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Abstract
In this paper, we consider a backward problem for a space-fractional diffusion
equation. This problem is ill-posed, i.e., the solution does not depend continuously on
the data. The optimal error bound for the problem under a source condition is
analyzed. Based on the idea of modified ‘kernel’, a regularization method is
constructed, and the convergence estimates are obtained under a priori
regularization parameter choice rule and a posteriori regularization parameter choice
rule, respectively.
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1 Introduction
In recent decades, fractional operators have been playing more and more important roles
in science and engineering [1], e.g., mechanics, biochemistry, electrical engineering, and
medicine, see [2–8]. These new fractional-order models are more adequate than the
integer-order models, because the fractional order derivatives and integrals enable to de-
scribe the memory and hereditary properties of different substance [9]. This is the most
significant difference of the fractional-order models in comparison with the integer-order
models [10–14].

The direct problems, i.e., initial value problem and initial boundary value problem for
fractional differential equations, have been studied extensively in the past few years [15–
22]. However, in some practical problems, the boundary data on the whole boundary can-
not be obtained. We only know the noisy data on a part of the boundary or at some interior
points of the concerned domain, which will lead to some inverse problems, i.e., space-
fractional inverse diffusion problems.

The space-fractional diffusion equation arises by replacing the standard space partial
derivative in the diffusion equation with a space-fractional partial derivative. It plays im-
portant roles in modeling anomalous diffusion and subdiffusion systems, description of a
fractional random walk, unification of diffusion, and wave propagation phenomena [23].
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In this paper, we consider the following backward problem for the space-fractional dif-
fusion equation:

⎧
⎪⎪⎨

⎪⎪⎩

ut(x, t) = xDα
θ u(x, t), x ∈R, t ∈ (0, T),

u(x, T) = g(x), x ∈R,

u(x, t)|x→±∞ = 0, t ∈ (0, T),

(1.1)

where the space-fractional derivative xDα
θ is the Riesz–Feller fractional derivative of order

α (0 < α ≤ 2) and skewness θ (|θ | ≤ min{α, 2 – α}, θ �= ±1) defined by

xDα
θ f (x) =

�(1 + α)
π

{

sin
(α + θ )π

2

∫ ∞

0

f (x + τ ) – f (x)
τ 1+α

dτ

+ sin
(α – θ )π

2

∫ ∞

0

f (x – τ ) – f (x)
τ 1+α

dτ

}

, 0 < α < 2, (1.2)

xD2
0f (x) =

d2f (x)
dx2 , α = 2,

where �(·) is the Gamma function, and the Fourier transform is also defined in [24] as
follows:

F
{

xDα
θ f (x); ξ

}
= –ψθ

α (ξ )f̂ (ξ ), (1.3)

where

ψθ
α (ξ ) = |ξ |αei(sign(ξ ))θπ/2. (1.4)

Our backward problem is to find an approximation to the temperature u(x, t) for 0 ≤ t <
T from the measurement u(x, T) = gδ(x) which is a noise-contaminated function for the
exact temperature g(x) and satisfies

∥
∥gδ(x) – g(x)

∥
∥ ≤ δ, (1.5)

where ‖ · ‖ denotes to the L2-norm, and the constant δ > 0 represents the noise level. This
problem is ill-posed, i.e., the solution does not depend continuously on the given measur-
able data. Therefore, some effective regularization methods to deal with this problem are
needed.

Actually, there are a couple of previous studies trying to solve the above problem. The
authors of [25] proposed a Fourier method and a convolution method and gave the con-
vergence estimate. In [26], Zhang and Wei developed an optimal modified method to solve
this problem. In [27], the authors applied a simplified Tikhonov regularization method to
solve this problem. Cheng et al. [28] considered a new iteration regularization method to
deal with this problem. In 2015, Shi et al. [29] studied this problem and discussed a new
a posteriori parameter choice strategy for the convolution regularization method to solve
this problem. However, the main goal in the current work is providing a modified kernel
method to solve the space-fractional backward diffusion problem (1.1).
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The idea of the construction of regularization method by modified ‘kernel’ comes from
[30], in which the authors found that as long as the kernel function satisfies a certain prop-
erty, some new regularization methods can be constructed. Before this, the idea has also
appeared in [31], in which the problem of high-order numerical differentiation was suc-
cessfully solved. Then, the modified ‘kernel’ idea has been used for solving various types
of ill-posed problems [32–34]. In order to examine whether a regularization method is
optimal, we will give the optimal error bound for the problem under a source condition.

The outline of the paper is as follows. In Sect. 2, we present an analysis on the ill-
posedness of the space-fractional backward diffusion problem (1.1). In Sect. 3, we give
some preliminary results. Then we apply these results to problem (1.1) and give the op-
timal error bound. In Sect. 4, we make a description for our regularization method and
prove the convergence estimates under a priori and a posteriori parameter choice rule.
Finally, a short summary of the conclusions of this paper is given in Sect. 5.

2 Ill-posedness of the problem
Let ĝ(ξ ) denote the Fourier transform of the function g(x), which is defined by

ĝ(ξ ) =
1√
2π

∫ ∞

–∞
g(x)e–iξx dx.

Taking the Fourier transform to problem (1.1) with respect to x, it is easy to see that

⎧
⎨

⎩

ût(ξ , t) = –ψθ
α (ξ )û(ξ , t), ξ ∈R, t ∈ (0, T),

û(ξ , T) = ĝ(ξ ), ξ ∈R.
(2.1)

The solution of this problem is given by

û(ξ , t) = eψθ
α (ξ )(T–t)ĝ(ξ ). (2.2)

Taking the inverse Fourier transform, we get

u(x, t) =
1√
2π

∫ ∞

–∞
eiξxeψθ

α (ξ )(T–t)ĝ(ξ ) dξ . (2.3)

Note that ψθ
α (ξ ) has a positive real part |ξ |α cos θπ

2 , the small error in the high-frequency
components will be amplified by the factor e|ξ | cos θπ

2 (T–t) for 0 ≤ t < T as |ξ | → ∞. Thus
the space-fractional backward diffusion problem is ill-posed. To solve this problem, we
will construct a new regularization method by the modified ‘kernel’ idea.

3 Preliminary results and optimal error bound for problem (1.1)
3.1 Preliminary
Let X, Y be infinite dimensional Hilbert spaces and F : X → Y be a linear injective
bounded operator between X and Y with non-closed range R(F) of F .

Consider the following inverse problem [35]:

Fx = y. (3.1)
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We assume that yδ ∈ Y is available noisy data and satisfies ‖yδ – y‖ ≤ δ. Any operator
R : Y → X can be considered as a special method for solving (3.1), and the approximate
solution of (3.1) is given by Ryδ .

Let M ⊂ X be a bounded set. Let us introduce the worst case error 
(δ, R) for identifying
x from yδ as [35]


(δ, R) := sup
{∥
∥Ryδ – x

∥
∥|x ∈ M, yδ ∈ Y ,

∥
∥Fx – yδ

∥
∥ ≤ δ

}
. (3.2)

The best possible error bound (or optimal error bound) is defined as the infimum over all
mappings R : Y → X:

ω(δ) := inf
R


(δ, R). (3.3)

Now let us review some optimality results if the set M = Mϕ,E is a set of elements which
satisfy some source condition, i.e.,

Mϕ,E =
{

x ∈ X|x =
[
ϕ
(
F∗F

)] 1
2 v,‖v‖ ≤ E

}
, (3.4)

where the operator function ϕ(F∗F) is well defined via spectral representation [35]

ϕ
(
F∗F

)
=

∫ a

0
ϕ(λ) dEλ, (3.5)

where F∗F =
∫ a

0 ϕ(λ) dEλ is the spectral decomposition of F∗F , {Eλ} denotes the spectral
family of the operator F∗F , and a is a constant such that ‖F∗F‖ ≤ a with a = ∞ if F∗F
is unbounded. In the case when F : L2(R) → L2(R) is a multiplication operator, Fx(s) =
r(s)x(s), the operator function ϕ(F∗F) has the form

ϕ
(
F∗F

)
x(s) = ϕ

(∣
∣r(s)

∣
∣2)x(s). (3.6)

Then a method R0 is called [35]
(I) optimal on the set Mp,E if 
(δ, R0) = ω(δ, E) holds;

(II) order optimal on the set Mp,E if 
(δ, R0) ≤ lω(δ, E) with l ≥ 1 holds.
In order to derive an explicit optimal error bound for the worst case error 
(δ, R) defined

in (3.2), we assume that the function ϕ in (3.6) satisfies the following assumption.

Assumption 3.1 ([35]) The function ϕ(λ) : (0, a] → (0,∞) in (3.6) is continuous and has
the following properties:

(I) limλ→0 ϕ(λ) = 0;
(II) ϕ is strictly monotonically increasing on (0, a];

(III) ρ(λ) = λϕ–1(λ) : (0,ϕ(a)] → (0, aϕ(a)] is convex.

Under Assumption 3.1, the next theorem gives us a general formula for the optimal error
bound.
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Theorem 3.2 ([35]) Let Mϕ,E be given by (3.4), let Assumption 3.1 be satisfied, and let
δ2

E2 ∈ σ (F∗Fϕ(F∗F)), where σ (F∗F) denotes the spectrum of the operator F∗F , then

ω(δ, E) = E

√

ρ–1
(

δ2

E2

)

. (3.7)

3.2 Optimal error bound for problem (1.1)
In this section, we consider the model problem (1.1). We actually have the measured data
function gδ(x) ∈ L2(R) and the exact data function g(x) ∈ L2(R), which satisfies (1.5). To
obtain the convergence order between the regularization solution and the exact solution,
we need to give a priori bound

∥
∥u(x, 0)

∥
∥ ≤ E, (3.8)

where E is a constant. Now, let us formulate problem (1.1) as an operator equation

Pu = g, (3.9)

with linear operator P ∈L(L2(R), L2(R)). Obviously, from Sect. 2, we can know that equa-
tion (3.9) is equivalent to the operator equation in the frequency space

Fû = ĝ. (3.10)

From (2.2), we obtain

F := eψθ
α (ξ )(t–T), (3.11)

where F : L2(R) → L2(R) is a linear, self-adjoint, and bounded multiplication operator. By
elementary calculations, we can easily obtain

F∗ = eψθ
α (ξ )(t–T) (3.12)

and

FF∗ = F∗F = e2|ξ |α cos θπ
2 (t–T). (3.13)

Let Z = e–tψθ
α (ξ ). Then Z∗ = e–tψθ

α (ξ ) and ZZ∗ = Z∗Z = e–2t|ξ |α cos θπ
2 . According to ‖ZU‖ =

‖(Z∗Z) 1
2 U‖ and (3.8), the general source set (3.4) is equivalent to the following set:

Mϕ,E =
{

û(ξ , t) ∈ L2(R)|û(ξ , t) = e–tψθ
α (ξ )û(ξ , 0)

:=
[
ϕ
(
F∗F

)] 1
2 û(ξ , 0),

∥
∥u(ξ , 0)

∥
∥ ≤ E

}
. (3.14)

Hence, we can obtain

ZZ∗ = ϕ
(
F∗F

)
= e–2t|ξ |α cos θπ

2 =
(
e2|ξ |α cos θπ

2 (t–T)) t
T–t . (3.15)
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The function ϕ(λ) in (3.14) is as follows:

ϕ(λ) = λ
t

T–t , 0 < t < T . (3.16)

It is easy to see that ϕ(λ) : (0,∞) → (0,∞) is continuous.
We will discuss the properties of the function ϕ(λ), which is given in Assumption 3.1.

(I) It is obvious that limλ→0 ϕ(λ) = 0 holds;
(II) Because of ϕ′(λ) = t

T–t λ
2t–T
T–t > 0, 0 < t < T , we know ϕ(λ) is strictly monotonically

increasing in (0,∞);
(III) From (3.16), we can obtain ϕ–1(λ) = λ

T–t
t and ρ(λ) = λϕ–1(λ) = λ

T
t . By elementary

calculations, we obtain ρ ′′(λ) = T2–Tt
t2 λ

T–2t
t > 0. Consequently, the function ρ(λ) is

strictly convex, and

ρ–1(λ) = λ
t
T . (3.17)

Theorem 3.3 Assume that (1.5) and a priori condition (3.8) hold. Then, for problem (1.1),
there holds the optimal error bound

ω(δ, E) = δ
t
T E1– t

T . (3.18)

Proof From (3.13) and (3.15), we know

σ
(
F∗Fϕ

(
F∗F

))
= (0, 1).

Therefore, for small δ,

δ2

E2 ∈ σ
(
F∗Fϕ

(
F∗F

))
.

Combining (3.7) and (3.17), it follows that

ω(δ, E) = E

√

ρ–1
(

δ2

E2

)

= E

√
(

δ2

E2

) t
T

= δ
t
T E1– t

T . �

4 A modified kernel method and convergence estimates
In this paper, we will present a modified kernel method for constructing a stable approxi-
mate solution of problem (1.1). The regularized solution in the frequency domain is given
by

ûδ
β (ξ , t) =

eψθ
α (ξ )(T–t)

1 + β|eTψθ
α (ξ )|2γ

ĝδ(ξ ),
1
2

≤ γ <
2
T

, (4.1)

where β > 0 is the regularization parameter. The proposed regularized solution (4.1) can
be interpreted as replacing the arbitrarily large kernel eψθ

α (ξ )(T–t) by the modified kernel

eψθ
α (ξ )(T–t)

1 + β|eTψθ
α (ξ )|2γ

.

The kernel has the following two common properties:
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(I) If the parameter β is small, then for small |ξ |, the kernel eψθ
α (ξ )(T–t)

1+β|eTψθ
α (ξ )|2γ

is close to the
exact kernel eψθ

α (ξ )(T–t);
(II) If β is fixed, the kernel eψθ

α (ξ )(T–t)

1+β|eTψθ
α (ξ )|2γ

is bounded.
Property (I) describes that, for the appropriately chosen parameter β , the regularized

kernel reserves the information of the exact kernel in the components of small |ξ |. This
reserved information guarantees the possibility of the regularized solution to approximate
the exact one. Property (II) describes the degree of continuous dependence, i.e., when the
regularized kernel is bounded, the regularized solution will depend continuously on the
data. Both (I) and (II) guarantee that the regularized solution (4.1) is dependent continu-
ously on the data and is the approximation of the exact solution.

In the following, to establish the convergence estimates between the regularization so-
lution and the exact solution, we give two auxiliary lemmas which can be easily proved.

Lemma 4.1 If the constants ν > 0, b > a > 0, the following inequality holds for the variable
s > 0:

sa

1 + νsb ≤ b – a
b

(
a

b – a

) a
b
ν– a

b . (4.2)

Proof Let f (s) = sa

1+νsb . It is easy to find s = s∗ = ( a
ν(b–a) )

1
b such that f ′(s) = 0, so the function

f (s) attains its maximum at s∗. Then we obtain f (s) ≤ f (s∗) = b–a
b ( a

b–a )
a
b ν– a

b . �

Lemma 4.2 ([36]) Let 0 < m ≤ n, then the following inequality holds:

sup
η≥0

eηm

1 + νeηn ≤ ν– m
n . (4.3)

4.1 A priori selection rule
In this subsection, under a priori choice of regularization parameter, we give the con-
vergence estimate between the exact solution and its regularized solution for problem
(1.1).

Theorem 4.3 Suppose that uδ
β (x, t) is the regularized solution with noisy data gδ(x) and

that u(x, t) is the exact solution with the exact data g(x). Let assumptions (1.5) and (3.8) be
satisfied. If we choose

β =
(

δ

E

)2γ

, (4.4)

then for every t ∈ (0, T), there holds the error estimate

∥
∥uδ

β (·, t) – u(·, t)
∥
∥ ≤ Kδ

t
T E1– t

T , (4.5)

where K = K1 + K2, K1 = (2γ –1)T+t
2γ T ( T–t

(2γ –1)T+t )
T–t
2γ T , K2 = t

2γ T ( 2γ T–t
t )

2γ T–t
2γ T .
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Proof Due to the Parseval identity and the triangle inequality, we know

∥
∥uδ

β (·, t) – u(·, t)
∥
∥ =

∥
∥ûδ

β (·, t) – û(·, t)
∥
∥

=
∥
∥ûδ

β (·, t) – ûβ (·, t) + ûβ (·, t) – û(·, t)
∥
∥

≤ ∥
∥ûδ

β (·, t) – ûβ (·, t)
∥
∥ +

∥
∥ûβ (·, t) – û(·, t)

∥
∥

= I1 + I2, (4.6)

where

I1 =
∥
∥ûδ

β (·, t) – ûβ (·, t)
∥
∥,

I2 =
∥
∥ûβ (·, t) – û(·, t)

∥
∥.

We first estimate the first term I1 on the right-hand side of (4.6), we have

I1 =
∥
∥
∥
∥

eψθ
α (ξ )(T–t)

1 + β|eTψθ
α (ξ )|2γ

ĝδ(ξ ) –
eψθ

α (ξ )(T–t)

1 + β|eTψθ
α (ξ )|2γ

ĝ(ξ )
∥
∥
∥
∥

=
∥
∥
∥
∥

eψθ
α (ξ )(T–t)

1 + β|eTψθ
α (ξ )|2γ

(
ĝδ(ξ ) – ĝ(ξ )

)
∥
∥
∥
∥

≤ δ sup
ξ∈R

e(T–t)|ξ |α cos θπ
2

1 + βe2γ T |ξ |α cos θπ
2

. (4.7)

Let

A(ξ ) :=
e(T–t)|ξ |α cos θπ

2

1 + βe2γ T |ξ |α cos θπ
2

. (4.8)

Here, we set s := e|ξ |α cos θπ
2 , and then A(ξ ) can be written as

A(s) :=
s(T–t)

1 + βs2γ T . (4.9)

From Lemma 4.1, we get

I1 ≤ K1δβ
– T–t

2γ T , (4.10)

where K1 = (2γ –1)T+t
2γ T ( T–t

(2γ –1)T+t )
T–t
2γ T .

Now we estimate the second term I2 on the right-hand side of (4.6), we have

I2 =
∥
∥
∥
∥

eψθ
α (ξ )(T–t)

1 + β|eTψθ
α (ξ )|2γ

ĝ(ξ ) – eψθ
α (ξ )(T–t)ĝ(ξ )

∥
∥
∥
∥

=
∥
∥
∥
∥

(
1

1 + β|eTψθ
α (ξ )|2γ

– 1
)

eψθ
α (ξ )(T–t)ĝ(ξ )

∥
∥
∥
∥

=
∥
∥
∥
∥

β|eTψθ
α (ξ )|2γ

1 + β|eTψθ
α (ξ )|2γ

e–tψθ
α (ξ )eTψθ

α (ξ )ĝ(ξ )
∥
∥
∥
∥
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≤ E sup
ξ∈R

∣
∣
∣
∣

β|eTψθ
α (ξ )|2γ

1 + β|eTψθ
α (ξ )|2γ

e–tψθ
α (ξ )

∣
∣
∣
∣

= βE sup
ξ∈R

e(2γ T–t)|ξ |α cos θπ
2

1 + βe2γ T |ξ |α cos θπ
2

. (4.11)

Let

B(ξ ) :=
e(2γ T–t)|ξ |α cos θπ

2

1 + βe2γ T |ξ |α cos θπ
2

. (4.12)

Here, we also set s := e|ξ |α cos θπ
2 , and then B(ξ ) can be written as

B(s) :=
s(2γ T–t)

1 + βs2γ T . (4.13)

From Lemma 4.1, we obtain

I2 ≤ K2β
t

2γ T E, (4.14)

where K2 = t
2γ T ( 2γ T–t

t )
2γ T–t

2γ T .
Summarizing (4.4), (4.6), (4.10), and (4.14), we complete the estimate of (4.5)

∥
∥uδ

β (·, t) – u(·, t)
∥
∥ ≤ Kδ

t
T E1– t

T ,

where K = K1 + K2. �

Remark 4.4 From Theorem 3.3 and Theorem 4.3, we know that the modified kernel
method for problem (1.1) is order optimal.

Remark 4.5 The error estimate in Theorem 4.3 does not give any useful information on
the continuous dependence of the solution at t = 0. To retain the continuous dependence
of the solution at t = 0, one has to introduce a stronger a priori assumption as follows:

∥
∥u(·, 0)

∥
∥

Hp ≤ E, p > 0, (4.15)

where ‖u(·, 0)‖Hp denotes the norm in the Sobolev space Hp(R) defined by

∥
∥u(·, 0)

∥
∥

Hp :=
(∫ ∞

–∞

∣
∣û(ξ , 0)

∣
∣2(1 + ξ 2)p dξ

) 1
2

. (4.16)

Theorem 4.6 Suppose that uδ
β (x, t) is the regularized solution with noisy data gδ(x) and

that u(x, t) is the exact solution with the exact data g(x). Let assumptions (1.5) and (4.15)
be satisfied. If we choose

β =
(

δ

E

)γ

, (4.17)
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then for t = 0, there holds the estimate

∥
∥uδ

β (·, 0) – u(·, 0)
∥
∥ ≤ K3δ

1
2 E

1
2 + E max

{(
δ

E

)γ – 1
2 γ 2T

,
(

γ

4
ln

E
δ

)– p
α
}

, (4.18)

where

K3 =

⎧
⎨

⎩

2γ –1
2γ

( 1
2γ –1 )

1
2γ , 1

2 < γ < 2
T ,

1, γ = 1
2 .

Proof It is similar to Theorem 4.3, we obtain

∥
∥uδ

β (·, 0) – u(·, 0)
∥
∥ =

∥
∥ûδ

β (·, 0) – û(·, 0)
∥
∥

=
∥
∥ûδ

β (·, 0) – ûβ (·, 0) + ûβ (·, 0) – û(·, 0)
∥
∥

≤ ∥
∥ûδ

β (·, 0) – ûβ (·, 0)
∥
∥ +

∥
∥ûβ (·, 0) – û(·, 0)

∥
∥

= I3 + I4. (4.19)

For estimating I3, we set s := e|ξ |α cos θπ
2 , and using Lemma 4.1, we can get

I3 ≤ K3δβ
– 1

2γ , (4.20)

where

K3 =

⎧
⎨

⎩

2γ –1
2γ

( 1
2γ –1 )

1
2γ , 1

2 < γ < 2
T ,

1, γ = 1
2 .

For estimating I4, we have

I4 =
∥
∥
∥
∥

eψθ
α (ξ )T

1 + β|eTψθ
α (ξ )|2γ

ĝ(ξ ) – eψθ
α (ξ )T ĝ(ξ )

∥
∥
∥
∥

=
∥
∥
∥
∥

(
1

1 + β|eTψθ
α (ξ )|2γ

– 1
)

eψθ
α (ξ )T ĝ(ξ )

∥
∥
∥
∥

=
∥
∥
∥
∥

β|eTψθ
α (ξ )|2γ

1 + β|eTψθ
α (ξ )|2γ

(
1 + ξ 2)– p

2
(
1 + ξ 2)

p
2 eTψθ

α (ξ )ĝ(ξ )
∥
∥
∥
∥

≤ E sup
ξ∈R

β|eTψθ
α (ξ )|2γ

1 + β(1 + ξ 2)
p
2 |eTψθ

α (ξ )|2γ

= E sup
ξ∈R

βe2γ T |ξ |α cos θπ
2

1 + β(1 + ξ 2)
p
2 e2γ T |ξ |α cos θπ

2
. (4.21)

Now, we distinguish two cases to estimate (4.21).
Case 1. For |ξ |α ≤ 1

2 ln 1√
β

, we have

βe2γ T |ξ |α cos θπ
2

1 + β(1 + ξ 2)
p
2 e2γ T |ξ |α cos θπ

2
≤ βe2γ T |ξ |α cos θπ

2 ≤ βe2γ T |ξ |α ≤ β1– γ T
2 . (4.22)
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Case 2. For |ξ |α ≥ 1
2 ln 1√

β
, we obtain

βe2γ T |ξ |α cos θπ
2

1 + β(1 + ξ 2)
p
2 e2γ T |ξ |α cos θπ

2
≤ βe2γ T |ξ |α cos θπ

2

β(1 + ξ 2)
p
2 e2γ T |ξ |α cos θπ

2
≤ (

1 + ξ 2)– p
2

≤ |ξ |–p =
(|ξ |α)– p

α ≤
(

1
2

ln
1√
β

)– p
α

. (4.23)

Combining (4.21), (4.22), and (4.23), we know

I4 ≤ E max

{

β1– γ T
2 ,

(
1
2

ln
1√
β

)– p
α
}

. (4.24)

Summarizing (4.17), (4.19), (4.20), and (4.24), we can easily get the convergence estimate

∥
∥uδ

β (·, 0) – u(·, 0)
∥
∥ ≤ K3δ

1
2 E

1
2 + E max

{(
δ

E

)γ – 1
2 γ 2T

,
(

γ

4
ln

E
δ

)– p
α
}

.

The theorem is proved. �

4.2 A posteriori selection rule
In this subsection, we give the convergence estimate for ‖uδ

β (·, t) – u(·, t)‖ by using an a
posteriori choice rule for the regularization parameter, i.e., Morozov’s discrepancy prin-
ciple.

According to Morozov’s discrepancy principle [37], we adopt the regularization param-
eter β as the solution of the equation

∥
∥
∥
∥

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝδ(ξ )

∥
∥
∥
∥ = τδ. (4.25)

Here, τ > 1 is a constant.

Lemma 4.7 Let ρ(β) := ‖ 1
1+β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝδ(ξ )‖, then the following results hold:

(a) ρ(β) is a continuous function;
(b) limβ→0 ρ(β) = 0;
(c) limβ→∞ ρ(β) = ‖ĝδ(ξ )‖;
(d) ρ(β) is a strictly increasing function for β ∈ (0,∞).

The proof is obvious and we omit it here.

Remark 4.8 According to Lemma 4.7, we find that, if 0 < τδ < ‖ĝδ(ξ )‖, Equation (4.25) has
a unique solution.

Lemma 4.9 If β is the solution of Equation (4.25), then the following inequality holds:

∥
∥
∥
∥

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∥
∥
∥
∥ ≤ (τ + 1)δ. (4.26)
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Proof Due to the triangle inequality and Equation (4.25), there holds

∥
∥
∥
∥

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∥
∥
∥
∥

=
∥
∥
∥
∥

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝδ(ξ ) + ĝδ(ξ ) – ĝ(ξ )

∥
∥
∥
∥

≤
∥
∥
∥
∥

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝδ(ξ )

∥
∥
∥
∥ +

∥
∥ĝδ(ξ ) – ĝ(ξ )

∥
∥

≤ (τ + 1)δ. �

Lemma 4.10 If β is the solution of Equation (4.25), the following inequality also holds:

β
– 1

2γ ≤ K4E
(τ – 1)δ

, (4.27)

where K4 = 1
2γ

(2γ – 1)1– 1
2γ .

Proof Due to the triangle inequality and Equation (4.25), there holds

τδ =
∥
∥
∥
∥

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝδ(ξ )

∥
∥
∥
∥

=
∥
∥
∥
∥

β|eTψθ
α (ξ )|2γ

1 + β|eTψθ
α (ξ )|2γ

ĝδ(ξ )
∥
∥
∥
∥

=
∥
∥
∥
∥

β|eTψθ
α (ξ )|2γ

1 + β|eTψθ
α (ξ )|2γ

(
ĝδ(ξ ) – ĝ(ξ )

)
+

β|eTψθ
α (ξ )|2γ

1 + β|eTψθ
α (ξ )|2γ

ĝ(ξ )
∥
∥
∥
∥

≤
∥
∥
∥
∥

β|eTψθ
α (ξ )|2γ

1 + β|eTψθ
α (ξ )|2γ

(
ĝδ(ξ ) – ĝ(ξ )

)
∥
∥
∥
∥ +

∥
∥
∥
∥

β|eTψθ
α (ξ )|2γ

1 + β|eTψθ
α (ξ )|2γ

ĝ(ξ )
∥
∥
∥
∥

≤ δ +
∥
∥
∥
∥

β|eTψθ
α (ξ )|2γ –1

1 + β|eTψθ
α (ξ )|2γ

eTψθ
α (ξ )ĝ(ξ )

∥
∥
∥
∥

≤ δ + βE sup
ξ∈R

|eTψθ
α (ξ )|2γ –1

1 + β|eTψθ
α (ξ )|2γ

≤ δ + βE sup
ξ∈R

e(2γ –1)T |ξ |α cos θπ
2

1 + βe2γ T |ξ |α cos θπ
2

. (4.28)

Let

C(ξ ) :=
e(2γ –1)T |ξ |α cos θπ

2

1 + βe2γ T |ξ |α cos θπ
2

. (4.29)

Here, we set s := e|ξ |α cos θπ
2 , then C(ξ ) can be written as

C(s) :=
s(2γ –1)T

1 + βs2γ T . (4.30)
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From Lemma 4.1, we obtain

C(s) ≤ K4β
1

2γ –1, (4.31)

where K4 = 1
2γ

(2γ – 1)1– 1
2γ .

Summarizing (4.28) and (4.31), we have

τδ ≤ δ + K4β
1

2γ E. (4.32)

Then (4.27) could be obtained. The lemma is proved. �

Now we give the main result of this subsection.

Theorem 4.11 Suppose that a priori condition ‖u(·, 0)‖ ≤ E and the noise assumption
(1.5) hold, and there exists τ > 1 such that 0 < τδ < ‖ĝδ‖. The regularization parameter
β > 0 is chosen by Morozov’s discrepancy principle (4.25). Then we have the following con-
vergence estimate:

∥
∥uδ

β (·, t) – u(·, t)
∥
∥ ≤

(
K4K5

(τ – 1)
+ 1

)(1–t/T)

(τ + 1)t/Tδt/T E(1–t/T), (4.33)

where

K5 =

⎧
⎨

⎩

2γ –1
2γ

( 1
2γ –1 )

1
2γ , 1

2 < γ < 2
T ,

1, γ = 1
2 .

Proof Due to the Parseval formula and Lemma 4.9, we obtain

∥
∥uδ

β (·, t) – u(·, t)
∥
∥2

=
∥
∥ûδ

β (·, t) – û(·, t)
∥
∥2

=
∥
∥
∥
∥

eψθ
α (ξ )(T–t)

1 + β|eTψθ
α (ξ )|2γ

ĝδ(ξ ) – eψθ
α (ξ )(T–t)ĝ(ξ )

∥
∥
∥
∥

2

=
∥
∥
∥
∥eψθ

α (ξ )(T–t)
(

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

)∥
∥
∥
∥

2

=
∫ ∞

–∞

∣
∣
∣
∣e

ψθ
α (ξ )(T–t)

(
1

1 + β|eTψθ
α (ξ )|2γ

ĝδ(ξ ) – ĝ(ξ )
)∣

∣
∣
∣

2

dξ

=
∫ ∞

–∞

∣
∣eψθ

α (ξ )(T–t)∣∣2
∣
∣
∣
∣

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2

dξ

=
∫ ∞

–∞

∣
∣eψθ

α (ξ )(T–t)∣∣2
∣
∣
∣
∣

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2(1–t/T)

·
∣
∣
∣
∣

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2t/T

dξ

≤
(∫ ∞

–∞

(
∣
∣eψθ

α (ξ )(T–t)∣∣2
∣
∣
∣
∣

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2(1–t/T)) T
T–t

dξ

) T–t
T
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·
(∫ ∞

–∞

(∣
∣
∣
∣

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2t/T) T
t

dξ

) t
T

≤
(∫ ∞

–∞

∣
∣eTψθ

α (ξ )∣∣

∣
∣
∣
∣

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2

dξ

) T–t
T

·
(∫ ∞

–∞

∣
∣
∣
∣

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∣
∣
∣
∣

2

dξ

) t
T

=
∥
∥
∥
∥

∣
∣eTψθ

α (ξ )∣∣
(

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

)∥
∥
∥
∥

2(1–t/T)

·
∥
∥
∥
∥

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∥
∥
∥
∥

2t/T

=
∥
∥
∥
∥

( |eTψθ
α (ξ )|

1 + β|eTψθ
α (ξ )|2γ

(
ĝδ(ξ ) – ĝ(ξ )

)
+

( |eTψθ
α (ξ )|

1 + β|eTψθ
α (ξ )|2γ

–
∣
∣eTψθ

α (ξ )∣∣
)

ĝ(ξ )
)∥

∥
∥
∥

2(1–t/T)

·
∥
∥
∥
∥

1
1 + β|eTψθ

α (ξ )|2γ
ĝδ(ξ ) – ĝ(ξ )

∥
∥
∥
∥

2t/T

≤
(∥

∥
∥
∥

|eTψθ
α (ξ )|

1 + β|eTψθ
α (ξ )|2γ

(
ĝδ(ξ ) – ĝ(ξ )

)
∥
∥
∥
∥

+
∥
∥
∥
∥

( |eTψθ
α (ξ )|

1 + β|eTψθ
α (ξ )|2γ

–
∣
∣eTψθ

α (ξ )∣∣
)

ĝ(ξ )
∥
∥
∥
∥

)2(1–t/T)

· ((τ + 1)δ
)2t/T

≤
(

δ sup
ξ∈R

eT |ξ |α cos θπ
2

1 + βe2γ T |ξ |α cos θπ
2

+ E
)2(1–t/T)

· ((τ + 1)δ
)2t/T . (4.34)

Let

D(ξ ) :=
eT |ξ |α cos θπ

2

1 + βe2γ T |ξ |α cos θπ
2

. (4.35)

Now, we will distinguish two cases to estimate (4.35).
Case 1. For 1

2 < γ < 2
T , we set s := e|ξ |α cos θπ

2 , and using Lemma 4.1, we have

D(s) :=
sT

1 + βs2γ T ≤ K5β
– 1

2γ , (4.36)

where K5 = 2γ –1
2γ

( 1
2γ –1 )

1
2γ .

Case 2. For γ = 1
2 , we set p = |ξ |α cos θπ

2 , and using Lemma 4.2, we obtain

D(p) =
epT

1 + βepT ≤ β–1. (4.37)

Combining (4.34), (4.35), (4.36), (4.37), and Lemma 4.10, we can get

∥
∥uδ

β (·, t) – u(·, t)
∥
∥2 ≤ (

δK5β
– 1

2γ + E
)2(1–t/T)((τ + 1)δ

)2t/T

≤
(

δK5
K4E

(τ – 1)δ
+ E

)2(1–t/T)(
(τ + 1)δ

)2t/T
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=
(

K4K5

(τ – 1)
+ 1

)2(1–t/T)

E2(1–t/T)((τ + 1)δ
)2t/T

=
(

K4K5

(τ – 1)
+ 1

)2(1–t/T)

(τ + 1)2t/Tδ2t/T E2(1–t/T). (4.38)

Then the conclusion of the theorem can be obtained directly from (4.38). �

5 Conclusions
In this paper, a space-fractional backward diffusion problem has been considered. We have
analyzed the optimal error bound for the problem under a source condition and have
solved it by a regularization method for overcoming its ill-posedness based on the idea
of modified ‘kernel’. The convergence results are obtained under a priori and a posteriori
regularization parameter choice rule, respectively.
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