p

)
dτ .

Since R̃1 > 1, then s2, u2, y2, p2, and x2 > 0. We have dV2
dt ≤ 0, then following the proof of

Theorem 3, one can show that �2 is globally asymptotically stable. �

4 Numerical simulations
We present some numerical simulations to approve our theoretical results of system (2)
with parameter values given in Table 1. We consider different initial values:

IV1: φ1(θ ) = 800, φ2(θ ) = 2, φ3(θ ) = 2, φ4(θ ) = 6, φ5(θ ) = 2,

Table 1 The data of model (2)

Parameter Value Parameter Value Parameter Value

ω 10 τ1 varied m 0.1
d 0.01 τ2 varied r varied
π1 varied τ3 varied ε1 1
π2 varied ρ 0.5 ε2 1
λ 0.5 α 0.05 ε3 1
λu 0.5 n 10
c 2 a 0.1
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IV2: φ1(θ ) = 600, φ2(θ ) = 4, φ3(θ ) = 6, φ4(θ ) = 9, φ5(θ ) = 4,
IV3: φ1(θ ) = 400, φ2(θ ) = 6, φ3(θ ) = 9, φ4(θ ) = 15, φ5(θ ) = 6,
IV4: φ1(θ ) = 700, φ2(θ ) = 1, φ3(θ ) = 1, φ4(θ ) = 9, φ5(θ ) = 4, θ ∈ [– max{τ1, τ2, τ3}, 0].

The stability of the steady states will be investigated by varying six parameters r, π1, π2,
τ1, τ2, and τ3 and fixing the other parameters.

Case (I) Effect of the parameters π1, π2, and r:
We choose τ1 = τ2 = τ3 = 0 and π1, π2, and r are varied.
Set(1) π1 = 0.0001, π2 = 0.0001, and r = 0.001. This yields R0 = 0.3818 < 1 and R1 =

0.1401 < 1. Figure 1 shows that the concentration of susceptible cells increases and tends
to the value ω/d = 1000. In addition, the concentrations of infected cells, free pathogens,

Figure 1 The simulation of trajectories of system (2) for Case (I)
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and antibodies are decreased and tend to zero for IV1–IV3. Therefore, there exists only
one steady state that is �0 and it is globally asymptotically stable. This shows the validity
of Theorem 1.

Set(2) π1 = 0.0006, π2 = 0.0006, and r = 0.001. With these values we obtain R0 =
2.2909 > 1 and R1 = 0.2367 < 1. Figure 1 shows that the solutions of the system tend to
the steady state �1 = (436.5079, 5.1227, 6.1472, 15.368, 0) for all the three initial values
IV1–IV3. Therefore, �1 exists and it is globally asymptotically stable. Hence, the result
of Theorem 2 is confirmed.

Set(3) π1 = 0.0006, π2 = 0.0006, and r = 0.04 and then R0 = 2.2909 > 1 and R1 =
2.5285 > 1. Figure 1 shows that the solutions of the system approach the steady state
�2 = (768.22, 2.1071, 2.5285, 2.5, 30.5702) for all the initial values IV1–IV3. Thus, �2 exists
and it is globally asymptotically stable. This validates the result of Theorem 3.

Case (II) Effect of time delay parameters:
For this case, we take IV4 and choose the values π1 = 0.0006, π2 = 0.0006, and r = 0.04.

Let us consider the case τ = τ1 = τ2 = τ3. We compute the values of R0, R1 and the steady
states of system (2) as a function of τ (see Table 2).

Table 2 shows that the values of R0 and R1 are decreased as τ is increased. Moreover,
we have the following cases:

(i) �2 exists and it is globally asymptotically stable when 0 ≤ τ < 0.368091;
(ii) �1 exists and it is globally asymptotically stable when 0.368091 ≤ τ < 0.499367;

(iii) �0 is globally asymptotically stable when τ ≥ 0.499367.
Figure 2 depicts that the numerical results are also compatible with the results of The-

orems 1–3.
This means that the time delay can play the role of controller which can be designed to

stabilize the system around the pathogen-free steady state �0.

5 Conclusion
In this paper, we have studied two pathogen dynamics models with antibody immune
response. Both pathogen-to-susceptible and infected-to-susceptible transmissions have
been considered. We have considered two types of infected cells, latently infected cells,
and actively infected cells. We have incorporated three types of discrete-time delays and
distributed-time delays in the first and second models, respectively. We have shown that
the solutions of the system are nonnegative and ultimately bounded, which ensures the
well-posedness of the models. For each model, we have derived two threshold parameters
R0 (the basic reproduction number) and R1 (the antibody response activation number),
which fully determine the existence and stability of the three steady states of the model.

Table 2 The values ofR0 andR1 for system (2) with different values of τ

τ Steady state R0 R1

0.0 �2 = (768.22, 2.10709, 2.52851, 2.5, 30.5702) 2.29091 2.52851
0.1 �2 = (781.675, 1.7959, 2.15508, 2.5, 18.99995) 1.932 1.95
0.3 �2 = (802.817, 1.32797, 1.59356, 2.5, 3.61083) 1.38295 1.18054
0.35 �2 = (807.127, 1.2356, 1.48271, 2.5, 0.897031) 1.27384 1.04485
0.368091 �1 = (808.604, 1.20415, 1.44498, 2.5, 0) 1.2367 1
0.4 �1 = (851.774, 0.903263, 1.08392, 1.81643, 0) 1.17402 0.92589
0.45 �1 = (923.657, 0.442529, 0.531034, 0.846506, 0) 1.08265 0.82142
0.499367 �0 = (1000, 0, 0, 0, 0) 1 0.73062
0.5 �0 = (1000, 0, 0, 0, 0) 0.99899 0.72953
0.6 �0 = (1000, 0, 0, 0, 0) 0.85209 0.57720
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Figure 2 The simulation of trajectories of system (2) with different values of τ for Case (II)

We have investigated the global stability of all steady states of the model by using Lya-
punov method and LaSalle’s invariance principle. We have proven that (i) if R0 ≤ 1, then
the pathogen-free steady state �0 is globally asymptotically stable; (ii) if R1 ≤ 1 < R0, then
the infected steady state without antibodies �1 is globally asymptotically stable; and (iii) if
R1 > 1, then the infected steady state with antibodies �2 is globally asymptotically stable.
We have conducted numerical simulations and have shown that both the theoretical and
numerical results are consistent.
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