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Abstract
We aim to investigate the following nonlinear boundary value problems of fractional
differential equations:

(Pλ)

⎧
⎨

⎩

–tDα
1 (|0Dα

t (u(t))|p–20Dα
t u(t))

= f (t,u(t)) + λg(t)|u(t)|q–2u(t) (t ∈ (0, 1)),
u(0) = u(1) = 0,

where λ is a positive parameter, 2 < r < p < q, 12 < α < 1, g ∈ C([0, 1]), and
f ∈ C([0, 1]×R,R). Under appropriate assumptions on the function f , we employ the
method of Nehari manifold combined with the fibering maps in order to show the
existence of solutions to the boundary value problem for the nonlinear fractional
differential equations with Riemann–Liouville fractional derivative. We also present an
example as an application.
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1 Introduction
The subject of fractional calculus (that is, calculus of integrals and derivatives of any arbi-
trary real or complex order) has gained considerable popularity and importance during the
past four decades or so, due mainly to its demonstrated applications in numerous seem-
ingly diverse and widespread fields of science and engineering (see [1–6, 20, 27, 29–33]
and [28]).

Fractional calculus can be used in modeling systems and processes in such fields as
physics, chemistry, aerodynamics, electro dynamics of complex medium, and polymer
rheology. In fact, the subject of fractional calculus has been gaining more importance and
attention in ordinary and partial differential equations involving both Riemann–Liouville
and Caputo fractional derivatives. For details and examples, one may refer to monographs
[20, 24] and papers [7, 8, 11, 19, 22, 23, 25], and the references cited therein. In particular, in
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the qualitative theory of fractional differential equations, the existence of almost periodic,
asymptotically almost periodic, almost automorphic, asymptotically almost automorphic,
and pseudo-almost periodic solutions has attracted great attention. For some recent con-
tributions to the existence of solutions of such abstract differential equations and frac-
tional differential equations, one may see [10–13, 15, 20] and the references therein.

Recently equations including both left and right fractional derivatives, which became
an interesting and new field in the theory of fractional differential equations with their
potential applications, have also been investigated. In this subject, by using techniques of
nonlinear analysis such as fixed point theory [17] (including Leray–Schauder nonlinear
alternative), topological degree theory [11] (including co-incidence degree theory), and
comparison method [10] (including upper and lower solutions and monotone iterative
method), many results dealing with the existence and multiplicity of solutions of nonlinear
fractional differential equations have been presented.

It is further noted that critical point theory and variational methods have also turned
out to be very effective tools in determining the existence of solutions for integer order
differential equations. The idea behind them is trying to find solutions of a given boundary
value problem by looking for critical points of a suitable energy functional defined on an
appropriate function space. In the last 30 years, the critical point theory has become a
wonderful tool in investigating the existence of solutions of differential equations with
variational structures, the interested reader may refer to the paper [21] and the monograph
[26] and the references therein.

Motivated by the above classical works, Agarwal [9] showed that the critical point the-
ory is an effective approach to tackle the existence of solutions of the following fractional
boundary value problem:

{
–tDα

1 0Dα
t u(t) = ∇F(t, u(t)) (t ∈ (0, T)),

u(0) = u(T) = 0,
(1.1)

and obtained the existence of at least one nontrivial solution. Yet it may not be easy to use
the critical point theory to solve (1.1), since it is often very difficult to establish a suitable
space and variational functional for the fractional boundary value problem.

In the sequel of the above-mentioned works with the new approach to the theory of
fractional differential equations, here, in this paper, we aim to investigate the following
fractional nonlinear Dirichlet problem:

(Pλ)

⎧
⎪⎨

⎪⎩

–tDα
1 (|0Dα

t (u(t))|p–2
0Dα

t u(t))
= f (t, u(t)) + λg(t)|u(t)|q–2u(t) (t ∈ (0, 1)),

u(0) = u(1) = 0.
(1.2)

Here real parameters α, λ, p, and q, and two functions f , g are assumed to satisfy the
following conditions:

1
2

< α < 1, 2 < p < q, λ ∈R
+; (1.3)
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g : [0, 1] →R is continuous (g ∈ C([0, 1],R)) and f : [0, 1]×R → R is a continuous function
which is positively homogeneous of degree r – 1 (2 < r < p < q), that is,

f (t, su) = sr–1f (t, u)
(
(t, u) ∈ [0, 1] ×R

)
(1.4)

and f (t, u) ∈ R
+ for all (t, u) ∈ [0, 1] × R. Here and in what follows, let R and R

+ be the
sets of real and positive real numbers, respectively. Then, using the function f , define a
function F : [0, 1] ×R →R as follows:

F(t, u) :=
∫ u

0
f (t, x) dx. (1.5)

Now the function F(t, u) satisfies certain properties which are summarized in the following
lemma.

Lemma 1 The following properties hold true:
(H1) The function F is homogeneous of degree r, that is,

F(t, su) = srF(t, u)
(
t ∈ [0, 1]; u ∈ R

)
.

(H2)

F±(t, u) = max
{±F(t, u), 0

} �= 0
(
u ∈R \ {0}).

(H3)

uf (t, u) = rF(t, u),

which is called Euler identity.
(H4) There exists a constant K ∈R

+ such that

∣
∣F(t, u)

∣
∣ ≤ K |u|r (

t ∈ [0, 1]; u ∈R
)
. (1.6)

Proof (H1) is proved:

F(t, su) =
∫ su

0
f (t, x) dx = s

∫ u

0
f (t, sy) dy

= sr
∫ u

0
f (t, y) dy = srF(t, u).

Since f (t, x) is continuous and positive on [0, 1] ×R, assertion (H2) is obvious.
Differentiating each side of the identity in (H1) with respect to s, in view of the funda-

mental theorem of calculus and r – 1 homogeneity of the function f , we have

usr–1f (t, u) = uf (t, su) = rsr–1F(t, u),

which is seen to prove the Euler identity.
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We also find that

F(t, u) =
∫ u

0
f (t, x) dx = u

∫ 1

0
f (t, uy) dy = ur

∫ 1

0
f (t, y) dy. (1.7)

Since f (t, y) is a continuous real-valued function on the bounded closed set [0, 1] × [0, 1],
f (t, y) is bounded on [0, 1] with respect to the variable y and so the integral in (1.7) is
bounded. Thus (H4) is proved. �

Here we state our main result asserted in the following theorem.

Theorem 1 Let α, p, q, r be real parameters and f , g be two functions which satisfy the
assumptions given below (1.2). Then there exists a parameter λ0 ∈R

+ such that, for all λ ∈
(0,λ0), the fractional nonlinear Dirichlet problem (Pλ) has at least two nontrivial solutions.

This paper is organized as follows: In Sect. 2, some definitions and properties on the
fractional calculus are presented. In Sect. 3, the variational framework of problem (Pλ) is
established and some necessary lemmas are given. In Sect. 4, the main result is presented
with its proof. In Sect. 5, an application of the main result is considered through an illus-
trative example.

2 Preliminaries
Here we recall some background theory on fractional calculus, in particular, the Riemann–
Liouville operators which will be used throughout this paper.

Definition 1 Let [a, b] (–∞ < a < b < ∞) be a finite interval on the real axis R and u be
a real-valued function defined almost everywhere (a.e.) on (a, b). The Riemann–Liouville
left-sided and right-sided fractional integrals of a function u

a+Iα
t u(t) = aIα

t u(t) =
(

a+Iα
t u

)
(t) =

(
aIα

t u
)
(t)

and

tIα
b–u(t) = tIα

b u(t) =
(

tIα
b–u

)
(t) =

(
tIα

b u
)
(t)

of order α ∈R
+ are defined by

aIα
t u(t) :=

1
�(α)

∫ t

a
(t – s)α–1u(s) ds (t ∈ (a, b]) (2.1)

and

tIα
b u(t) :=

1
�(α)

∫ b

t
(s – t)α–1u(s) ds

(
t ∈ [a, b)

)
, (2.2)

respectively. Here � is the familiar Gamma function.
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Let [a, b] (–∞ ≤ a < b ≤ ∞) be a finite or infinite interval of the real axis R = (–∞,∞).
We denote by Lp(a, b) (1 ≤ p ≤ ∞) the set of those Lebesgue complex-valued measurable
functions u on [a, b] for which ‖u‖p < ∞, where

‖u‖p =
(∫ b

a

∣
∣u(t)

∣
∣p dt

)1/p

(1 ≤ p < ∞)

and

‖u‖∞ = ess sup
a≤x≤b

∣
∣u(x)

∣
∣.

If u ∈ L1(a, b), then aIα
t u and tIα

b u are defined a.e. on (a, b).
Let [a, b] (–∞ ≤ a < b ≤ ∞) and m ∈N0 := {0, 1, 2, . . .}. We denote by Cm[a, b] a space of

functions u which are m times continuously differentiable on [a, b] with the norm

‖u‖Cm =
m∑

k=0

∥
∥u(k)∥∥

C =
m∑

k=0

max
t∈[a,b]

∣
∣u(k)(t)

∣
∣ (m ∈N0). (2.3)

In particular, for m = 0, C0[a, b] ≡ C[a, b] is the space of continuous functions u on [a, b]
with the norm

‖u‖C = max
t∈[a,b]

∣
∣u(t)

∣
∣. (2.4)

When [a, b] is a finite interval and 0 ≤ γ < 1, we introduce the weighted space Cγ [a, b]
of functions u given on (a, b] such that the function (t – a)γ u(t) ∈ C[a, b], and

‖u‖Cγ =
∥
∥(t – a)γ u(t)

∥
∥

C , C0[a, b] = C[a, b]. (2.5)

Definition 2 The Riemann–Liouville left-sided and right-sided fractional derivatives of
a function u

a+Dα
t u(t) = aDα

t u(t) =
(

a+Dα
t u

)
(t) =

(
aDα

t u
)
(t)

and

tDα
b–u(t) = tDα

b u(t) =
(

tD
α
b–u

)
(t) =

(

tD
α
b u

)
(t)

of order α ∈R
+ ∪ {0} are defined by

aDα
t u(t) : =

(
d
dt

)n(
aIn–α

t u(t)
)

=
1

�(n – α)

(
d
dt

)n ∫ t

a
(t – s)n–α–1u(s) ds

(
n = [α] + 1; t > a

)
(2.6)
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and

tDα
b u(t) : =

(

–
d
dt

)n(
tIn–α

b u(t)
)

=
1

�(n – α)

(

–
d
dt

)n ∫ b

t
(s – t)n–α–1u(s) ds

(
n = [α] + 1; t < b

)
, (2.7)

respectively, where [α] means the integral part of α.

Remark 1 Let 0 < α < 1. If u is absolutely continuous on [a, b] (see [20, pp. 2–3]), then
the fractional derivatives aDα

t u and tDα
b u exist almost everywhere on [a, b] and can be

represented in the forms (see [20, Lemma 2.2])

aDα
t u(t) = aI1–α

t u′(t) +
u(a)

(t – a)α�(1 – α)
(2.8)

and

tDα
b u(t) = –tI1–α

b u′(t) +
u(b)

(b – t)α�(1 – α)
. (2.9)

In particular, we have

aDα
t u(t) = aI1–α

t u′(t) and tDα
b u(t) = –tI1–α

b u′(t)
(
u(a) = 0 = u(b)

)
. (2.10)

The left-sided and right-sided Caputo fractional derivatives C
a Dα

t u(t) and C
t Dα

b u(t) of or-
der α ∈R

+ ∪ {0} with, here, 0 < α < 1 are defined by

C
a Dα

t u(t) = aDα
t
[
u(t) – u(a)

]
(2.11)

and

C
t Dα

b u(t) = tDα
b
[
u(t) – u(b)

]
, (2.12)

respectively.
We find from (2.8)–(2.12) that, if u is absolutely continuous on [a, b], u(a) = 0 = u(b),

and 0 < α < 1, then the Riemann–Liouville fractional integrals and the Caputo fractional
derivatives coincide:

C
a Dα

t u(t) = aI1–α
t u′(t) and C

t Dα
b u(t) = –tI1–α

b u′(t). (2.13)

The semigroup property of the fractional integration operators aIα
t and tIα

b is given by
the following remark (see, e.g., [20, Lemma 2.3]).

Remark 2 If α,β ∈ R
+, then the equations

(
aIα

t aIβ
t u

)
(t) =

(
aIα+β

t u
)
(t) and

(
tIα

b tIβ

b u
)
(t) =

(
tIα+β

b u
)
(t) (2.14)

are satisfied at almost every point t ∈ [a, b] for f (t) ∈ Lp(a, b) (1 ≤ p ≤ ∞). If α + β > 1,
then the relations in (2.14) hold at any point in [a, b].
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The following assertion shows that the fractional differentiation is an operation inverse
to the fractional integration (see, e.g., [20, Lemma 2.4]).

Remark 3 If α ∈ R
+ and f (t) ∈ Lp(a, b) (1 ≤ p ≤ ∞), then the following equalities

(
aDα

t aIα
t u

)
(t) = f (t) and

(
tDα

b tIα
b u

)
(t) = f (t) (2.15)

hold almost everywhere on [a, b].

Remark 4 The fractional integration operators aIα
t and tIα

b with α ∈ R
+ are bounded in

Lp(a, b) (1 ≤ p ≤ ∞):

∥
∥aIα

t u
∥
∥

p ≤ (b – a)α

�(1 + α)
‖u‖p and

∥
∥tIα

b u
∥
∥

p ≤ (b – a)α

�(1 + α)
‖u‖p. (2.16)

In the same way, we give another classical result on the boundedness of the left fractional
integral from Lp(a, b) to Ca(a, b), which completes Remark 4 in the case 0 < 1

p < α < 1 (see
[14, Property 4]).

Remark 5 Let 0 < 1
p < α < 1 and q = p

p–1 . Then, for any u ∈ Lp(a, b), aIα
t u is Hölder con-

tinuous on (a, b] with exponent α – 1
p > 0, that is, there exists a constant M ∈ R

+ such
that

∣
∣aIα

t2 u(t2) – aIα
t1 u(t1)

∣
∣ ≤ M(t2 – t1)α–1/p

for any a < t1 < t2 ≤ b. Moreover, limt→a aIα
t u(t) = 0. Consequently, aIα

t u can be continu-
ously extended by 0 at t = a. Finally, for any u ∈ Lp(a, b), aIα

t u ∈ Ca(a, b), and

∥
∥aIα

t u
∥
∥∞ ≤ (b – a)α– 1

p

�(α)((α – 1)q + 1)
1
q
‖u‖p. (2.17)

The following formula, which is often called fractional integration by parts, will also be
required (see [14, Property 3]).

Remark 6 Let 0 < α < 1 and p, q are such that

p ≥ 1, q ≥ 1 and
1
p

+
1
q

≤ 1 + α

(and p �= 1 �= q in the case 1/p + 1/q = 1 + α). Then, for all u ∈ Lp(a, b) and all v ∈ Lq(a, b),
we have

∫ b

a
aIα

t u(t) · v(t) dt =
∫ b

a
u(t) · tIα

b v(t) dt (2.18)

and

∫ b

a
u(t)C

a Dα
t v(t) dt = v(t)tI1–α

b u(t)
∣
∣t=b
t=a +

∫ b

a
v(t)aDα

t u(t) dt. (2.19)
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Moreover, if v(a) = v(b) = 0, then we have

∫ b

a
u(t)aDα

t v(t) dt =
∫ b

a
v(t)C

a Dα
t u(t) dt. (2.20)

3 A variational setting and main results
To show the existence of solutions to problem (Pλ), we will use critical point theory (see,
e.g., [18]). We introduce some notations and results which will be used. The set of all
functions u ∈ C∞([0, 1],R) with u(0) = u(1) = 0 is denoted by C∞

0 ([0, 1],R). For α ∈R
+, we

define the fractional derivative space Eα,p
0 as the closure of C∞

0 ([0, 1],R) with the norm

‖u‖α,p =
(‖u‖p

p +
∥
∥C

0 Dα
t u

∥
∥p

p

) 1
p . (3.1)

We summarize some properties for the space Eα,p
0 in the following remark (see [18, Re-

mark 3.1]).

Remark 7
(i) The space Eα,p

0 is the space of functions u ∈ Lp[0, 1] having an α-order Caputo
fractional derivative C

0 Dα
t u ∈ Lp[0, 1] and u(0) = u(1) = 0.

(ii) For any u ∈ Eα,p
0 (0 < α < 1), since u(0) = 0, we have (see (2.11))

C
0 Dα

t u(t) = 0Dα
t u(t)

(
t ∈ [0, 1]

)
. (3.2)

(iii) The space Eα,p
0 is a reflexive and separable Banach space.

Lemma 2 Let 0 < α ≤ 1 and 1 < p < ∞. Then, for all u ∈ Eα,p
0 , we have

‖u‖p ≤ 1
�(α + 1)

∥
∥0Dα

t u
∥
∥

p. (3.3)

Moreover, if α > 1
p and 1

p + 1
p̃ = 1, we have

‖u‖∞ ≤ 1

�(α)((α – 1)̃p + 1)
1
p̃

∥
∥0Dα

t u
∥
∥

p. (3.4)

The inequalities in Lemma 2 are given in [18, Proposition 3.2]. Incorporating (3.2) and
(3.3) into the norm (3.1), we can consider the space Eα,p

0 with respect to the norm

‖u‖α,p =
∥
∥0Dα

t u
∥
∥

p (3.5)

in the subsequent analysis (see [18, Proposition 3.3]).

Lemma 3 Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p and the sequence {un} converges

weakly to u in Eα,p
0 , i.e., {un} ⇀ u. Then {un} → u in C([0, 1]), that is, ‖un – u‖∞ → 0 as

n → ∞.

Now, in the following definition, we try to give an answer of the purpose of this paper:
What is a solution to problem (Pλ) in (1.2)?
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Definition 3 By a weak solution of the boundary value problem (Pλ), we mean that a
function u ∈ Eα,p

0 such that f (·, u(·)) ∈ L1([0, 1],R) satisfies the following equation:

∫ 1

0

∣
∣0Dα

t u(t)
∣
∣p–2

aDα
t u(t)aDα

t v(t) dt –
∫ 1

0
f
(
t, u(t)

)
v(t) dt

– λ

∫ 1

0
g(t)

∣
∣u(t)

∣
∣q–2u(t)v(t) dt = 0

(
v ∈ Eα,p

0
)
. (3.6)

In connection with problem (Pλ), we define the following (energy) functional:

Jλ(u) =
1
p
‖u‖p

α,p –
1
r

∫ 1

0
F(t, u) dt –

λ

q

∫ 1

0
g(t)|u|q dt, (3.7)

where the involved functions and parameters are the same as attached to problem (1.2).
Obviously Jλ ∈ C1(Eα,p

0 ,R). That is, for every u, v ∈ Eα,p
0 , we have

〈
J ′
λ(u), v

〉
=

∫ 1

0

∣
∣0Dα

t u(t)
∣
∣p–2

aDα
t u(t)aDα

t v(t) dt

–
∫ 1

0
f
(
t, u(t)

)
v(t) dt – λ

∫ 1

0
g(t)

∣
∣u(t)

∣
∣q–2u(t)v(t) dt. (3.8)

It is easy to see that the energy functional Jλ is not bounded below on the space Eα,p
0 , but

it can be bounded below on a suitable subset of Eα,p
0 . In order to investigate problem (Pλ),

we consider the following constraint set:

Nλ :=
{

u ∈ Eα,p
0 \ {0} :

〈
J ′
λ(u), u

〉
= 0

}
.

Note that Nλ contains every nonzero solution of (Pλ), and u ∈Nλ if and only if

‖u‖p
α,p –

∫ 1

0
F
(
t, u(t)

)
dt – λ

∫ 1

0
g(t)

∣
∣u(t)

∣
∣q dt = 0. (3.9)

To show the existence of solutions, we splitNλ into three parts. According to local minima,
local maxima, and points of inflection, the corresponding measurable sets are defined as
follows:

N +
λ =

{

u ∈Nλ : p‖u‖p
α,p – r

∫ 1

0
F(t, u) dt – λq

∫ 1

0
g(t)|u|q dt > 0

}

;

N –
λ =

{

u ∈Nλ : p‖u‖p
α,p – r

∫ 1

0
F(t, u) dt – λq

∫ 1

0
g(t)|u|q dt < 0

}

;

N 0
λ =

{

u ∈Nλ : p‖u‖p
α,p – r

∫ 1

0
F(t, u) dt – λq

∫ 1

0
g(t)|u|q dt = 0

}

.

Next, we present some important properties of N +
λ , N –

λ , and N 0
λ . Let p̃ ∈ R be such that

1
p + 1

p̃ = 1 + α, and put

η0 :=
(p – r)(�(α))q((α – 1)̃p + 1)

q
p̃

(q – r)‖g‖∞

(
(q – p)(�(α))r((α – 1)̃p + 1)

r
p̃

K(q – r)

) q–p
p–r

. (3.10)

Then we have the following important result.
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Lemma 4 If λ ∈ (0,η0), then N 0
λ = ∅.

Proof We have to show that N 0
λ = ∅ for all λ ∈ (0,η0). Suppose to the contrary that N 0

λ0
�= ∅

for some λ ∈ (0,η0). We can choose u0 ∈ N 0
λ0

. Then it follows from the definition of N 0
λ0

and (3.9) that

(p – r)‖u0‖p
α,p – η0(q – r)

∫ 1

0
g(t)|u0|q dt = 0. (3.11)

From (3.4) and (3.11), we have

‖u0‖α,p ≥
(

(p – r)�(α)q((α – 1)̃p + 1)
q
p̃

η0(q – r)‖g‖∞

) 1
q–p

. (3.12)

On the other hand, we find from (3.9) and (3.11) that

q – p
q – r

‖u0‖p
α,p –

∫ 1

0
F
(
t, u0(t)

)
dt = 0, (3.13)

which, upon using (1.6) and (3.4), yields

‖u0‖α,p ≤
(

K(q – r)

(q – p)�(α)r((α – 1)̃p + 1)
r
p̃

) 1
p–r

. (3.14)

Combining (3.12) and (3.14), in view of (3.10), we obtain λ ≥ η0. This contradicts our
choice of λ ∈ (0,η0). �

Lemma 5 If λ ∈ (0,η0), then Jλ is coercive and bounded below on Nλ.

Proof Let u ∈Nλ. Then, using (1.6) and (3.4) and considering (3.5), we obtain

∫ 1

0
F
(
t, u(t)

)
dt ≤ K

∫ 1

0

∣
∣u(t)

∣
∣r dt ≤ K

�(α)r((α – 1)̃p + 1)
r
p̃
‖u‖r

α,p. (3.15)

Likewise, we have

∫ 1

0
g(t)

∣
∣u(t)

∣
∣q dt ≤ ‖g‖∞

�(α)q((α – 1)̃p + 1)
q
p̃
‖u‖q

α,p. (3.16)

Using (3.9) and (3.15) in (3.7), we obtain

Jλ(u) =
q – p

qp
‖u‖p

α,p –
q – r

rq

∫ 1

0
F
(
t, u(t)

)
dt

≥ q – p
qp

‖u‖p
α,p –

K(q – r)

qr�(α)r((α – 1)̃p + 1)
r
p̃
‖u‖r

α,p.

Since q < p < r, Jλ is coercive and bounded below on Nλ. �
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It is known that the Nehari manifold is closely related to the behavior of the functions
	u : [0,∞) →R defined by

	u(s) = Jλ(su), (3.17)

which are called fiber maps and were introduced by Drábek and Pohozaev [16]. For u ∈
Eα,p

0 , we find

	u(s) =
sp

p
‖u‖p

α,p –
sr

r

∫ 1

0
F
(
t, u(t)

)
dt – λ

sq

q

∫ 1

0
g(t)

∣
∣u(t)

∣
∣q dt. (3.18)

Then we have

	′
u(s) = sp–1‖u‖p

α,p – sr–1
∫ 1

0
F
(
t, u(t)

)
dt – λsq–1

∫ 1

0
g(t)

∣
∣u(t)

∣
∣q dt

and

	′′
u(s) = (p – 1)sp–2‖u‖p

α,p – (r – 1)sr–2
∫ 1

0
F
(
t, u(t)

)
dt

– λ(q – 1)sq–2
∫ 1

0
g(t)

∣
∣u(t)

∣
∣q dt.

It is easy to see that su ∈Nλ if and only if 	′
u(s) = 0 and, in particular, u ∈Nλ if and only

if 	′
u(1) = 0.

In order to investigate the behavior of Nehari manifold using fibering maps, we intro-
duce the following notations:

F+ def=
{

u ∈ Eα,p
0 :

∫ 1

0
F
(
t, u(t)

)
dt > 0

}

;

F– def=
{

u ∈ Eα,p
0 :

∫ 1

0
F
(
t, u(t)

)
dt < 0

}

;

G+ def=
{

u ∈ Eα,p
0 :

∫ 1

0
g(t)

∣
∣u(t)

∣
∣q dt > 0

}

;

G– def=
{

u ∈ Eα,p
0 :

∫ 1

0
g(t)

∣
∣u(t)

∣
∣q dt < 0

}

.

Now we study the fiber map 	u in the following four cases which are separated according
to the signs of

∫ 1
0 g(t)|u(t)|q dt and

∫ 1
0 F(t, u(t)) dt.

1. u ∈F– ∩ G–.
	u(0) = 0 and 	′

u(t) > 0 (t ∈ R
+). This implies that 	u is strictly increasing and

hence no critical point on [0,∞).
2. u ∈F+ ∩ G–.

We define a function mu : [0,∞) →R by

mu(t) := tp–r‖u‖p
α,p – tq–r

∫ 1

0
F
(
x, u(x)

)
dx. (3.19)
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Then we have

	′
u(t) = tr–1

(

mu(t) – λ

∫ 1

0
g(x)

∣
∣u(x)

∣
∣q dx

)
(
t ∈R

+)
. (3.20)

We also note that tu ∈Nλ if and only if 	′
u(t) = 0 if and only if t is a solution of

mu(t) = λ

∫ 1

0
g(x)

∣
∣u(x)

∣
∣q dx.

We observe that
(i) mu(t) → –∞ as t → ∞. Indeed, we have

mu(t) = –tq–r
(∫ 1

0
F
(
x, u(x)

)
dx – tp–q‖u‖p

α,p

)

.

Since 2 < r < p < q, tp–q → 0 as t → ∞. Now, under the assumption
∫ 1

0 F(x, u(x)) dx > 0, the assertion follows.
(ii) m′

u(t) > 0 in a neighborhood of t = 0, that is, there exists d ∈R
+ such that

m′
u(t) > 0 for all t ∈ (0, d). In fact, it suffices to show that m′

u(t) > 0 as t → 0+. We
have

m′
u(t) = (p – r)tp–r–1‖u‖p

α,p – (q – r)tq–r–1
∫ 1

0
F
(
x, u(x)

)
dx

= (p – r)tp–r–1
(

‖u‖p
α,p –

q – r
p – r

tq–p
∫ 1

0
F
(
x, u(x)

)
dx

)

, (3.21)

whose parenthesis part, upon taking the limit as t → 0+, converges to ‖u‖p
α,p. So

we find that m′
u(t) > 0 as t → 0+.

By (ii), mu(t) is strictly increasing on (0, d) and mu(0) = 0, and so mu(t) > 0 on (0, d).
Since mu(t) is continuous on [0,∞) and u ∈ G–, considering (i), there exists
T ∈ (0,∞) such that

mu(T) = λ

∫ 1

0
g(τ )

∣
∣u(τ )

∣
∣q dτ .

We therefore find that there exist τ1, τ2 ∈ R
+ such that τ1 < T < τ2,

mu(T) > λ

∫ 1

0
g(τ )

∣
∣u(τ )

∣
∣q dτ

(
t ∈ (τ1, T)

)

and

mu(T) < λ

∫ 1

0
g(τ )

∣
∣u(τ )

∣
∣q dτ

(
t ∈ (T , τ2)

)
.

In view of (3.20), we have 	′
u(t) > 0 (t ∈ (τ1, T)) and 	′

u(t) < 0 (t ∈ (T , τ2)). It follows
that 	u has one critical point T ∈R

+, which is a local maximum point. Hence
Tu ∈N –

λ .
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3. u ∈F– ∩ G+.
In view of (3.21), we have m′

u(t) > 0 (t ∈R
+) and mu(0) = 0. So mu(t) is strictly

increasing and nonnegative on [0,∞), and mu(t) → ∞ as t → ∞. Since u ∈ G+, by
intermediate value theorem, there exists a unique T1 ∈R

+ such that
mu(T1) = λ

∫ 1
0 g(t)|u(t)|q dt. In view of (3.20), 	′

u(t) < 0 on (0, T1), 	′
u(t) > 0 on

(T1,∞) and 	′
u(T1) = 0. This implies that 	u is decreasing on (0, T1) and increasing

on (T1,∞). Thus, 	u has exactly one critical point T1, which is a global minimum
point. Hence T1u ∈N +

λ .
4. u ∈F+ ∩ G+.

For convenience, we rewrite (3.18) as follows:

	u(s) =
sp

p
A –

sr

r
B – λ

sq

q
C,

where λ ∈ (0,η0), 2 < r < p < q, and

A := ‖u‖p
α,p, B :=

∫ 1

0
F
(
t, u(t)

)
dt, C :=

∫ 1

0
g(t)

∣
∣u(t)

∣
∣q dt.

Under the assumption, we have A, B, C ∈R
+. It is easy to see that

	u(0) = 0 and lim
s→∞	u(s) = –∞.

In order to find some possible extreme points of 	u(s), differentiate 	u(s) with
respect to s to yield

	′
u(s) = sp–1A – sr–1B – λsq–1C

= sr–1�u(s),

where

�u(s) := Asp–r – λCsq–r – B.

We have

� ′
u(s) = –λC(q – r)sp–r–1

{

sq–p –
A(p – r)
λC(q – r)

}

.

Then we find that �u(s) has a global maximum at

T2 :=
(

A(p – r)
λC(q – r)

) 1
q–p

∈R
+.

Now we consider two cases.
• �u(T2) ≤ 0.

In this case, we have �u(s) ≤ �u(T2) ≤ 0 for all s ∈ (0,∞) and so 	′
u(s) ≤ 0 for

all s ∈ (0,∞). This implies that 	u(s) is decreasing and hence has no critical
point on (0,∞).
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• �u(T2) > 0.
In this case, we have 	′

u(T2) > 0. Since 	′
u(0) = 0, 	′

u(s) → –∞ as s → ∞, and
	′

u(s) is continuous on [0,∞), by intermediate value theorem, we can choose the
smallest number T3 ∈ (T2,∞) such that 	′

u(T3) = 0. Then our choice of T3

guarantees that 	u(s) has a local maximum at T3.

Lemma 6 Let u be a local minimizer for Jλ on subsets N +
λ or N –

λ of Nλ such that u /∈ N 0
λ .

Then u is a critical point of Jλ.

Proof Since u is a minimizer for Jλ under the constraint

Iλ(u) := ≺J ′
λ(u), u� = 0.

Then, applying the theory of Lagrange multipliers, we get the existence of μ ∈R such that

J ′
λ(u) = μI ′

λ(u).

So we have

≺J ′
λ(u), u� = μ≺I ′

λ(u), u� = μ	′′
u(1) = 0.

Yet u /∈N 0
λ and so 	′′

u(1) �= 0. Hence μ = 0. This completes the proof. �

4 Proof of the result
In this section, we will apply the method of Nehari manifold combined with the fibering
maps in order to investigate the existence and multiplicity of positive solutions for problem
(Pλ).

We assume further that the parameter λ satisfies 0 < λ < η0, where η0 is the constant
given by (3.10). The proof of Theorem 1 is done via the following two steps.

Step 1: We claim that Jλ achieves its minimum on N +
λ . Indeed, since Jλ is bounded

below on Nλ and also on N +
λ , there exists a minimizing sequence {uk} ⊂N +

λ such
that

lim
k→∞

Jλ(uk) = inf
u∈N +

λ

Jλ(u). (4.1)

As Jλ is coercive on Nλ, {uk} is a bounded sequence in Eα,p
0 , and up to a

sub-sequence. Hence, there exists uλ such that

uk ⇀ uλ weakly in Eα,p
0 . (4.2)

Let u ∈ Eα,p
0 such that

∫ 1
0 g(x)|u(x)|q dx > 0. Then, from Lemma 6, there exists t1 > 0

such that t1u ∈N +
λ and Jλ(t1u) < 0. Hence,

inf
u∈N +

λ

Jλ(u) < 0.
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On the other hand, since {uk} ⊂Nλ, we get

Jλ(uk) =
(

1
p

–
1
q

)

‖uk‖p
α,p – λ

(
1
q

–
1
r

)∫ 1

0
g(t)

∣
∣uk(t)

∣
∣q dt,

and so

λ

(
1
q

–
1
r

)∫ 1

0
g(t)

∣
∣uk(t)

∣
∣q dx =

(
1
p

–
1
r

)

‖uk‖p
α,p – Jλ(uk). (4.3)

Letting k → ∞ in (4.3) and using (4.1)–(4.2) to combine with Lemma 3, we get

∫ 1

0
g(t)

∣
∣uλ(t)

∣
∣q dt > 0. (4.4)

Now, we claim that uk → uλ strongly in Eα,p
0 . Assume that it is not true. Then

‖uλ‖p
α,p < lim inf

k→∞
‖uk‖p

α,p.

Since 	′
uλ

(t1) = 0, it follows that 	′
uk

(t1) > 0 for sufficiently large k. So, we must have
t1 > 1 but t1uλ ∈N +

λ , and so

Jλ(t1uλ) < Jλ(uλ) ≤ lim
k→∞

Jλ(uk) = inf
u∈N +

λ

Jλ(u),

which gives a contradiction. Thus,

uk → uλ strongly in Eα,p
0 .

It follows that uλ ∈N +
λ ∪N 0

λ . Since N 0
λ = ∅, uλ is a minimizer for Jλ on N +

λ .
Consequently, from (4.4), uλ is a nontrivial solution of problem (Pλ).
Step 2: We claim that Jλ achieves its minimum on N –

λ . Indeed, let u ∈N –
λ .

Therefore, using the result in Lemma 6, we have the existence of μ1 > 0 such that
Jλ(u) ≥ μ1. So, there exists a minimizing sequence {vk} ⊂N –

λ such that

lim
k→∞

Jλ(vk) = inf
u∈N–

λ

Jλ(u) > 0. (4.5)

Moreover, since Jλ is coercive, {vk} is a bounded sequence in Eα,p
0 , and up to a

subsequence, we can assume that

vk ⇀ vλ weakly in Eα,p
0 .

Since u ∈Nλ, we have

Jλ(vk) =
(

1
p

–
1
r

)

‖vk‖p
α,p +

(
1
r

–
1
q

)∫ 1

0
F(t, vk) dt. (4.6)

Letting k → ∞ in (4.6) and combining with Lemma 3, we find from (4.5) that

∫ 1

0
F(t, vλ) dt > 0. (4.7)
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Hence, vλ ∈F+ and so 	vλ
has a global maximum at some point T .

Consequently, Tvλ ∈N –
λ . On the other hand, vk ∈N –

λ implies that 1 is a global
maximum point for 	uk , i.e.,

Jλ(tvk) = 	vk (t) ≤ 	vk (1) = Jλ(vk). (4.8)

Now, as in Step 1, we claim that vk → vλ. Assume that it is not true. Then

‖vλ‖p
α,p < lim inf

k→∞
‖vk‖p

α,p,

we find from (4.8) that

Jλ(Tvλ) =
Tp

p
‖vλ‖p

α,p –
Tr

r

∫ 1

0
F(t, vλ) dt – λ

Tq

q

∫ 1

0
g(t)|vλ|q dt

< inf
k→∞

(
Tp

p
‖vk‖p

α,p –
Tr

r

∫ 1

0
F(t, vk) dt – λ

Tq

q

∫ 1

0
g(t)|vk|q dt

)

≤ lim
k→∞

Jλ(Tvk) ≤ lim
k→∞

Jλ(vk) = inf
u∈N–

λ

Jλ(u),

which gives a contradiction. Hence, vk → vλ and so vλ ∈N –
λ ∪N 0

λ , since N 0
λ = ∅.

Then vλ is a minimizer for Jλ on N –
λ . On the other hand, from (4.7), vλ is a

nontrivial solution of problem (Pλ). Finally, since N –
λ ∩N +

λ = ∅, uλ and vλ are two
distinct solutions. Hence the proof of Theorem 1 is complete. �

5 Example
Let h be a continuous function on [0, 1] such that h+ �= 0 and h– �= 0. Consider the following
fractional differential equation:

(Pλ)

⎧
⎪⎨

⎪⎩

–tDα
1 (|0Dα

t (u(t))|p–2
0Dα

t u(t))
= h(t)|u(t)|r–2u(t) + λg(t)|u(t)|q–2u(t) (t ∈ (0, 1)),

u(0) = u(1) = 0,
(5.1)

where 1
2 < α < 1, 2 < q < p < r, g ∈ C([0, 1]). It is easy to see that f (t, x) = h(t)|x|r–2x is

positively homogeneous of degree r – 1. Moreover, by a simple calculation, we obtain
F(t, x) = h(t)|x|r which is positively homogeneous of degree r. On the other hand, since
h+ �= 0 and h– �= 0, all the properties in Lemma 1 hold true. Thus, all the conditions of The-
orem 1 are satisfied. Consequently, Theorem 1 implies that there exists λ0 > 0 such that,
for all λ ∈ (0,λ0), problem (Pλ) in (5.1) has at least two nontrivial solutions.
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