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1 Introduction
Stochastic differential equations have been investigated as mathematical models to de-
scribe the dynamical behavior of real life phenomena. It is essential to take into account
the environmental disturbances as well as the time delay while constructing realistic mod-
els in the area of engineering, biology, etc. Neutral functional differential equations have
been introduced in [11] for the deterministic case. Neutral stochastic functional differen-
tial equations (NSFDEs) have been initiated in [12] and their usage in aeroelasticity was
pointed out. In the last few decades several studies on quantitative and qualitative prop-
erties of NSFDEs were carried out (see [4, 5, 20] and the references therein).

Impulsive differential equations thrive to be a promising area and have gained much
attention among the researchers due to their potential application in various fields such as
orbital transfer of satellite, dosage supply in pharmacokinetics, etc. It is worth mentioning
that many real world systems are subjected to stochastic abrupt changes, and therefore it is
necessary to investigate them using impulsive stochastic functional differential equations.
Few works have been reported in the study of NSFDEs with impulsive effects, refer to [1,
2, 18].

Moreover, many practical systems (such as sudden price variations (jumps) due to mar-
ket crashes, earthquakes, hurricanes, epidemics, and so on) may undergo some jump
type stochastic perturbations. The sample paths of such systems are not continuous.
Therefore, it is more appropriate to consider stochastic processes with jumps to describe
such models. In general, these jump models are derived from Poisson random measure.
The sample paths of such systems are right continuous and possess left limits. Recently,
many researchers have been focusing their attention towards the theory and applications
of NSFDEs with Poisson jumps. To be more precise, existence and stability results on
NSFDEs with jump process can be found in [3, 4, 6, 8, 14, 17, 19, 21, 23] and the refer-
ences therein. Particularly, Boufoussi and Hajji [4] investigated successive approximation
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of NSFDEs with jumps. Subsequently, SDEs with Poisson jumps were established by few
authors; for example, Wang et al. [21] studied them under a local non-Lipschitz condition,
Cui and Yan [8] investigated them for the case of infinite delay. Chen [6, 7] studied the ex-
ponential stability by establishing impulsive integral inequality. Further, we refer [10, 15,
19, 24] to investigate the exponential stability. The purpose of this manuscript is to study
the impulsive NSFDEs driven by Poisson jumps.

This paper comprises five sections. Section 1 becomes the introduction. We recollect
some basic concepts and preliminaries briefly in Sect. 2. Section 3 focuses on the study
of sufficient conditions for the existence and uniqueness of mild solution to NSFDEs with
impulses and Poisson process by the contraction mapping principle. The continuous de-
pendence result is proposed in Sect. 4. Section 5 involves the results of exponential stabil-
ity of mild solution by using impulsive integral inequality.

2 Preliminaries
Let X and Y be the separable Hilbert spaces and L(Y , X) be the space of bounded linear
operators from Y into X. Consider a complete probability space (�, B,P) in which B is a
complete σ -algebra generated by {Bt}t≥0, an increasing right continuous family. Assume
a Y -valued Q-Wiener process {W (t) : t ≥ 0} with respect to {Bt}t≥0. Here Q indicates the
trace class covariance and positive self-adjoint operator on Y , that is,

E
〈
W (t), x

〉
Y

〈
W (s), y

〉
Y = (t ∧ s)〈Qx, y〉, for all x, y ∈ Y .

Let Y0 = Q1/2(Y ), which is a Hilbert subspace of Y with 〈u, v〉Y0 = 〈Q–1/2v〉Y . Let

〈
W (t), e

〉
=

∞∑

n=1

√
λi〈ei, e〉βi(t), e ∈ Y ,

where {ei}i≥1 is a complete orthonormal system which belongs to Y , and Qei = λiei, i =
1, 2, . . . , where λi is a bounded sequence of positive real numbers and {Bt} are independent
Brownian motions.

Now, consider the impulsive NSFDE driven by Poisson jumps of the form

d
[
x(t) + g(t, xt)

]
=

[
Ax(t) + f (t, xt)

]
dt + σ (t, xt) dW (t)

+
∫

U
h(t, xt , u)Ñ(dt, du), 0 ≤ t ≤ T , t 	= tj, (2.1)

�x(tj) = x(tj+) – x(tj–) = Ij
(
x(tj)

)
, t = tj, j = 1, 2, . . . , (2.2)

x(t) = φ(t), –τ ≤ t ≤ 0, (2.3)

where f , g : [0, +∞)×X → X, σ : [0,∞)×X →L0
2(Y , X), h = [0,∞)×X ×U → X, Ij : X →

X, and are defined later. The space L0
2(Y , X) contains all Q-Hilbert–Schmidt operators

from Y into X with the norm ‖ζ‖2
L0

2
:= tr(ζQζ ∗), where ζ ∈L(Y , X).

Let D((–∞, 0], X) be the phase space with ‖φ‖t = sup–∞<θ<0 |φ(θ )| and Db
B0

((–∞, 0], X)
indicates the family of almost surely bounded, B0-measurable square integrable random
variables with values in X. Consider the Banach space BT = BT ((–∞, T], L2), the family of
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all BT -adapted processes φ(t, w) which are càdlàg (right continuous and left limit exists)
in t for a.e., for w ∈ �

‖φ‖BT =
(

sup
0≤t≤T

E‖φ‖2
t

)1/2
, φ ∈ BT .

The counting measure of stationary Poisson process (pt)t>0 is denoted by N(t, du) and
N̂(t, A) = E(N(t, A)) = tν(A) for A ∈ E , where ν is the characteristic measure. The Poisson
martingale measure is defined as Ñ(t, du) = N(t, du) – tν(du), generated by pt .

The impulsive moments tj satisfy 0 < t1 < t2, . . . , limj→∞ tj = ∞, �x(tj) = x(t+
j ) – x(t–

j ),
where �x(tj) indicates the jump at time tj in the state x with Ij defining the size of the
jump and x(t–

j ) and x(t+
j ) are respectively the left and the right limits at tj of x(t).

Here A : D(A) → X is the infinitesimal generator of an analytic semigroup (S(t))t≥0 of
bounded linear operators on Xsatisfying the usual conditions; for details, refer to [16] and
[9].

Lemma 2.1 ([16]) If 0 ≤ α ≤ 1, then Xα is a Banach space and there exists Mα > 0 such
that

∥∥(–A)αS(t)
∥∥ ≤ Mα

tα
e–λt , t ≥ 0, and λ > 0.

Lemma 2.2 (Burkholder’s inequality [9]) If φ(t), t ≥ 0 is an L0
2-valued predictable process

and W φ

A =
∫ t

0 S(t – s)φ(s) dW (s), t ∈ [0, T]. Then, for any arbitrary p > 2, there exists a
constant c(p, T) > 0 such that

E sup
t≤T

∣∣W φ

A
∣∣p ≤ c(p; T) sup

t≤T

∥∥S(t)
∥∥p
E

∫ t

0

∥∥φ(s)
∥∥p ds.

Moreover, if E
∫ t

0 ‖φ(s)‖p ds < +∞, then there exists a continuous version of the process
{W φ

A : t ≥ 0}. If (S(t))t≥0 is a contraction semigroup, then the above result is true for p ≥ 2.

Lemma 2.3 ([22]) Let E(t) : [–τ , +∞) → [0, +∞) be a function and if there exists some
constant γ > 0, αj(j = 1, 2, 3) and βi(i = 1, 2, 3) satisfy

E(t) ≤ α1e–γ t for t ∈ [–τ , 0]

and

E(t) ≤ α1e–γ t + α2 sup
θ∈[–τ ,0]

E(t + θ ) + α3

∫ t

0
e–γ (t–s) sup

θ∈[–τ ,0]
E(t + θ ) ds

+
∑

ti<t
βie–γ (t–s)E

(
t–
i
)

for t ≥ 0.

If α2 + α3
γ

+
∑+∞

i=1 βi < 1, then E(t) ≤ Me–μt for t ≥ –τ , μ > 0 denotes the unique solution to
the algebraic equation: α2 + α3

γ –μ
eμτ +

∑+∞
i=1 βi = 1 and M = max{ α1(γ –μ)

α3eμτ ,α1}.
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3 Existence and uniqueness
Suppose 0 ∈ ρ(A) and from Lemma 2.1, for the constants M, M1–β , ‖S(t)‖ ≤ M and
‖(–A)1–βS(t)‖ ≤ M1–β

t1–β for every t ∈ [0, T].

Definition 3.1 If x : [–τ , T] → X is a stochastic process and
(i) x(t) is measurable and Ft adapted for all –τ ≤ t ≤ T ;

(ii) x(t) has càdlàg paths almost surely;
(iii) x(t) = S(t)(φ(0) + g(0,φ)) – g(t, xt) –

∫ t
0 AS(t – s)g(s, xs) ds +

∫ t
0 S(t – s)f (s, xs) ds +

∫ t
0 S(t – s)σ (s, xs) dWs +

∫ t
0
∫
U S(t – s)h(s, xs, u)Ñ(ds, du) +

∑
0<tk<t S(t – tk)Ij(x(tj)) if

t ∈ [0, T];
(iv) x(t) = φ(t), –τ ≤ t ≤ 0.

then x is said to be the mild solution of Eqs. (2.1)–(2.3) on [–τ , T].

Assumptions
(A1) f (t, ·),σ (t, ·), and h(t, ·) satisfy the following Lipschitz conditions for all t ∈ [0, T]

and x, y ∈ X :
(1a) ‖f (t, xt) – f (t, yt)‖2 ≤ C2

f ‖x – y‖2
t ;

(1b) ‖σ (t, xt) – σ (t, yt)‖2 ≤ C2
σ ‖x – y‖2

t ;
(1c) (i)

∫
U ‖h(t, xt , u)–h(t, yt , u)‖2ν(du)∨ ((

∫
U ‖h(t, xt , u)–h(t, yt , u)‖4ν(du))1/2 ≤

Ch
∫ t

0 ‖x – y‖2
t ;

(ii) (
∫
U ‖h(t, xt , u)‖4ν(du))1/2 ≤ Ch‖x‖2

t ds;
for some positive constants Cf , Cσ , Ch. We further assume that, for t ≥ 0 and u ∈ U ,
f (t, 0) ∨ σ (t, 0) ∨ h(t, 0, u) = κ0, where κ0 > 0 is a constant.

(A2) The function g is Xβ -valued and satisfies
(2a) ‖(–A)–β‖Cg < 1 and g(t, 0) = 0, where the constants 1

2 < β < 1, Cg > 0.
(2b) ‖(–A)βg(t, xt) – (–A)βg(t, yt)‖2 ≤ C2

g ‖x – y‖2
t for all t ∈ [0, T] and x, y ∈ X .

(A3) The function (–A)βg is continuous in the quadratic mean sense:

lim
t→s

E
∥∥(–A)β

(
g(t, xt) – g(t, xs)

)∥∥2 = 0.

(A4) The function Ij ∈ C(X, X) for all x, y ∈ X , ‖Ij(x(tj)) – Ij(y(tj))‖2 ≤ q2
j ‖x – y‖2

t , where
qj is a constant and j = 1, 2, . . . .

Theorem 3.1 Suppose that (A1)–(A4) hold. Then, for all T > 0, system (2.1)–(2.3) has a
unique mild solution on [–τ , T] provided that

5M2 ∑∞
j=1 q2

j

(1 – k)2 < 1, (3.1)

where k = Cg‖(–A)–β‖.

Proof Define an operator π : BT → BT by

π
(
x(t)

)
= S(t)

(
φ(0) + g(0,φ)

)
– g(t, xt)

–
∫ t

0
AS(t – s)g(s, xs) ds +

∫ t

0
S(t – s)f (s, xs) ds
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+
∫ t

0
S(t – s)σ (s, xs) dW (s)

+
∫ t

0

∫

U
S(t – s)h(s, xs, u)Ñ(ds, du)

+
∑

0<tj<t

S(t – tj)Ij
(
x(tj)

)
for t ∈ [0, T]

and

π
(
x(t)

)
= φ(t) for t ∈ [–τ , T].

Now, to prove the existence of mild solutions of (2.1)–(2.3), it is sufficient to show that π

has a fixed point.
Step (i): First, we verify that t → π (x(t)) is càdlàg on [0, T].
Let |h| be small enough, for x ∈ BT and 0 < t < T , we get

∥∥π
(
x(t + h)

)
– π

(
x(t)

)∥∥2

≤
∥∥∥∥
[
S(t + h) – S(t)

][
φ(0) + g(0,φ)

]
–

[
g(t + h, xt+h) – g(t, xt)

]

–
[∫ t

0
A

[
S(t + h – s) – S(t – s)

]
g(s, xs) ds +

∫ t+h

t
AS(t + h – s)g(s, xs) ds

]

+
∫ t

0

[
S(t + h – s) – S(t – s)

]
f (s, xs) ds +

∫ t+h

t
S(t + h – s)f (s, xs) ds

+
∫ t

0

[
S(t + h – s) – S(t – s)

]
σ (s, xs) dW (s) +

∫ t+h

t
S(t + h – s)σ (s, xs) dW (s)

+
∫ t

0

∫

U

[
S(t + h – s) – S(t – s)

]
h(s, xs, u)Ñ(ds, du)

+
∫ t+h

t

∫

U
S(t + h – s)h(s, xs, u)Ñ(ds, du)

+
∑

0<tj<t

[
S(t + h – tj) – S(t – tj)

]
Ij
(
x(tj)

)
+

∑

t<tj<t+h

S(t + h – tj)Ij
(
x(tj)

)
∥∥∥∥

2

∥∥π
(
x(t + h)

)
– π

(
x(t)

)∥∥2

≤ 7
∥∥S(t + h) – S(t)

[
φ(0) + g(0,φ)

]∥∥2 + 7
6∑

j=1

∥∥Fj(t + h) – Fj(t)
∥∥2.

Then employing the Lebesgue dominated theorem and the strong continuity of S(t) im-
plies that

lim
h→0

∥∥S(t + h) – S(t)
∥∥2
E

∥∥[
φ(0) + g(0,φ)

]∥∥2 → 0.

Next, it is well known that (–A)–β is bounded,

E
∥∥F1(t + h) – F1(t)

∥∥2 ≤ ∥∥(–A)–β
∥∥2
E

∥∥(–A)βg(t + h, xt+h) – (–A)βg(t, xt)
∥∥2.
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By assumption (A3), we obtain that limh→0 E‖F1(t + h) – F1(t)‖2 → 0. Then, for the term
F2, applying (A1), Hölder’s inequality, and the Lebesgue dominated theorem, we obtain

E
∥∥F2(t + h) – F2(t)

∥∥2 ≤ 2E
∥∥∥∥

∫ t

0

[
S(t + h – s) – S(t – s)

]
(–A)1–β (–A)βg(s, xs) ds

∥∥∥∥

2

+ 2E
∥∥∥∥

∫ t+h

t
S(t + h – s)(–A)1–β(–A)βg(s, xs) ds

∥∥∥∥

2

≤ 2C2
g .t

∫ t

0

∥∥S(t + h – s) – S(t – s)
∥∥2∥∥(–A)1–β

∥∥2
E‖x‖2

s ds

+ 2C2
g .h

∫ t+h

t

∥∥S(t + h – s)
∥∥2∥∥(–A)1–β

∥∥2
E‖x‖2

s ds

→ 0 as |h| → 0.

A similar computation gives us E‖F3(t + h) – F3(t)‖2 → 0 as |h| → 0.
Further, using Lemma 2.2 and Hölder’s inequality, we get

E
∥∥F4(t + h) – F4(t)

∥∥2 ≤ 2
∥∥∥∥

∫ t

0

[
S(t + h – s) – S(t – s)

]
σ (s, xs) dW (s)

∥∥∥∥

2

+ 2
∥∥∥∥

∫ t+h

t
S(t + h – s)σ (s, xs) dW (s)

∥∥∥∥

2

≤ 2CpC2
σ

∫ t

0

∥∥S(t + h – s) – S(t – s)
∥∥2‖x‖2

s ds

+ 2CpC2
σ

∫ t+h

t

∥∥S(t + h – s)
∥∥2‖x‖2

s ds

→ 0 as |h| → 0.

Similarly,

E
∥∥F5(t + h) – F5(t)

∥∥2 ≤ 2E
∥∥∥∥

∫ t

0

∫

U

[
S(t + h – s) – S(t – s)

]
h(s, xs, u)Ñ(ds, du)

∥∥∥∥

2

+ 2E
∥∥∥∥

∫ t+h

t

∫

U
S(t + h – s)h(s, xs, u)Ñ(ds, du)

∥∥∥∥

2

≤ 2Ch

[
E

∫ t

0

∫

U

∥∥S(t + h – s) – S(t – s)
∥∥2‖x‖2

s ν(du) ds

+ E

(∫ t

0

∫

U

∥∥S(t + h – s) – S(t – s)
∥∥2‖x‖4

s ν(du) ds
) 1

2
]

+ 2Ch

[
E

∫ t+h

t

∫

U

∥∥S(t + h – s)
∥∥2‖x‖2

s ν(du) ds

+ E

(∫ t+h

t

∫

U

∥∥S(t + h – s)
∥∥2‖x‖4

s ν(du) ds
) 1

2
]

→ 0 as |h| → 0.
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For F6, using assumptions (A1) and (A4), we have

E
∥∥F6(t + h) – F6(t)

∥∥2 ≤ 2E

∥∥∥∥∥

∑

0<tj<t

[
S(t + h – tj) – S(t – tj)

]
(Ij

(
x(tj)

)
∥∥∥∥∥

2

+ 2E

∥∥∥∥∥

∑

t<tj<t+h

S(t + h – tj)(Ij
(
x(tj)

)
∥∥∥∥∥

2

≤ 2
∑

0<tj<t

E
∥∥S(t + h – tj) – S(t – tj)

∥∥2[q2
j E

∥∥x(tj)
∥∥2]

+ 2
∑

t<tj<t+h

E
∥∥S(t + h – tj)

∥∥2[q2
j E

∥∥x(tj)
∥∥2]

→ 0 as |h| → 0.

Hence, the above arguments imply that t → π (x(t)) is càdlàg on [0, T] a.s.
Step (ii): We shall verify that π (ST ) ⊂ BT , let x ∈ BT , t ∈ [0, T].
From Hölder’s inequality,

E
∥∥π

(
x(t)

)∥∥2 ≤ 7E
∥∥S(t)

[
φ(0) + g(0,φ)

]∥∥2 + 7E
∥∥g(t, xt)

∥∥2

+ 7E
∥∥∥∥

∫ t

0
AS(t – s)g(s, xs) dt

∥∥∥∥

2

+ 7E
∥∥∥∥

∫ t

0
S(t – s)f (s, xs) dt

∥∥∥∥

2

+ 7E
∥∥∥∥

∫ t

0
S(t – s)σ (s, xs) dW (s)

∥∥∥∥

2

+ 7E
∥∥∥∥

∫ t

0

∫

U
S(t – s)h(s, xs, u)Ñ(ds, du)

∥∥∥∥

2

+ 7
∥∥∥∥

∑

0<tj<t

S(t – tj)Ij
(
x(tj)

)
∥∥∥∥

2

= 7
7∑

i=1

Fi. (3.2)

We now estimate Fi, i = 1, 2, . . . , 7. By assumption A2-(2a), we have

F1 ≤ 2
[
E

∥∥S(t)φ(0)
∥∥2 + E

∥∥S(t)g(0,φ)
∥∥2]

≤ 2M2[1 + C2
g
∥∥(–A)–β

∥∥2]
E‖φ‖2.

Applying Hölder’s inequality and A2-(2a), we have

F2 ≤ ∥∥(–A)–β
∥∥2C2

gE‖x‖2
t

and

F3 ≤ E

∫ t

0

∥∥(–A)1–βS(t – s)(–A)βg(t, xt)
∥∥2 ds

≤ M2t
∥∥(–A)1–β

∥∥2C2
g

∫ t

0
E‖x‖2

s ds.
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By Hölder’s inequality and A1-(1a), we derive that

F4 ≤ 2E
∫ t

0

∥∥S(t – s)
[
f (s, xs) – f (s, 0)

]∥∥2 ds + 2E
∫ t

0

∥∥S(t – s)f (s, 0)
∥∥2 ds

≤ 2M2tC2
f

∫ t

0
E‖x‖2

s ds + 2tM2κ0

≤ 2M2t
[

C2
f

∫ t

0
E‖x‖2

s ds + κ0

]
.

On the other hand, applying assumption (A1)-(1b) and Lemma 2.2, we get, for some pos-
itive constant Cp,

F5 ≤ Cp
∥∥S(t)

∥∥2
E

∫ t

0

∥∥σ (s, xs) – σ (s, 0) + σ (s, 0)
∥∥2 ds

≤ 2CpM2
[

C2
σE

∫ t

0
‖x‖2

s ds + κ0t
]

.

Employing assumption (A1)-(1c) and Lemma 2.2 in [13], we obtain

F6 ≤ M2
[
E

∫ t

0

∫

U

∥∥h(s, xs, u)
∥∥2

ν(du) ds + E

(∫ t

0

∫

U

∥∥h(s, xs, u)
∥∥4

ν(du) ds
) 1

2
]

≤ M2
[
E

∫ t

0

∫

U

∥∥h(s, xs, u) – h(s, 0, u) + h(s, 0, u)
∥∥2

ν(du) ds

+ E

(∫ t

0

∫

U

∥∥h(s, xs, u)
∥∥4

ν(du) ds
) 1

2
]

≤ 2M2
[

C2
h

∫ t

0
E‖x‖2

s ds + κ0t
]

+ M2C2
h

∫ t

0
E‖x‖2

s ds

≤ 3M2C2
h

∫ t

0
E‖x‖2

s ds + 2M2κ0t.

From Hölder’s inequality and assumption (A4), we have

F7 ≤ 2E
∞∑

j=1

[∥∥S(t – tj)Ij
(
x(tj)

)
– Ij(0)

∥∥2 +
∥∥S(t – tj)Ij(0)

∥∥2]

≤ 2M2

[ ∞∑

j=1

q2
j E‖x‖2

t +
∞∑

j=1

q2
j κ0

]

.

From the above estimations, Eq. (3.2) becomes

E
∥∥π

(
x(t)

)∥∥2 ≤ 14M2[1 + C2
g
∥∥(–A)–β

∥∥2]
E‖φ‖2 + 7C2

g
∥∥(–A)–β

∥∥2
E‖x‖2

t

+ 7M2tC2
g
∥∥(–A)1–β

∥∥2
∫ t

0
E‖x‖2

s ds

+ 14M2t
[

C2
f

∫ t

0
E‖x‖2

s ds + κ0

]
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+ 14CpM2
[

C2
σ

∫ t

0
E‖x‖2

s ds + κ0t
]

+ 21M2C2
h

∫ t

0
E‖x‖2

s ds + 14M2tκ0

+ 14M2
∞∑

j=1

q2
j
[
E‖x‖2

t + κ0
]

≤ R1 + 7C2
g
∥∥(–A)–β

∥∥2
E‖x‖2

t + 7M2tC2
g
∥∥(–A)1–β

∥∥2
∫ t

0
E‖x‖2

s ds

+ 7M2[2tC2
f + 2CpC2

σ + 3C2
h
] ∫ t

0
E‖x‖2

s ds + 14M2
∞∑

j=1

q2
j E‖x‖2

t ,

where R1 = 14M2[1 + C2
g ‖(–A)–β‖2]E‖φ‖2 + 14M2[2t + Cpt +

∑∞
j=1 q2

j ]κ0.
We obtain

E
∥∥π

(
x(t)

)∥∥2 ≤ R1 + 7

{

C2
g
∥∥(–A)–β

∥∥2 + 2M2
∞∑

j=1

q2
j

}

E‖x‖2
t

+ 7M2[tC2
g
∥∥(–A)1–β

∥∥2 + 2tC2
f + 2CpC2

σ + 3C2
h
] ∫ t

0
E‖x‖2

s ds.

Therefore

sup
0≤s≤T

E
∥∥π

(
x(t)

)∥∥2 ≤ R1 + R2 sup
–τ≤t≤T

E‖x‖2
t + R3

∫ t

0
sup

–τ≤s≤T
E‖x‖2

s ds

≤ R1 + R2 sup
–τ≤t≤T

E‖x‖2
t + R3t sup

–τ≤t≤T
E‖x‖2

t

≤ R1 + R4 sup
–τ≤t≤T

E‖x‖2
t ,

where

R2 = 7

{

C2
g
∥∥(–A)–β

∥∥2 + 2M2
∞∑

j=1

q2
j

}

R3 = 7M2[tC2
g
∥∥(–A)1–β

∥∥2 + 2tC2
f + 2CpC2

σ + 3C2
h
]

R4 = R2 + R3 · t.

Since π (x) = φ on [–τ , 0], it follows that

E sup
–τ≤s≤T

∥∥π
(
x(s)

)∥∥2 < ∞.

This proves the boundedness of πBT .
Step (iii): Next, we will verify that π is a contraction mapping in BT1 with some T1 ≤ T

to be specified later.
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Let x, y ∈ BT . Based on this simple inequality (x + y + z)2 ≤ 1
k x2 + 2

1–k y2 + 2
1–k z2 and re-

calling that k : cg‖(–A)–β‖ < 1, for t ∈ [0, T],

E
∥∥π

(
x(t)

)
– π

(
y(t)

)∥∥2 ≤ 1
k
E

∥∥(–A)–β
∥∥2∥∥(–A)βg(t, xt) – g(t, yt)

∥∥2

+
5

1 – k
E

∥∥∥∥

∫ t

0
(–A)1–βS(t – s)(–A)β

[
g(s, xs) – g(s, ys)

]
ds

∥∥∥∥

2

+
5

1 – k
E

∥∥∥∥

∫ t

0
S(t – s)

[
f (s, xs) – f (s, ys)

]
ds

∥∥∥∥

2

+
5

1 – k
E

∥∥∥∥

∫ t

0
S(t – s)

[
σ (s, xs) – σ (s, ys)

]
dWs

∥∥∥∥

2

+
5

1 – k
E

∥∥∥∥

∫ t

0

∫

U
S(t – s)

[
h(s, xs, u) – h(s, ys, u)

]
Ñ(ds, du)

∥∥∥∥

2

+
5

1 – k
E

∥∥∥∥
∑

0<tj<t

S(t – tj)
[
Ij
(
x(tj)

)
– Ij

(
y(tj)

)]
∥∥∥∥

2

.

By using Holder’s inequality, Lemma 2.2 together with assumptions (A1), (A2), and (A4),
we get

E
∥∥π

(
x(t)

)
– π

(
y(t)

)∥∥2

≤ kE‖x – y‖2
t

+
5

1 – k
M2

1–βC2
g

(
t2β–1

2β – 1

)∫ t

0
E‖x – y‖2

s ds

+
5

1 – k
M2tC2

f

∫ t

0
E‖x – y‖2

s ds +
5

1 – k
M2C2

σ Cp

∫ t

0
E‖x – y‖2

s ds

+
5

1 – k
M2C2

h

∫ t

0
E‖x – y‖2

s ds +
5

1 – k
M2

∞∑

j=1

q2
j E‖x – y‖2

t

E
∥∥π

(
x(t)

)
– π

(
y(t)

)∥∥2

≤ kE‖x – y‖2
t

+
5

1 – k

[
C2

g M2
1–β

(
t2β–1

2β – 1

)
+ M2(tC2

f + CpC2
σ + C2

h
)]∫ t

0
E‖x – y‖2

s ds

+
5

1 – k
M2

∞∑

j=1

q2
j E‖x – y‖2

t .

Hence, sups∈[–τ ,T] E‖π (x(t)) – π (y(t))‖2 ≤ γ (t) sups∈[–τ ,T] E‖x – y‖2
s , where γ (t) = k +

5
1–k [C2

g M2
1–β ( t2β

2β–1 ) + M2t(tC2
f + CpC2

σ + C2
h)] + 5M2

1–k
∑∞

j=1 q2
j . By Eq. (3.1), we have γ (0) =

k + 5M2

1–k
∑∞

j=1 q2
j =

5M2 ∑∞
j=1 q2

j
(1–k)2 < 1. Hence, there exists 0 < T1 < T such that 0 < γ (T1) < 1

and π is a contraction mapping on BT1 . Therefore it is clear that it has a unique fixed
point, which is a mild solution of (2.1)–(2.3). By repeating a similar process the solution
can be extended to the entire interval [–τ , T] in infinitely many steps. This concludes
Theorem 3.1. �
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4 Stability
Definition 4.1 Let x, x̂ be different mild solutions of (2.1)–(2.3) with initial values φ1 and
φ2, respectively. If for all ε > 0, ∃δ > 0 such that E‖x(t) – x̂(t)‖2 ≤ ε when E‖φ1 – φ2‖2 < δ

for all t ∈ [0, T], then x(t) is said to be stable in mean square.

Theorem 4.1 Assume that any two mild solutions of (2.1)–(2.3) are x(t) and y(t) with
initial values φ1 and φ2, respectively. Suppose that (A1)–(A4) are satisfied, then the mild
solution of (2.1)–(2.3) is stable in the quadratic mean.

Proof For 0 ≤ t ≤ T ,

E
∥∥x(t) – y(t)

∥∥2

≤ 7E
∥∥S(t)

([
φ1(0) – φ2(0)

]
+

[
g(0,φ1) – g(0,φ2)

])∥∥2 + 7E
∥∥g(t, xt) – g(t, yt)

∥∥2

+ 7E
∥∥∥∥

∫ t

0
AS(t – s)

[
g(s, xs) – g(s, ys)

]
ds

∥∥∥∥

2

+ 7E
∥∥∥∥

∫ t

0
S(t – s)

[
f (s, xs) – f (s, ys)

]
ds

∥∥∥∥

2

+ 7E
∥∥∥∥

∫ t

0
S(t – s)

[
σ (s, xs) – σ (s, ys)

]
dW (s)

∥∥∥∥

2

+ 7E
∥∥∥∥

∫ t

0

∫

U
S(t – s)

[
h(s, xs, u) – h(s, ys, u)

]
Ñ(ds, du)

∥∥∥∥

2

+ 7E
∥∥∥∥

∑

0<tj<t

S(t – tj)
[
Ij
(
x(tj)

)]
∥∥∥∥

2

.

By using Hölder’s inequality and assumptions (A1), (A2), and (A4), we derive that

E
∥∥x(t) – y(t)

∥∥2

≤ 7M2[1 + C2
g
∥∥(–A)–β

∥∥2]
E‖φ1 – φ2‖2

+ 7C2
g
∥∥(–A)–β

∥∥2
E‖x – y‖2

t

+ 7M2
1–βC2

g

(
t2β–1

2β – 1

)∫ t

0
E‖x – y‖2

s ds

+ 7M2tC2
f

∫ t

0
E‖x – y‖2

s ds + 7M2C2
σ Cp

∫ t

0
E‖x – y‖2

s ds

+ 7M2C2
h

∫ t

0
E‖x – y‖2

s ds + 7M2
∞∑

j=1

q2
j E‖x – y‖2

t

≤ 7M2[1 + C2
g
∥∥(–A)–β

∥∥2]
E‖φ1 – φ2‖2

+ 7

[

C2
g
∥∥(–A)–β

∥∥2 + M2
∞∑

j=1

q2
j

]

E‖x – y‖2
t

+ 7
[

M2
1–βC2

g

(
t2β–1

2β – 1

)
+ M2(tC2

f + CpC2
σ + C2

h
)
)
]∫ t

0
E‖x – y‖2

s ds.
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It follows that

sup
t∈[τ ,T]

E‖x – y‖2
t

≤ 7M2[1 + ‖(–A)–β‖2C2
g ]

1 – Q
E‖φ1 – φ2‖2

+
7[M2

1–βC2
g ( t2β–1

2β–1 ) + M2(tC2
f + CpC2

σ + C2
h)]

1 – Q

∫ t

0
sup

t∈[τ ,T]
E‖x – y‖2

s ds,

where Q = 7[C2
g ‖(–A)–β‖2 + M2 ∑∞

j=1 q2
j ].

By applying Gronwall’s inequality, we have

sup
t∈[τ ,T]

E‖x – y‖2
t ≤ 7M2[1 + ‖(–A)–β‖2C2

g ]
1 – Q

E‖φ1 – φ2‖2

× exp

(7[M2
1–βC2

g ( t2β–1

2β–1 ) + M2(tC2
f + CpC2

σ + C2
h)]

1 – Q

)

≤ ℘E‖φ1 – φ2‖2,

where ℘ = 7M2[1+‖(–A)–β‖2C2
g ]

1–Q exp(
7[M2

1–β C2
g ( t2β–1

2β–1 )+M2(tC2
f +CpC2

σ +C2
h)]

1–Q ).
Now, given ε > 0, choose δ = ε

℘
such that E‖φ1 – φ2‖2 < δ. Then

sup
t∈[τ ,T]

E‖x – y‖2
t ≤ ε.

This concludes Theorem 4.1. �

5 Exponential stability
A system is defined to be exponentially stable if the system response decays exponentially
towards zero as time approaches infinity.

For example, consider that a system, marble ball in a ladle, when undisturbed will occupy
the lowest point in the ladle. But when the ball is subjected to a push, it will exhibit a
diminishing sinusoidal oscillation and eventually resettle in the bottom of the ladder. Also,
the system is said to be marginally stable when the ball is away from the bottom of the ladle
when a constant force equal to its weight is applied. But when the ball is given a big push,
it will fall away from the ladle and stop when it reaches the ground. Therefore it is proper
to state that the system is exponentially stable for a range of inputs.

Definition 5.1 System (2.1)–(2.3) is said to be exponentially stable in the quadratic mean
if there exist positive constant C1 and λ > 0 such that

E
∥∥x(t)

∥∥2 ≤ C1E‖ϕ‖2e–λ(t–t0), t ≥ t0.

We assume that f (t, 0) = σ (t, 0) = h(t, 0, u) = 0 for all t ≥ 0, u ∈ U . So that system (2.1)–(2.3)
admits a trivial solution. We further need the following assumptions.

(A5) ‖S(t)‖ ≤ Me–λ(t–t0), t ≥ t0, where M ≥ 1, λ > 0.
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(A6) There exist nonnegative real numbers E1, E2, E3, E4 ≥ 0 and continuous functions
δ1, δ2, δ3, δ4 : [0, +∞) →R+ such that, for all t ≥ 0 and x, y ∈ X ,

(i)
∥∥f (t, xt)

∥∥2 ≤ E1‖x‖2
t + δ1(t),

(ii)
∥∥(–A)βg(t, xt)

∥∥2 ≤ E2‖x‖2
t + δ2(t),

(iii)
∥∥σ (t, xt)

∥∥2 ≤ E3‖x‖2
t + δ3(t),

(iv)
∫

U

∥∥h(t, xt , u)
∥∥2

ν(du) ∨
(∫

U

∥∥h(t, xt , u)
∥∥4

ν(du)
) 1

2 ≤ E4‖x‖2
t + δ4(t).

(A7) There exist nonnegative real numbers Pj ≥ 0, j = 1, 2, 3, 4, such that δj(t) ≤ Pje–λt ,
∀t ≥ 0, j = 1, 2, 3, 4.

Theorem 5.1 Assume that (A4)–(A7) and the following inequality holds:

6{[λ1–2β22(1–β)M2
1–βM2�(2β – 1)E2/λ] + M2[E2

1 + CpE2
3 + E2

4]/λ2 + M2 ∑∞
k=1 q2

j }
(1 – k)2

< 1, (5.1)

where k =
√

E2‖(–A)–β‖. Then the mild solution of system (2.1)–(2.3) is exponentially stable
in the mean square moment.

Proof From inequality (5.1), it is possible to find a small positive quantity ε such that

k +
6λ1–2β22(1–β)M2

1–βM2�(2β – 1)E2

(λ – ε)(1 – k)
+

6M2[E2
1 + CpE2

3 + E2
4]

λ(λ – ε)(1 – k)
+

6M2 ∑∞
k=1 q2

j

(1 – k)
< 1.

Let η = λ – ε and x(t) be the mild solution of (2.1)–(2.3).
For t ≥ 0,

E
∥∥x(t)

∥∥2 ≤ 1
k
E

∥∥g(t, xt)
∥∥2 +

6
1 – k

E

{∥∥S(t)
[
φ(0) + g(0,φ)

]∥∥2

+
∥∥∥∥

∫ t

0
AS(t – s)g(s, xs) ds

∥∥∥∥

2

+
∥∥∥∥

∫ t

0
S(t – s)f (s, xs) ds

∥∥∥∥

2

+
∥∥∥∥

∫ t

0
S(t – s)σ (s, xs) dW (s)

∥∥∥∥

2

+
∥∥∥∥

∫ t

0

∫

U
S(t – s)h(s, xs, u)Ñ(ds, du)

∥∥∥∥

2

+
∥∥∥∥

∑

0<tj<t

S(t – tj)Ij
(
x(tj)

)
∥∥∥∥

2}

≤
7∑

j=1

Fj(t).
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By conditions (A6) and (A7), we obtain

F1(t) =
1
k
E

∥∥(–A)–β (–A)βg(t, xt)
∥∥2

≤ ‖(–A)–β‖2

k
[
E2

2E‖x‖2
t + δ2

]

≤ kE‖x‖2
t + K1e–ηt where K1 =

‖(–A)–β‖2P2

k
.

Using assumptions (A5), (A6), and (A7), we have

F2(t) ≤ 12
1 – k

[
E

∥∥S(t)φ(0)
∥∥2 + E

∥∥S(t)g(0,φ)
∥∥2]

≤ 12M2

1 – k
e–2λt

E
∥∥φ(0)

∥∥2 +
12M2

1 – k
e–2λt∥∥(–A)–β

∥∥2[E2E‖φ‖2 + P2
]

≤ K2e–ηt ,

where K2 =
12M2

1 – k
{
E

∥∥φ(0)
∥∥2 +

∥∥(–A)–β
∥∥2[E2E‖φ‖2 + P2

]}
.

Applying assumptions (A5), (A6), and (A7) together with Lemma 2.1 and Hölder’s inequal-
ity, we get

F3(t) =
6

1 – k
E

∥∥∥∥

∫ t

0
(–A)1–βS

(
t – s

2

)
S
(

t – s
2

)
(–A)βg(s, xs) ds

∥∥∥∥

2

≤ 6
1 – k

∫ t

0

M2
1–βe–λ(t–s)

( t–s
2 )2(1–β) ds

∫ t

0
M2e–λ(t–s)

E
∥∥(–A)βg(s, xs)

∥∥2 ds

≤ 6λ1–2β22(1–β)M2
1–βM2�(2β – 1)

1 – k

∫ t

0
e–λ(t–s)[E2E‖x‖2

s + δ2(s)
]

ds

≤ 6λ1–2β22(1–β)M2
1–βM2�(2β – 1)E2

1 – k

∫ t

0
e–λ(t–s)

E‖x‖2
s ds + K3e–ηt ,

where � is the usual gamma function and K3 =
6λ1–2β 22(1–β)M2M2

1–β�(2β–1)
1–k

P2
λ–η

.
Again, using (A5)–(A7) and Hölder’s inequality, we get

F4(t) =
6

1 – k
E

(∫ t

0
S(t – s)e–λ(t–s)∥∥f (s, xs)

∥∥ds
)2

≤ 6M2

1 – k

∫ t

0
e–λ(t–s) ds

∫ t

0
e–λ(t–s)[E2

1E‖x‖2
s + δ1(s)

]
ds

≤ 6M2E2
1

(1 – k)λ

∫ t

0
e–λ(t–s)

E‖x‖2
s ds + K4e–ηt ,

where K4 = 6M2

λ(1–k)
P1
λ–η

. Similarly, for the term F5,

F5(t) ≤ 6
1 – k

(
E

∥∥∥∥

∫ t

0
S(t – s)σ (s, xs) dW (s)

∥∥∥∥

)2

≤ 6M2

1 – k
Cp

(∫ t

0
e–λ(t–s)

E
∥∥σ (s, xs)

∥∥ds
)2
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≤ 6
1 – k

CpM2
∫ t

0
e–λ(t–s) ds

×
∫ t

0
e–λ(t–s) ds

[
E3E‖x‖2

s + δ3(s)
]

ds

≤ 6CpM2E3

λ(1 – k)

∫ t

0
e–λ(t–s)

E‖x‖2
s ds + K5e–ηt ,

where K5 = 6CpM2

λ(1–k)
P3
λ–η

. By assumptions (A5)–(A7) together with Lemma 2.3, we have

F6(t) ≤ 6
1 – k

E

(∥∥∥∥

∫ t

0

∫

U
S(t – s)h(s, xs, u)Ñ(ds, du)

∥∥∥∥

)2

≤ 6
1 – k

M2
(∫ t

0
e–2λ(t–s)

[∫

U
E

∥∥h(s, xs, u)
∥∥2

ν(du)

+
(∫

U
E

∥∥h(s, xs, u)
∥∥4

ν(du)
) 1

2
]

ds
)

≤ M2

λ(1 – k)

∫ t

0
e–λ(t–s)[E4E‖x‖2

s + δ4(s)
]

ds

≤ 6M2

λ(1 – k)
E4

∫ t

0
e–λ(t–s)

E‖x‖2
s ds + K6e–ηt ,

where K6 = 6M2

λ(1–k)
P4
λ–η

. By applying assumption (A4), one can get

F7(t) ≤ 6M2

1 – k

∞∑

j=1

q2
j e–2λ(t–tj)E

∥∥x(tj)
∥∥2

≤ 6M2

1 – k

∞∑

j=1

q2
j e–η(t–tj)E

∥∥x(tj)
∥∥2.

The above inequalities together with Lemma 2.3 imply that

E
∥∥x(t)

∥∥2 ≤ γ e–ηt for t ∈ [–τ , 0]

and

E
∥∥x(t)

∥∥2 ≤ γ e–ηt + k sup
–τ≤u≤0

E
∥∥x(t + u)

∥∥2

+ k̃
∫ t

0
e–η(t–s) sup

–τ≤u≤0
E

∥∥x(t + u)
∥∥2 ds

+
∞∑

j=1

e–η(t–tj)E
∥∥x(tj)

∥∥2 for t ≥ 0.

Here γ = max(
∑6

i=1 Ki, sup–τ≤u≤0 E‖φ(u)‖2) and

k̃ =
6λ1–2β22(1–β)M2M2

1–β�(2β – 1)E2

1 – k
+

6M2[E2
1 + CpE2

3 + E2
4]

λ(1 – k)
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since k + k̃
η

+
∑∞

i=1 d2
i < 1, and from Lemma 2.3 there exist constants K > 0 and θ > 0 such

that E‖x(t)‖2 ≤ Ke–θ t , ∀t ≥ –τ . This ensures the exponential stability of the mild solution
in mean square. Hence the proof. �

Remark 5.1 If the impulsive term �(x(tj)) = Ij(·) = 0, j = 1, 2, . . . , then (2.1)–(2.3) takes the
following form:

d
[
x(t) + g(t, xt)

]
=

[
Ax(t) + f (t, xt)

]
dt + σ (t, xt) dW (t)

+
∫

U
h(t, xt , u)Ñ(dt, du), 0 ≤ t ≤ T , (5.2)

x(t) = φ(t), –τ ≤ t ≤ 0, (5.3)

where C = C([–τ , 0]; X) denotes the family of almost surely bounded and continuous func-
tions φ from [–τ , 0] into X and, as usual, with ‖φ‖c = supθ∈[–τ ,0] ‖φ(θ )‖. Also, if we assume
that all the functions are defined the same as earlier, then by the same procedure as in
Theorem 5.1, we may deduce the next corollary.

Corollary 5.2 Suppose that (A1)–(A3) and (A5)–(A7) are satisfied, then the mild solution
of (2.1)–(2.3) is exponentially stable in the mean square moment if the following inequality
holds:

5{[λ1–2β22(1–β)M2
1–βM2�(2β – 1)E2/λ] + M2[E2

1 + CpE2
3 + E2

4]/λ2}
(1 – k)2 < 1. (5.4)

6 Conclusion
In this article, the existence and uniqueness results for neutral impulsive stochastic func-
tional differential equations with Poisson jumps have been derived using fixed point ap-
proach. Also, sufficient conditions are derived for the continuous dependence of solutions
on the initial value by means of the corollary of Bihari’s inequality. Finally, the exponential
stability of mild solutions for neutral impulsive stochastic functional differential equa-
tions with Poisson jumps is investigated based on the impulsive integral inequality. This
will motivate the future research work such as the study of controllability and stability in
distribution for neutral impulsive stochastic functional differential equations with Poisson
jumps.
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