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Abstract
In this paper, we study a diffusion Holling–Tanner predator–prey model with
ratio-dependent functional response and Simth growth subject to a homogeneous
Neumann boundary condition. Firstly, we use iteration technique and eigenvalue
analysis to get the local stability and a Hopf bifurcation at the positive equilibrium.
Secondly, by choosing the constant related to delay as bifurcation parameter we
obtain periodic solutions near the positive equilibrium. Besides, by using center
manifold theory and normal form theory we reflect the stability with Hopf bifurcating
periodic solution and bifurcating direction.
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1 Introduction
Mathematical ecology is a fast and active branch of biomathematics, and the dynamics of
biological models are very rich. Thus it is very important for research. The predator–prey
model is a very important population dynamics model. It is mainly reflected the factors
influencing on the model in the functional response, based on ratio, age, or gender struc-
ture, reaction–diffusion, etc. The results of the study are mainly reflected in the stability
of the equilibrium point, periodic solution, almost periodic solution, limit cycle, Hopf bi-
furcation, etc. The functional response is a very important factor to predator–prey model
[1–5], It can be divided into several types, such as Hassell–Varley type, Holling types,
Beddington–DeAngelies type, Crowley–Martin type, and so on.

In recent years, many authors investigate the diffusive predator–prey model with lo-
gistic prey growth rate [6–10] or strong Allee effect in prey [11]. It came out that this
assumption is not realistic for a food-limited population under the effect of environmen-
tal toxicants. Thus the population dynamics growth restriction is based on the unused
available resources [12–16]. This model, also known as the Holling–Tanner model, has
been studied for both its mathematical properties and its efficacy for describing real eco-
logical systems such as mite/spider mite, lynx/hare, sparrow/sparrow hawk, and so one by
Holling [2], Tanner [3] and Wollkind, Collings, and Logan [4].
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In particular, Yue and Wang [16] studied the stability and Hopf bifurcation of a diffusive
Holling–Tanner predator–prey model with smith growth subject to Neumann boundary
condition:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1�u(x, t) + u(x,t)(1–u(x,t))

1+cu(x,t) – βu(x,t)v(x,t)
αv(x,t)+u(x,t) , x ∈ (0,π ), t > 0,

∂v(x,t)
∂t = d2�v(x, t) + δv(x, t)(1 – ηv(x,t)

u(x,t) ), x ∈ (0,π ), t > 0,

ux(0, t) = ux(π , t) = vx(0, t) = vx(π , t) = 0, t ≥ 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ (0,π ).

(1.1)

In realistic systems, delay exists everywhere. We have obtained many interesting con-
clusions since time delays may have very complex influence on the dynamical behaviors of
systems. In the survey papers [12, 17–19], the authors deduced that delay difference equa-
tions are much more complicated than ordinary differential equations, because time delay
can lead to unstable equilibrium and induce bifurcation. Many results on the Hopf bifur-
cation of diffusion system can be found in [20–27]. The Hopf bifurcation of the diffusive
predator–prey system with delay subject to homogeneous Neumann boundary conditions
was studied in [20–23]. The Hopf bifurcation for a delayed predator–prey diffusion sys-
tem with Dirichlet boundary condition wasonsidered in [24]. The Hopf bifurcation for a
predator-prey model with age structure was studied in [27].

Chen et al. [20] have considered a delayed diffusive Leslie–Gower predator–prey system
with homogeneous Neumann boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1�u(x, t) + u(x, t)(p – αu(x, t) – v(x, t – τ1)), x ∈ (0,π ), t > 0,

∂v(x,t)
∂t = d2�v(x, t) + μv(x, t)(1 – v(x,t)

u(x,t–τ2) ), x ∈ (0,π ), t > 0,

ux(0, t) = ux(π , t) = vx(0, t) = vx(π , t) = 0, t ≥ 0,

u(x, t) = φ(x, t) ≥ 0, (x, t) ∈ [0,π ] × [–τ2, 0],

v(x, t) = ψ(x, t) ≥ 0, (x, t) ∈ [0,π ] × [–τ1, 0].

Some related work considered the Hopf bifurcation in predator–prey models. According
to the results of [20] and the analysis of the stability and bifurcation system (1.1) in [16],
we mainly consider the dynamics of the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = d1�u(x, t) + u(x,t)(1–u(x,t))

1+cu(x,t) – βu(x,t)v(x,t–τ1)
αv(x,t–τ1)+u(x,t) , x ∈ (0,π ), t > 0,

∂v(x,t)
∂t = d2�v(x, t) + δv(x, t)(1 – ηv(x,t)

u(x,t–τ2) ), x ∈ (0,π ), t > 0,

ux(0, t) = ux(π , t) = vx(0, t) = vx(π , t) = 0, t ≥ 0,

u(x, t) = φ(x, t) ≥ 0, (x, t) ∈ [0,π ] × [–τ2, 0],

v(x, t) = ψ(x, t) ≥ 0, (x, t) ∈ [0,π ] × [–τ1, 0].

(1.2)

As far as we know, there are no results on the Hopf bifurcation of system (1.2). In this
paper, we investigate the stability of the positive equilibrium, delay-induced Hopf bifur-
cation, and the properties of Hopf bifurcation such as the direction of the bifurcation and
stability of the bifurcating periodic solutions.
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2 The stability of equilibrium and the existence of Hopf bifurcation
In this paper, we only investigate the effect of the delay on the stability of the positive
equilibrium E∗(u∗, v∗) of system (1.2), where

u∗ =
α + η – β

α + η + βc
, v∗ =

u∗

η
,

under condition (H): β < α + η.
For simplicity, in this paper, we only study the case τ1 = τ2 = τ . Let

g(1)(u, v) =
u(x, t)(1 – u(x, t))

1 + cu(x, t)
–

βu(x, t)v(x, t – τ )
αv(x, t – τ ) + u(x, t)

,

g(2)(u, v) = δv(x, t)
(

1 –
ηv(x, t)

u(x, t – τ )

)

.

The linearization of (1.2) at the equilibrium E∗ is

(
∂u(x,t)

∂t
∂v(x,t)

∂t

)

= D�

(
u(x, t)
v(x, t)

)

+ A0

(
u(x, t)
v(x, t)

)

+ A1

(
u(x, t – τ )
v(x, t – τ )

)

, (2.1)

where

D� =

(
d1� 0

0 d2�

)

, A0 =

(
b11 0
0 b22

)

,

A1 =

(
0 b12

b21 0

)

,

with

b11 =
(1 – 2u∗)(1 + cu∗) – cu∗(1 – u∗)

(1 + cu∗)2 –
αβv∗2

(αv∗ + u∗)2 ,

b12 =
–βu∗2

(αv∗ + u∗)2 , b21 =
δ

η
, b22 = –δ.

So, the characteristic equation of (2.1) is

det
(
λI – Mk – A0 – A1e–λτ

)
= 0, (2.2)

where I is the 2 × 2 identity matrix, and Mk = –k2 diag{d1, d2}, k ∈ N0 = {0, 1, 2, 3, . . .}. This
is

λ2 +
[
(d1 + d2)k2 – (b11 + b22)

]
λ

+
[
d1d2k4 – (b11d2 + b22d1)k2 +

(
b11b22 – b12b21e–2λτ

)]
= 0. (2.3)

When τ = 0, it becomes

λ2 + Tkλ + Dk = 0,
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where

Tk = (d1 + d2)k2 – (b11 + b22),

Dk = d1d2k4 – (b11d2 + b22d1)k2 + (b11b22 – b12b21).

When τ �= 0, assume that iω (ω > 0) is the root of (2.3). Then we have

–ω2 + i
[
(d1 + d2)k2 – (b11 + b22)

]
ω

+
[
d1d2k4 – (b11d2 + b22d1)k2 +

(
b11b22 – b12b21e–2iωτ

)]
= 0. (2.4)

Separating the real and imaginary parts of (2.4), we get

⎧
⎨

⎩

–ω2 + d1d2k4 – (b11d2 + b22d1)k2 + b11b22 – b12b21 cos 2ωτ = 0,

[(d1 + d2)k2 – (b11 + b22)]ω + b12b21 sin 2ωτ = 0,
(2.5)

which implies that

ω4 + Pkω
2 + Qk = 0, (2.6)

where

Pk =
[
d1k2 – b11

]2 +
[
d2k2 – b22

]2,

Qk = Dk
[
d1d2k4 – (b11d2 + b22d1)k2 + (b11 + b22)

]
.

For 0 < k < N1, we can conclude that (2.6) has only one positive real root

ωk =

√
√
√
√–Pk +

√

P2
k – 4Qk

2
, k ∈ {0, 1, 2, . . . , N1}. (2.7)

By (2.5) we obtain

τ
j
k = τ 0

k +
π j
ωk

, τ 0
k =

1
2ωk

arccos
–ω2

k + d1d2k4 – (b11d2 + b22d1)k2 + b11b22

b12b21
, (2.8)

for k ∈ {0, 1, 2, . . . , N1}.

Lemma 2.1 If condition (H) hold, then

τ
j
N1

≥ τ
j
k+1 ≥ τ

j
k ≥ · · · ≥ τ

j
1 ≥ τ

j
0

for j ∈ N0.

Lemma 2.2 Let condition (H) hold, Tk > 0 and Dk > 0 for k ∈ N0, and let ωk and τ
j
k be

defined by (2.7) and (2.8), respectively. Then (2.2) has a pair of purely imaginary roots iωk

for each k ∈ {0, 1, 2, . . . , N1}, and (2.2) has no purely imaginary roots for k ≥ N1 + 1.
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Clearly, τ 0
k = minj∈N0{τ j

k}, k ∈ {0, 1, 2, . . . , N1}, and from Lemmas 2.1 and 2.2 we know
that τ 0

0 = min{τ j
k : 0 ≤ k ≤ N1, j ∈ N0}. Denote τ ∗ = τ 0

0 . Let λ(τ ) = α(τ ) + iδ(τ ) be the pair of
roots of (2.2) near τ = τ

j
k satisfying α(τ j

k) = 0 and δ(τ j
k) = ωk . Then we have the following

transversality condition.

Lemma 2.3 For k ∈ {0, 1, 2, . . . , N1} and j ∈ N0, d Re(λ)
dτ

|
τ=τ

j
k

> 0.

Proof Differentiating two sides of (2.2), we get

Re

(
dλ

dτ

)–1

= Re

[
(2λ + Tk)e2λτ

–2a12a21λ
–

τ

2λ

]

.

Thus, by (2.5) and (2.7) we have

Re

((
dλ

dτ

)–1)∣
∣
∣
∣
τ=τ

j
k

= Re

[
(2λ + Tk)e2λτ

–a12a21λ
–

τ

λ

]∣
∣
∣
∣
τ=τ

j
k

= Re

[
(2iωk + Tk)e2iωkτ

j
k

–ia12a21ωk
–

τ
j
k

iωk

]

=
Tk sin 2ωkτ

j
k – 2ωk cos 2ωkτ

j
k

a12a21ωk
=

ω2
k + Pk

(a12a21)2 > 0.

From Lemmas 2.1–2.3 and from the qualitative theory of partial differential equations
we obtain the following results. �

Theorem 2.1 Assume that condition (H) holds and ωk and τ
j
k are defined by (2.7) and

(2.8), respectively. Denote the minimum of the critical values of delay by τ ∗ = mink,j{τ j
k}.

(a) The positive equilibrium (u∗, v∗) of system (1.2) is asymptotically stable for τ ∈ (0, τ ∗)
and unstable for (τ ∗, +∞);

(b) System (1.2) undergoes Hopf bifurcations near the positive equilibrium (u∗, v∗) at τ
j
k

for k ∈ {0, 1, 2, . . . , N1} and j ∈ N0.

3 Direction of Hopf bifurcation and stability of bifurcating periodic solution
From Theorem 2.1 we know that model (1.2) undergoes Hopf bifurcations near E∗ at τ = τ

j
k

and that a family homogeneous and inhomogeneous periodic solutions bifurcate from E∗

of (1.2).
In this section, we investigate the stability of these Hopf bifurcations and bifurcating di-

rection by using the normal formal theory of partial differential equation [21–23]. With-
out loss of generality, denote any of these critical values by τ0, at which the characteristic
equation (1.2) has a pair of simple purely imaginary roots iω0.

Setting ũ(·, t) = u(·, τ t) – u∗, ṽ(·, t) = v(·, τ t) – v∗, Ũ(t) = (ũ(·, τ t), ṽ(·, τ t)), and C =
C([–1, 0], X), X = {(u, v) ∈ W 2,2(0,π )| ∂u

∂x = ∂v
∂x = 0 at x = 0,π} and then dropping the tildes

for simplification of notation, system (1.2) can be written as the equation in the space C :

dU(t)
dt

= τD0�U(t) + L(τ )(Ut) + G̃(Ut , τ ), (3.1)
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where for ϕ = (ϕ1,ϕ2)T ∈ C , L(μ)(·) : C → X and G̃ : C × R → X are given by

D0�U =

(
d1�u
d2�v

)

, L(τ )ϕ =

(
b11ϕ1(0) b12ϕ2(–1)

b21ϕ1(–1) b22ϕ2(0)

)

,

G̃(ϕ, ε) = τ

(
g(1)(τ )
g(2)(τ )

)

=

(∑
i+j+k+l≥2

1
i!j!k!l! g

(1)
ijklϕ

i
1(0)ϕj

2(0)ϕk
1 (–1)ϕl

2(–1)
∑

i+j+k+l≥2
1

i!j!k!l! g
(2)
ijklϕ

i
1(0)ϕj

2(0)ϕk
1 (–1)ϕl

2(–1)

)

with g(n)
ijkl = ∂ i+j+k+l g̃(n)(u∗ ,v∗ ,u∗ ,v∗)

∂ui∂vj∂wk∂sl , n = 1, 2, and

g̃(1)(u, v, w, s) =
(u + u∗)(1 – (u + u∗))

1 + c(u + u∗)
–

β(u + u∗)(s + v∗)
α(s + v∗) + (u + u∗)

,

g̃(2)(u, v, w, s) = δ
(
v + v∗)

(

1 –
η(v + v∗)
(w + u∗)

)

.

By direct computation we obtain g0200 = g0002 = g1100 = g1010 = g0011 = 0.
Setting τ = τ0 + ε, (3.1) is written as

dU(t)
dt

= τ0D0�U(t) + L(τ0)(Ut) + G̃(Ut , ε), (3.2)

where

G̃(Ut , ε) = εD0�ϕ(0) + L(ε)(ϕ) + g(ϕ, τ0 + ε) for ϕ ∈ C.

So, ε = 0 is the Hopf bifurcation value for (3.2), and �0 = {–iω0τ0, iω0τ0} is the set of
eigenvalues on the imaginary axis of the infinitesimal generator associated with the flow
of the following linearized system of (3.2) at the origin:

dU(t)
dt

= τ0D0�U(t) + L(τ0)(Ut).

The eigenvalues of τ0D0� on X are μi
k = –diτ0k2, i = 1, 2, k ∈ N0, with the corresponding

normalized eigenfunctions β i
k , where

β1
k =

(
γk(x)

0

)

, β2
k =

(
0

γk(x)

)

, γk(x) =
cos kx

‖ cos kx‖2,2
, k ∈ N0.

Let Bk = span{〈v(·),β i
k〉β i

k|v ∈ C, i = 1, 2}. Then it is easy to verify that L(τ0)(Bk) ⊂
span{β1

k ,β2
k }. Assume that zt(θ ) ∈ C = C([–1, 0], R2) and

zT
t (θ )

(
β1

k
β2

k

)

∈ Bk .

Then, the linear PDE restricted on Bk is equivalent to the following FDE on C =
C([–1, 0], R2):

ż(t) =

(
μ1

k 0
0 μ2

k

)

z(t) + L(τ0)(zt).
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When τ = τ0, define η(θ ) ∈ BV ([–1, 0], R) such that

μkϕ(0) + L(τ0)ϕ =
∫ 0

–1
dη(θ )ϕ(θ )

and the adjoint bilinear form on C∗ × C , C∗ = C([0, 1], R2∗) by

〈
ψ(s),φ(θ )

〉
= ψ(0)φ(0) –

∫ 0

–1

∫ θ

0
ψ(ξ – θ ) dη(θ )φ(ξ ) dξ .

Then, for (3.2) with fixed k, the dual bases �k and �k for its the eigenspace P and its
dual space P∗ are given by

�k =
(
peiω0τ0θ , pe–iω0τ0θ

)
, �k = col

(
qT e–iω0τ0s, qT eiω0τ0s),

where 〈�k ,�k〉 = I2, the 2 × 2 identity matrix, and

p =

(
p1

p2

)

=

(
1

iω0+d1k2–b11
b12

eiω0τ0

)

, q =

(
q1

q2

)

= D

(
1

iω0+d1k2–b11
b21

eiω0τ0

)

,

with D = (1 + 2τ0(iω0 + d1k2 – b11) + (iω0+d1k2–b11)e2iω0τ0
b12b21

)–1.
Following the standard procedure in [21, 23], especially [22], we can obtain the following

normal form on the center manifold:

ż = Bz +

(
Ak1z1ε

Ak1z2ε

)

+

(
Ak2z2

1z2

Ak2z1z2
2

)

+ O
(|z|ε2 + |z|4), (3.3)

where

Ak1 = –k2(d1q1p1 + d2q2p2) + iω0qT p,

Ak2 =
i

2ω0τ0

(

Bk20Bk11 – 2|Bk11|2 –
1
3
|Bk02|2

)

+
1
2

(Bk21 + Dk21),

with

Bk20 =

⎧
⎨

⎩

τ0√
π

(c1q1 + c2q2), k = 0,

0, k �= 0,
Bk11 =

⎧
⎨

⎩

τ0√
π

(c3q1 + c4q2), k = 0,

0, k �= 0.

Bk02 =

⎧
⎨

⎩

τ0√
π

(c1q1 + c2q2), k = 0,

0, k �= 0,
Bk21 =

⎧
⎨

⎩

τ0
π

c5, k = 0,
3τ0
2π

c5, k �= 0,

where

c1 = g(1)
2000p2

1 + 2g(1)
1001p1p2e–iω0τ0 ,

c2 = g(2)
0200p2

2 + 2g(2)
0110p1p2e–iω0τ0 + g(2)

0020p2
1e–2iω0τ0 ,

c3 = g(1)
0200|p1|2 + 2g(1)

1001 Re
{

p1p2eiω0τ0
}

,
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c4 = g(2)
0200|p2|2 + 2g(2)

0110 Re
{

p1p2e–iω0τ0
}

+ g(2)
0020|p1|2,

c5 = q1
(
g(1)

3000p1|p1|2 + g(1)
2001

(
p2

1p2eiω0τ0 + 2|p1|2p2e–iω0τ0
))

+ q2
(
g(2)

0210
(
2p1|p2|2e–iω0τ0

+ p2
2p1eiω0τ0

)
+ g(2)

0120
(
p2

1p2e–2iω0τ0 + 2|p1|2p2
)

+ f (2)
0030p1|p1|2e–iω0τ0

)
,

and

Dk21 =

⎧
⎨

⎩

E0, k = 0,

E0 +
√

2
2 E2k , k �= 0,

where

Ej =
2τ0√

π

(
S1h(1)

j11(0) + S1h(1)
j20(0) + S2h(2)

j11(–1) + S2h(2)
j20(–1) + S3h(2)

j11(0) + S3h(2)
j20(0)

S4h(1)
j11(–1) + S4h(1)

j20(–1) + S5h(2)
j11(0) + S5h(2)

j20(0)

)

with

S1 = g(1)
2000p1, S2 = g(1)

1001p1, S3 = g(2)
1001p2e–iω0τ0 ,

S4 = g(2)
0110p2 + g(2)

0020p1e–iω0τ0 , S5 = g(2)
0200p2 + g(2)

0110p1e–iω0τ0 ,

where hk20(θ ) and hk11(θ ) are determined by

⎧
⎨

⎩

ḣk20(θ ) – 2iω0τ0hk20(θ ) = �k(θ )
( Bk20

Bk20

)
,

ḣk20(0) – L(τ0)(hk20) = τ0ckj
( c1

c2

)
,

⎧
⎨

⎩

ḣk11(θ ) = 2�k(θ )
( Bk11

Bk11

)
,

ḣk11(0) – L(τ0)(hk11) = 2τ0ckj
( c1

c2

)
,

with

ckj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1√
π

, j = k = 0,
1√
π

, j = 0, k �= 0,
1√
2π

, j = 2k �= 0,

0 otherwise.

Through the change of variables z1 = ω1 – iω2, z2 = ω1 + iω2, and ω1 = ρ1 cosφ, ω2 =
ρ1 sinφ, the normal form [20] becomes the following polar coordinate system:

⎧
⎨

⎩

ρ̇ = κk1αρ + κk2ρ
3 + O(α2ρ + |(ρ,α)|4),

φ̇ = –ω0τ0 + O(|(ρ,α)|),

where κk1 = Re Ak1 and κk2 = Re Ak2. Thus, from [28] we see that the sign of κk1κk2 deter-
mines the direction of the bifurcation and the sign of κk2 determines the stability of the
nontrivial periodic orbits and have following results.
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Figure 1 The positive equilibrium (u∗ , v∗) = (0.6250, 0.7813) of (1.2) is asymptotically stable when
τ = 6.5 < 6.8222. Here we set parameter values d1 = 0.2, d2 = 1, δ = 2, α = 0.05, β = 0.3, h = 0.8, c = 0.1 and the
initial value (u(x, 0), v(x, 0)) = (0.62 + 0.005 cos x, 0.78 + 0.005 cos x)

(a) When κk1κk2 < 0, system (1.2) undergoes Hopf bifurcation at the critical value
τ = τ ∗, which is a supercritical bifurcation. Moreover, if κk2 < 0, then the bifurcating
periodic solution is stable; if κk2 > 0, then the bifurcating periodic solution is
unstable.

(b) When κk1κk2 > 0, system (1.2) undergoes Hopf bifurcation at the critical value
τ = τ ∗, which is a subcritical bifurcation. Moreover, if κk2 < 0, then the bifurcating
periodic solution is stable; if κk2 > 0, then the bifurcating periodic solution is
unstable.

4 Numerical simulations
In this section, we give some numerical simulations to support and extend our results by
using the mathematical software Matlab.

For system (1.2), we choose d1 = 0.2, d2 = 1, δ = 2, α = 0.05, β = 0.3, h = 0.8, c = 0.1,
and (u(x, 0), v(x, 0)) = (0.62 + 0.005 cos x, 0.78 + 0.005 cos x). Then, a series of calculations
show that (u∗, v∗) = (0.6250, 0.7813) and τ ∗ = 6.8222. Hence (0.6250, 0.7813) is locally sta-
ble when τ ∈ [0, τ ∗). When τ crosses through the critical τ ∗, (0.6250, 0.7813) loses its sta-
bility, Hopf bifurcation occurs, and a family of periodic solutions are bifurcation from
(0.6250, 0.7813). The direction and stability of Hopf bifurcation can be determined by the
signs κk1 and κk2; by the procedure of Sect. 3, κk1 = 0.0150 and κk2 = 1.1544. So, the Hopf
bifurcation occurring at τ ∗ is subcritical, and the corresponding Hopf bifurcation periodic
orbits are unstable. Taking τ = 6.5 < 6.8222, the numerical simulation results of system
(1.2) are depicted Fig. 1. And taking τ = 6.85 > 6.8222, the numerical simulation results of
system (1.2) are depicted Fig. 2, which is in agreement with the theoretical results.

5 Conclusions
This paper mainly consider about the effects of delay τ on dynamics of a diffusive predator-
prey model with Simth growth rate under Neumann boundary conditions. Based on the
analysis of the characteristic equations, we study the stability of the equilibrium and the
existence of delay-induced Hopf bifurcations. Then, by the normal forms on the center
manifold, we obtain the results determining the direction and stability of Hopf bifurca-
tion. Finally, choosing the parameter values d1 = 0.2, d2 = 1, δ = 2, α = 0.05, β = 0.3, h = 0.8,
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Figure 2 There exists unstable spatially homogenous periodic bifurcating from the positive equilibrium
(u∗ , v∗) = (0.6250, 0.7813) of (1.2) when τ = 6.85 > 6.8222. Here we set parameter values d1 = 0.2, d2 = 1, δ = 2,
α = 0.05, β = 0.3, h = 0.8, c = 0.1. (A)–(B) The initial value (u(x, 0), v(x, 0)) = (0.62 + 0.05 cos x, 0.78 + 0.05 cos x);
(C)–(D) The initial value (u(x, 0), v(x, 0)) = (0.62 + 0.05 sin x, 0.78 + 0.05 sin x)

c = 0.1, we get the critical value of delay τ ∗ = 6.8222 with a direct computation. From The-
orem 2.1 we know that the positive equilibrium (u∗, v∗) = (0.6250, 0.7813) is asymptotically
stable for τ < τ ∗ and unstable for τ > τ ∗. So, system (1.2) undergoes Hopf bifurcation near
the positive equilibrium (u∗, v∗) = (0.6250, 0.7813) when the delay τ increasingly crosses
through the critical value τ ∗.

For the predator–prey systems, pattern dynamics is also an interesting topic. Many au-
thors have discussed the pattern dynamics of the diffusion equations [29–33]. In the next
topics, we will discuss the pattern dynamics of a diffusive predator–prey model with Simth
growth rate.
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