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Abstract
To quickly solve the fractional Black–Scholes (B–S) equation in the option pricing
problems, in this paper, we construct pure alternative segment explicit–implicit
(PASE-I) and pure alternative segment implicit–explicit (PASI-E) difference schemes for
time-space fractional B–S equation. It is a kind of intrinsic parallel difference schemes
constructed on the basis of classic explicit scheme and classic implicit scheme
combined with alternate segmentation technique. PASE-I and PASI-E schemes are
analyzed to be unconditionally stable, convergent with second-order spatial accuracy
and (2 – α)th-order time accuracy, and they have a unique solution. The numerical
experiments show that the two schemes have obvious parallel computing properties,
and the computation time is greatly improved compared to Crank–Nicolson (C–N)
scheme. The PASE-I and PASI-E intrinsic parallel difference methods are efficient to
solve the time-space fractional B–S equation.
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1 Introduction
As one of the most famous basic equations of financial mathematics, the Black–Scholes
(B–S) equation has attracted more and more attention from economists and applied math-
ematicians, not only because it is the cornerstone of option pricing theory, but also be-
cause the numerical simulation method of the B–S equation has played a significant role
in promoting the study of the pricing of many financial derivatives. The traditional B–S
model is obtained under many harsh assumptions; to make the theoretical price more in
line with the actual quotation, it is necessary to relax the assumptions of the B–S model
properly, and the modified B–S model is closer to the actual financial market [1, 2].

Based on the fact that stock prices follow fractional stochastic differential equations,
some progress has been made in the study of fractional B–S models in recent years.
Wyss (2000) derived the time-fractional B–S equation governing European call option
[3]. Cartea and Del-Castillo-Negrete (2007) deduced three kinds of space-fractional B–S
equations for pricing exotic options in a diffusion market with jumps [4]. With reference
to the derivation of the classic B–S model, Jumarie (2008, 2010) used the fractional Tay-
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lor formula and Itô lemma to derive a more complete time-fractional B–S equation and
time-space-fractional B–S equation [5, 6]. Liang et al. (2010) considered the option price
in financial markets as a fractional transmission system and proposed single-parameter
and biparameter fractional B–S equations [7]. These fractional B–S models can charac-
terize long-term correlations in behavioral finance, which are more in line with the laws
of financial market movement.

At present, the numerical algorithms for solving fractional differential equations mainly
include the finite difference method, finite element method, series approximation method,
and other methods, such as the spectral method, matrix transformation method, B-spline
wavelet operational method, etc. [8, 9].

Fractional calculus has historical dependence and global correlation, which makes the
numerical solution of fractional B–S equations require a large amount of calculations and
storage. When simulating actual financial problems, it is difficult to perform long-term
processes (the exponential increase in calculations over time) or large computation do-
main simulation even with high-performance computers [10–13]. Therefore, in recent ten
years, fast algorithms for the fractional B–S equation have been the focus of academic re-
search. With rapid development of multicore and cluster technology, parallel algorithms
have become one of the mainstream technologies to improve the computing efficiency.
The parallel difference method of the fractional B–S equation has basic scientific signifi-
cance and application value [14, 15].

For integer-order diffusion equations, Evans and Abdullab (1983) proposed the idea of
group explicit and designed an alternating group explicit (AGE) scheme, which not only
ensures the stability of numerical calculations, but also has good parallel nature [16]. Im-
plicit schemes generally have good stability, but they are not suitable for parallelization.
Inspired by the construction of the AGE method, Zhang (1991) proposed the idea of us-
ing the Saul’yev asymmetric scheme to construct a piecewise implicit scheme and estab-
lished a class of alternating segment explicit–implicit (ASE-I) parallel difference methods
and alternating segment Crank–Nicolson (ASC-N) parallel difference methods, where the
stability and parallelism were both obtained [17]. Academician Zhou (1997) called the
explicit–implicit mixing scheme of the most general parabolic equation as a difference
scheme with intrinsic parallelism; he studied the existence, uniqueness, convergence, and
stability of differential decomposition and established the basic theory of the parallel dif-
ference method for parabolic equations. Now this theory has been applied to numeri-
cal solving many integer-order evolution equations [18]. Zhu and Yuan (2003) presented
the ASE-I scheme and ASC-N scheme for dispersive equation and compared the numer-
ical solution and accuracy of the schemes by numerical experiments [19]. Wang (2006)
proposed an ASC-N difference method for the third-order KdV equation and proved the
linear and absolute stability of the scheme [20]. Yuan et al. (2007) constructed a paral-
lel difference scheme with spatial second-order accuracy and unconditional stability for
nonlinear parabolic equations [21].

The existing numerical methods for partial differential equations of integer order cannot
be directly applied to numerical solving fractional partial differential equations, and even a
completely different numerical analysis process has been produced. In recent years, some
progress has been made in the research of parallel algorithms for fractional partial differ-
ential equations; most of the parallel algorithms of algebraic equations are studied from
the point of view of numerical algebra. Wang et al. (2010) proposed a fast algorithm for
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the space-fractional diffusion equation based on the special structure of the established
difference scheme; this was an earlier attempt to apply parallel computing to fractional
difference equation [22]. Diethelm (2011) implemented a parallelized calculation for the
fractional second-order Adams–Bashforth–Moulton method and discussed the accuracy
of the parallel algorithm [23]. Gong et al. (2013) carried out parallel computation for the
explicit difference scheme of the Riesz-type space-fractional reaction diffusion equation;
the core of parallelization is the parallel computation of the product of matrix and vec-
tor and the addition of vectors and vectors [24]. Sweilam et al. (2014) constructed a class
of parallel C–N schemes for time-fractional parabolic equations, the core of the method
is to use the preconditioned conjugate gradient method to solve the algebraic equations
[25]. Lu et al. (2015) established a difference scheme for the time-fractional subdiffusion
equation and proposed a fast algorithm based on its special structure [26]. Wang et al.
(2016) studied the parallel algorithm of implicit difference scheme for Caputo fractional
reaction–diffusion equation, and the computational efficiency was improved compared to
the original scheme [27].

For a long time, a large number of parallel schemes constructed are either conditionally
stable or unconditionally stable, but the space has only first-order accuracy. To obtain a
parallel scheme with higher precision and more relaxed stability conditions, we have to
overcome the difficulties of numerical algebra and have sought to explore the paralleliza-
tion of traditional difference schemes. At present, there are few studies on the parallel
schemes for time-space fractional B–S equation. Based on the time-space-fractional B–S
equation deduced by Jumarie, in this paper, we construct a class of intrinsic parallel differ-
ence schemes, pure alternative segment explicit–implicit (PASE-I) scheme and pure alter-
native segment implicit–explicit (PASI-E) scheme, and prove that these parallel difference
methods are efficient to solve the time-space-fractional B–S equation.

2 The intrinsic parallel difference schemes of time-space-fractional B–S
equation

2.1 Time-space-fractional B–S equation
We consider the following time-space-fractional B–S equation [6]:

⎧
⎨

⎩

P(α)
t = ( r

�(2–α) P – rSαP(α)
S )t1–α – �3(1+α)

�(1+2α)�
2(2 – α)σ 2S2αP(2α)

S ,

P(S, T) = max{S – K , 0},
(1)

where t > 0, 0 < α ≤ 1, P(S, t) means the option price, S is the stock price, r denotes risk-free
rate, σ is volatility, P(α)

t (S, t), P(α)
S , and P(2α)

S are the Riemann–Liouville fractional deriva-
tives, K is the exercise price, which means that the price at the expiration of the option is
its profit or loss.

The corresponding boundary conditions are as follows:

P(0, t) = 0, lim
t→∞ P(S, t) = S – Ke–r(T–t).

The boundary conditions mean that when S is zero, the price of option will never re-
turn to its original state. When S is large enough, the implementation of call options is
inevitable, and the spot price of the strike price is close to Ke–r(T–t).
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The solution region is as follows:

� = {0 ≤ S ≤ ∞, 0 ≤ t ≤ T}.

With variable substitution we can get

S = ex; t = T – τ ; P(S, t) = e–rτ V (x, τ ).

Equation (1) can be transformed into

⎧
⎪⎪⎨

⎪⎪⎩

V (α)
τ (x, τ ) – (γ (α) �(1–α)

�(1–2α)σ
2 + r(T – τ )1–α)τ 1–α(T – τ )α–1Vx(x, τ )

– γ (α)σ 2τ 1–α(T – τ )α–1Vxx(x, τ ) = 0,

V (x, 0) = max{ex – K , 0},
(2)

where γ (α) = �3(1+α)�2(1–α)
�(1+2α) .

The solution region is written as

�0 = {–∞ ≤ x < +∞, 0 ≤ τ ≤ T}.

Usually, the financial institution specifies a sufficiently small value N– > 0 as its lower
bound and a sufficiently large value N+ < ∞ as its upper bound. Then the problems can
be solved in the following finite region:

�1 =
{

N– ≤ x < N+, 0 ≤ τ ≤ T
}

.

Meanwhile, boundary conditions are transformed into the form

V
(
N+, τ

)
= eN++rτ – K , V

(
N–, τ

)
= 0.

2.2 The construction of PASE-I scheme
Time and space steps are k = T

N and h = N+–N–

M , respectively, where M and N are positive
integers.

Let
⎧
⎨

⎩

xi = N– + ih, i = 0, 1, 2, . . . , M,

τn = nk, n = 0, 1, 2, . . . , N .

The corresponding initial–boundary conditions are:

V 0
i = max

{
exi – K , 0

}
, V n

N– = 0, V n
N+ = eN++rτn – K .

We can discretize V (α)
τ (x, τ ) in the following form:

∂αV (xi, τn+1)
∂τα

=
k–α

�(2 – α)

n∑

j=0

lj
[
V (xi, τn+1–j) – V (xi, τn–j)

]
+ O

(
k2–α

)
, (3)

where lj = (j + 1)1–α – jα .
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The classic explicit and implicit schemes for equation (2) are given as follows:
(1) The classic explicit scheme

k–α

�(2 – α)

n∑

j=0

lj
(
V n+1–j

i – V n–j
i

)

=
[
ab + r(T – nk)1–α

]
(nk)1–α(T – nk)α–1 V n

i+1 – V n
i–1

2h

+ a(nk)1–α(T – nk)α–1 V n
i+1 – 2V n

i + V n
i–1

h2 .

The simplified form is

V n+1
i = a′

nV n
i–1 +

(
w1 – b′

n
)
V n

i + c′
nV n

i+1 +
n–1∑

j=1

(lj – lj+1)V n–j
i + lnV 0

i . (4)

(2) The classic implicit scheme

k–α

�(2 – α)

n∑

j=0

lj
(
V n+1–j

i – V n–j
i

)

=
[
ab + r(T – nk – k)1–α

]
(nk + k)1–α(T – nk – k)α–1 V n+1

i+1 – V n+1
i–1

2h

+ a(nk + k)1–α(T – nk – k)α–1 V n+1
i+1 – 2V n+1

i + V n+1
i–1

h2 .

The simplified form is

–a′
nV n+1

i–1 +
(
1 + b′

n
)
V n+1

i – c′
nV n+1

i+1 = (1 – l1)V n
i +

n–1∑

j=1

(lj – lj+1)V n–j
i + lnV 0

i , (5)

where

a = γ (α)σ 2, b =
�(1 – α)
�(1 – 2α)

, m1 = �(2 – α)kα/2h,

m2 = γ (α)σ 2�(2 – α)kα/h2, gn = (nk)1–α(T – nk)α–1,

qn = (nk)1–α , a′
n = –m1(abgn + rqn) + m2gn, b′

n = 2m2gn,

c′
n = m1(abgn + rqn) + m2gn, wj = lj–1 – lj (j = 1, 2, . . . , N).

According to the serial explicit–implicit (E–I) and implicit–explicit (I–E) difference
methods, we design the PASE-I scheme, which not only guarantees the stability of the
numerical computation, but also has good parallel properties. The specific approach is as
follows.

Let M – 1 = QL, where Q and L are positive integers, Q is odd, and Q ≥ 3, L ≥ 3. The
points calculated at the same time layer are divided into Q segments, which are recorded
in order S1, S2, . . . , SQ. Every segment of the odd time layer is arranged from left to right
in the order of “classic explicit–classic implicit–classic explicit”. In even time layer, the
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Figure 1 Schematic diagram of PASE-I scheme

rule of calculation becomes “classic implicit–classic explicit–classic implicit”. See Fig. 1 for
details, where the classic explicit scheme is used in © place, and the classic implicit scheme
is used in � place. The solution of each implicit segment depends on the calculation of
the beginning or last point of the adjacent explicit segment.

Above all, the PASE-I scheme of equation (2) can be constructed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(I + G1)V n+1 = (w1I – G2)V n + qn

+
∑n–1

j=1 wj+1V n–j + lnV 0,

(I + G2)V n+2 = (w1I – G1)V n+1 + qn+2

+
∑n

j=1 wj+1V n+1–j + ln+1V 0,

n = 0, 2, 4, . . . , (6)

where wj = lj–1 – lj (j = 1, 2, . . . , N ), qn = (a′
nV n

0 , 0, . . . , 0, c′
nV n

M)T (n = 0, 1, . . . , N ) V k =
(V k

1 , V k
2 , . . . , V k

M–1)T (k = 0, 1, . . . , N ), G1 and G2 are (M – 1)th-order matrices, QL–1 is the
(L – 1)th-order zero matrix, and QL–2 is the (L – 2)th-order zero matrix. The details are as
follows:

G1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

QL–1

PL+2

QL–2

PL+2
. . .

QL–2

PL+2

QL–1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(M–1)×(M–1)

,

G2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P̄L+1

QL–2

PL+2

QL–2
. . .

PL+2

QL–2

P̃L+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(M–1)×(M–1)

,

PL+2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
–a′

n b′
n –c′

n
. . . . . . . . .

–a′
n b′

n –c′
n

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(L+2)×(L+2)

,
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P̄L+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b′
n –c′

n

–a′
n b′

n –c′
n

. . . . . . . . .
–a′

n b′
n –c′

n

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(L–1)×(L–1)

,

P̃L+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
–a′

n b′
n –c′

n
. . . . . . . . .

–a′
n b′

n –c′
n

–a′
n b′

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(L+1)×(L+1)

.

3 The theoretical analysis of PASE-I difference scheme
3.1 Existence and uniqueness of solutions to PASE-I difference scheme
Lemma 1 (Kellogg [28]) Let ρ > 0, and let C be a nonnegative matrix (i.e., C + CT is a
nonnegative definite matrix). Then (I + ρC)–1 exists, and ‖(I + ρC)–1‖2 ≤ 1.

Lemma 2 In the PASE-I scheme (6), G1 and G2 are both nonnegative matrices.

Proof We only need to prove that both G1 + GT
1 and G2 + GT

2 are nonnegative definite
matrices. We have

PL+2 + PT
L+2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 –a′
n

–a′
n 2b′

n –a′
n – c′

n
. . . . . . . . .

–a′
n – c′

n 2b′
n –c′

n

–c′
n 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(L+2)×(L+2)

with a′
n = –m1(abgn +rqn)+m2gn, b′

n = 2m2gn, c′
n = m1(abgn +rqn)+m2gn, –a′

n –c′
n = 2m2gn.

That is to say, PL+2 + PT
L+2 is a positive definite matrix. We can also get that P̄L+2 + P̄T

L+2 and
P̃L+1 + P̃T

L+1 are positive definite matrices. So G1 + GT
1 and G2 + GT

2 obviously are diagonally
dominant matrices. According to Lemma 1, (I + G1)–1 and (I + G2)–1 exist, and PASE-I
scheme solution is unique. �

Theorem 1 The PASE-I scheme (6) for time-space-fractional B–S equation has a unique
solution.

3.2 Stability of PASE-I difference scheme
Lemma 3 Let D be a nonnegative definite matrix (i.e., D + DT is a nonnegative definite
matrix). Then ‖(δI – θD)(I + θD)–1‖2 ≤ 1 for all θ , δ > 0.

Proof We have

∥
∥(δI – θD)(I + θD)–1∥∥

2 = max
ρ∈Rn
ρ 
=0

((δI – θD)(I + θD)–1ρ, (δI – θD)(I + θD)–1ρ)
(ρ,ρ)

.
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Denoting ψ = (I + θD)–1ρ , we get

∥
∥(δI – θD)(I + θD)–1∥∥

2 = max
ψ∈Rn
ψ 
=0

((δI – θD)ψ , (δI – θD)ψ)
((I + θD)ψ , (I + θD)ψ)

= max
ψ∈Rn
ψ 
=0

δ2(ψ ,ψ) – 2θδ(Dψ ,ψ) + θ2(Dψ , Dψ)
(ψ ,ψ) + 2θ (Dψ ,ψ) + θ2(Dψ , Dψ)

≤ 1. �

Lemma 4 ([29]) Applying the function g(x) = x1–α(x ≥ 1), we can get the following relations:

0 < wn < · · · < w2 < w1 < 1 and
n–1∑

j=1

wj = 1 – ln,
∞∑

j=1

wj = 1.

Rewrite the PASE-I scheme in the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(I + W1)V n+1 = (w1I – W2)V n + qn

+
∑n–1

j=1 wj+1V n–j + lnV 0,

(I + W2)V n+2 = (w1I – W1)V n+1 + qn+2

+
∑n

j=1 wj+1V n+1–j + ln+1V 0,

n = 0, 2, 4, . . . , (7)

where

W1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

QL

PL

QL
. . .

QL

PL

QL

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(M–1)×(M–1)

,

W2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

PL

QL

PL
. . .

PL

QL

PL

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(M–1)×(M–1)

,

PL =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

b′
n –c′

n

–a′
n b′

n –c′
n

. . . . . . . . .
–a′

n b′
n –c′

n

–a′
n b′

n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

L×L

.
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Lemma 5 Let Ṽ n
i and V n

i be the approximate solution and numerical solution of the PASE-
I scheme, respectively. Denote εn

i = Ṽ n
i – V n

i and εn = (εn
0 , εn

1 , . . . , εn
M) for 0 ≤ n ≤ N . Then

‖εn‖2 ≤ ‖ε0‖2.

Proof Applying εn
i = Ṽ n

i – V n
i to equation (7), we have:

⎧
⎨

⎩

(I + W1)εn+1 = (w1I – W2)εn +
∑n–1

j=1 wj+1ε
n–j + lnε

0,

(I + W2)εn+2 = (w1I – W1)εn+1 +
∑n

j=1 wj+1ε
n+1–j + ln+1ε

0,
n = 0, 2, 4, . . . . (8)

When n ≥ 3,

εn+2 = (I + W2)–1(w1I – W1)(I + W1)–1(w1I – W2)εn

+ (I + W2)–1(w1I – W1)(I + W1)–1(w2ε
n–1 + · · · + wn–1ε

1 + lnε
0)

+ (I + W2)–1(w2ε
n + · · · + wnε

1 + ln+1ε
0),

εn+3 = (I + W1)–1(w1I – W2)(I + W2)–1(w1I – W1)εn+1

+ (I + W1)–1(w1I – W2)(I + W2)–1(c2ε
n + · · · + cn+1ε

1 + ln+1ε
0)

+ (I + W1)–1(w2ε
n+1 + · · · + wn+2ε

1 + ln+2ε
0).

Define the growth-share matrix Z = (I + W2)–1(w1I – W1)(I + W1)–1(w1I – W2) and let Z̃ =
(I + W2)Z(I + W2)–1. The eigenvalues of the matrices W1 and W2 are the same, and the
eigenvalue is λ. According to Lemma 3,

‖Z‖ = ‖Z̃‖ =
∥
∥(w1I – W1)(I + W1)–1(w1I – W2)(I + W2)–1∥∥

= max

{∣
∣
∣
∣

(
w1 – λ

1 + λ

)2∣∣
∣
∣

}

≤ max

{∣
∣
∣
∣
max2{w1,λ}

(1 + λ)2

∣
∣
∣
∣

}

≤ 1.

Using mathematical induction, let bus prove that ‖εn‖2 ≤ ‖ε0‖2. When n = 0, (I + W1)ε1 =
(I – W2)ε0,

∥
∥ε1∥∥

2 =
∥
∥(I + W1)–1(I – W2)ε0∥∥

2 ≤
∣
∣
∣
∣
1 – λ

1 + λ

∣
∣
∣
∣ · ∥∥ε0∥∥

2 ≤ ∥
∥ε0∥∥

2.

When n = 1, (I + W2)ε2 = (w1I – W1)ε1 + l1ε
0. When max{w1,λ} = w1,

∥
∥ε2∥∥

2 ≤ ∥
∥(I + W2)–1(w1I – W1)(I + W1)–1(I – W2)

∥
∥

2

∥
∥ε1∥∥

2 +
∥
∥(I + W2)–1∥∥

2

∥
∥l1ε

0∥∥
2

≤ max

{∣
∣
∣
∣
w1 – λ

1 + λ

∣
∣
∣
∣

}
∥
∥ε1∥∥

2 + max

{
l1

1 + λ

}
∥
∥ε0∥∥

2

≤ max

{∣
∣
∣
∣
1 – λ

1 + λ

∣
∣
∣
∣

}
∥
∥ε0∥∥

2

≤ ∥
∥ε0∥∥

2,



Li et al. Advances in Difference Equations  (2018) 2018:280 Page 10 of 19

whereas when max{w1,λ} = λ,
∥
∥ε2∥∥

2 ≤ ∥
∥(I + W2)–1(w1I – W1)(I + W1)–1(I – W2)

∥
∥

2

∥
∥ε1∥∥

2 +
∥
∥(I + W2)–1∥∥

2

∥
∥l1ε

0∥∥
2

≤ max

{∣
∣
∣
∣
w1 – λ

1 + λ

∣
∣
∣
∣

}
∥
∥ε1∥∥

2 + max

{
l1

1 + λ

}
∥
∥ε0∥∥

2

≤ max

{∣
∣
∣
∣
λ + l1 – w1

1 + λ

∣
∣
∣
∣

}
∥
∥ε0∥∥

2

≤ ∥
∥ε0∥∥

2.

Assuming that n ≤ k + 1, we will have ‖εn‖2 ≤ ‖ε0‖2 when n = k + 2. �

When max{w1 – λ} ≤ max{w1,λ} ≤ w1,
∥
∥εk+2∥∥

2 =
∥
∥(I + W2)–1(w1I – W1)(I + W1)–1(w1I – W2)

∥
∥

2

∥
∥εk∥∥

2

+
∥
∥(I + W2)–1(w1I – W1)(I + W1)–1∥∥

2

∥
∥w2ε

n–1 + · · · + wn–1ε
1 + lnε

0∥∥
2

+
∥
∥(I + W2)–1∥∥

2

∥
∥w2ε

n + · · · + wnε
1 + ln+1ε

0∥∥
2

≤ max

{∣
∣
∣
∣

(
w1 – λ

1 + λ

)2∣∣
∣
∣

}
∥
∥εk∥∥

2 +
(w1 – λ)
(1 + λ)2

∥
∥(w2 + · · · + wn–1 + ln)ε0∥∥

+
1

1 + λ

∥
∥(w2 + · · · + wn + ln+1)ε0∥∥

2

≤
(

w1

1 + λ

)2∥
∥ε0∥∥

2 +
w1(1 – w1)

(1 + λ)2

∥
∥ε0∥∥

2 +
1 – w1

1 + λ

∥
∥ε0∥∥

2

≤ w1

(1 + λ)2

∥
∥ε0∥∥

2

≤ ∥
∥ε0∥∥

2;

when max{w1 – λ} ≤ max{w1,λ} ≤ λ,
∥
∥εk+2∥∥

2 =
∥
∥(I + W2)–1(w1I – W1)(I + W1)–1(w1I – W2)

∥
∥

2

∥
∥εk∥∥

2

+
∥
∥(I + W2)–1(w1I – W1)(I + W1)–1∥∥

2

∥
∥w2ε

n–1 + · · · + wn–1ε
1 + lnε

0∥∥
2

+
∥
∥(I + W2)–1∥∥

2

∥
∥w2ε

n + · · · + wnε
1 + ln+1ε

0∥∥
2

≤ max

{∣
∣
∣
∣

(
w1 – λ

1 + λ

)2∣∣
∣
∣

}
∥
∥εk∥∥

2 +
(w1 – λ)
(1 + λ)2

∥
∥(w2 + · · · + wn–1 + ln)ε0∥∥

+
1

1 + λ

∥
∥(w2 + · · · + wn + ln+1)ε0∥∥

2

≤
(

λ

1 + λ

)2∥
∥ε0∥∥

2 +
λ(1 – w1)
(1 + λ)2

∥
∥ε0∥∥

2 +
1 – w1

1 + λ

∥
∥ε0∥∥

2

≤ λ

1 + λ

λ

1 + λ
+

1 – w1

1 + λ

∥
∥ε0∥∥

2

≤ λ

1 + λ

∥
∥ε0∥∥

2 +
1 – w1

1 + λ

∥
∥ε0∥∥

2

≤ ∥
∥ε0∥∥

2.

Obviously, we can get the following:
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Theorem 2 The solution of PASE-I scheme (6) for the time-space-fractional B–S equation
is unconditionally stable.

3.3 Convergence of PASE-I difference scheme
Lemma 6 Let V (xi, τn) be the exact solution of equation (1). Define en

i = V (xi, τn) –
V n

i , en = (en
1, en

2, . . . , en
M–1), ‖en‖∞ = |en

l | = max1≤i≤m–1 |en
i |, n = 1, 2, . . . , N . Then ‖en‖∞ ≤

l–1
n Cτα(τ 2–α + h2), where C is a constant.

Proof Substitute V n
i = V (xi, τn) – en

i into the difference scheme (7):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(I + W1)en+1 = (w1I – W2)en

+
∑n–1

j=1 wj+1en–j + lne0 + ταRn,

(I + W2)en+2 = (w1I – W1)en+1

+
∑n

j=1 wj+1en+1–j + ln+1e0 + ταRn+1,

n = 0, 2, 4, . . . , (9)

where e0
i = 0, Rn = O(τ 2–α +h2), that is, with a positive constant C, we have ‖Rn‖ ≤ C(τ 2–α +

h2).
When n = 0, e1 = (I + W1)–1(I – W2)e0 + (I + W1)–1ταR0 = (I + W1)–1ταR0.
By Lemma 3,

∥
∥e1∥∥∞ =

∥
∥(I + W1)–1ταR0∥∥∞ ≤ τα

∥
∥R0∥∥∞ ≤ l–1

0 Cτα
(
τ 2–α + h2).

To verify the convergence of the PASE-I scheme, we consider the E–I and I–E serial
schemes. First, consider the classic E–I scheme: when n = 0,

–a′
ne2

i–1 +
(
1 + b′

n
)

2e2
i – c′

ne2
i+1 = (w1l2n + l2n+1)e0

i + ταR2
i = ταR2

i ,
∥
∥e2∥∥∞ =

∣
∣e2

L2

∣
∣ ≤ –a′

n
∣
∣e2

L2–1
∣
∣ +

(
1 + b′

n
)∣
∣e2

L2

∣
∣ – c′

n
∣
∣e2

L2+1
∣
∣

≤ ∣
∣–c′

ne2
L2+1 +

(
1 + b′

n
)
e2

L2 – a′
ne2

L2–1
∣
∣

=
∣
∣ταR2

L2

∣
∣

≤ Cτα
(
τ 2–α + h2)

≤ l–1
1 Cτα

(
τ 2–α + h2).

Assuming that n ≤ 2s, we get ‖e2s‖∞ ≤ l–1
2s–1Cτα(τ 2–α + h2). When n = 2s + 2,

∥
∥e2s+2∥∥∞

=
∣
∣e2s+2

l
∣
∣ ≤ –c′

n
∣
∣e2s+2

L2s+2+1
∣
∣ + (1 + bn)

∣
∣e2s+2

L2s+2

∣
∣ – a′

n
∣
∣e2s+2

L2s+2–1
∣
∣

≤ ∣
∣–c′

ne2s+2
L2s+2+1 + (1 + bn)e2s+2

L2s+2 – a′
ne2s+2

L2s+2–1
∣
∣

=

∣
∣
∣
∣
∣
w1c′

ne2s
L2s+2+1 +

[
w1

(
w1 – b′

n
)

+ w2
]
e2s

L2s+2 + w1a′
ne2s

L2s+2–1

+
2s–1∑

j=1

(w1wj+1 + wj+2)e2s–j
L2s+2

+ ταR2s+2
L2s+2

∣
∣
∣
∣
∣
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≤ w1c′
n
∥
∥e2s∥∥∞ +

[
w1

(
w1 – b′

n
)

+ w2
]∥
∥e2s∥∥∞ + w1a′

n
∥
∥e2s∥∥∞

+
2s–1∑

j=1

(w1wj+1 + wj+2)
∥
∥e2s–j∥∥∞ + Cτα

(
τ 2–α + h2)

=
(
w2

1 + w2
)∥
∥e2s∥∥∞ + (w1w2 + w3)

∥
∥e2s–1∥∥∞ + · · · + (w1w2s + w2s+1)

∥
∥e1∥∥∞

+ Cτα
(
τ 2–α + h2)

≤ [(
w2

1 + w2
)
l–1
2s–1 + (w1w2 + w3)l–1

2s–2 + · · · + (w1w2s + w2s+1)l–1
0 + 1

]
Cτα

(
τ 2–α + h2)

≤ [(
w2

1 + w2 + w1w2 + w3 + · · · + w1w2s + w2s+1
)
l2s + 1

]
Cτα

(
τ 2–α + h2)

= l–1
2s

(
w2

1 + w2 + w1w2 + w3 + · · · + w1w2s + w2s+1 + l2s
)
Cτα

(
τ 2–α + h2)

= l–1
2s (l1l2s – l2s+1)Cτα

(
τ 2–α + h2)

≤ l–1
2s–1Cτα

(
τ 2–α + h2).

Then consider the classic I–E scheme. When n = 0,

e2
i = (1 + w1)e1

i + (l1 – l0)e0
i + ταR2

i = (1 + w1)e1
i + ταR2

i ,
∥
∥e2∥∥∞ =

∣
∣e2

L2

∣
∣ =

∣
∣(1 + w1)e1

L2 + ταR2
L2

∣
∣

≤ (w1 + 1)
∥
∥e1∥∥∞ + τα

(
τ 2–α + h2)

≤ ∣
∣(w1 + 1)l–1

0 + 1
∣
∣ · Cτα

(
τ 2–α + h2)

≤ (w1 + 2)Cτα
(
τ 2–α + h2)

≤ l–1
1 Cτα

(
τ 2–α + h2).

Assuming that n ≤ 2s + 1, we get ‖e2s+1‖∞ ≤ l–1
2s Cτα(τ 2–α + h2). When n = 2s + 2,

∥
∥e2s+2∥∥∞

=
∣
∣e2s+2

L2s+2

∣
∣

=
∣
∣(1 + w1)e2s+1

L2s+2 + (w2 – w1)e2s
L2s+2 + · · · + (w2s+1 – w2s)e1

L2s+2

+ (l2s+1 – l2s)e0
L2s+2 + ταR2s+2

L2s+2

∣
∣

=

∣
∣
∣
∣
∣
(1 + w1)e2s+1

L2s+2 +
2s∑

j=1

(wj+1 – wj)e
2s+1–j
L2s+2

+ ταR2s+2
L2s+2

∣
∣
∣
∣
∣

= (1 + w1)
∥
∥e2s+1∥∥∞ + (w2 – w1)

∥
∥e2s∥∥∞ + · · · + (w2s+1 – w2s)

∥
∥e1∥∥∞ + ταC

(
τ 2–α + h2)

≤ (1 + w1)l–1
2s ταC

(
τ 2–α + h2) + (w2 – w1)l–1

2s–1τ
αC

(
τ 2–α + h2) + · · ·

+ (w2s+1 – w2s)l–1
0 ταC

(
τ 2–α + h2) + ταC

(
τ 2–α + h2)

≤ {
(1 + w1)l–1

2s + (w2 – w1)l–1
2s–1 + · · · + (w2s+1 – w2s)l–1

0 + 1
} · ταC

(
τ 2–α + h2)

≤ {
(1 + w1 + w2 – w1 + · · · + w2s+1 – w2s)l–1

2s+1 + 1
}
ταC

(
τ 2–α + h2)

≤ {
(1 + w2s+1)l–1

2s+1 + 1
}
ταC

(
τ 2–α + h2)

≤ l–1
2s+1

{
(1 + w2s+1) + l2s+1

}
ταC

(
τ 2–α + h2)

≤ l–1
2s+1τ

αC
(
τ 2–α + h2)
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because

lim
n→∞

l–1
n
nα

= lim
n→∞

n–α

n1–α – (n – 1)1–α
= lim

n→∞
n–1

1 – (1 – n–1)1–α
=

1
1 – α

.

Define nτ ≤ Z, l–1
n ≤ mnα , Ĉ = CTαh, where m, h, Ĉ are positive numbers. Then we

get |V (xi, τn) – V n
i | ≤ hnαταC(τ 2–α + h2) = h(nτ )αC(τ 2–α + h2) ≤ Ĉ(τ 2–α + h2), where,

i = 2, 3, . . . , M, n = 1, 2, . . . , N . �

Theorem 3 The solution of PASE-I scheme (6) for time-space-fractional B–S equation is
unconditionally convergent. It satisfies

∣
∣V (xi, τn) – V n

i
∣
∣ ≤ Ĉ

(
τ 2–α + h2), Ĉ > 0.

4 The PASI-E difference scheme for time-space-fractional B–S equation
Similarly, every segment of the odd time layer is arranged from left to right in the order
of “classic implicit–classic explicit–classic implicit”. In even time layer, the rule of calcula-
tion becomes “classic explicit–classic implicit–classic explicit”. We can obtain the PASI-E
scheme of equation (1):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(I + G2)V n+1 = (w1I – G1)V n + qn

+
∑n–1

j=1 wj+1V n–j + lnV 0,

(I + G1)V n+2 = (w1I – G2)V n+1 + qn+2

+
∑n

j=1 wj+1V n+1–j + ln+1V 0,

n = 0, 2, 4, . . . , (10)

where G1, G2, and qn are as before. The theoretical analysis of PASI-E scheme is similar
to that of PASE-I scheme, so we get a similar theorem.

Theorem 4 The PASI-E scheme (10) for time-space-fractional B–S equation has a unique
solution. The scheme is unconditionally stable and convergent. It also satisfies

∣
∣V (xi, τn) – V n

i
∣
∣ ≤ Ĉ

(
τ 2–α + h2), Ĉ > 0.

The PASE-I and PASI-E schemes not only guarantee the stability of the numerical com-
putation, but also have good parallel properties, which can effectively improve the com-
putational efficiency of solving the time-space-fractional B–S equation.

5 Numerical experiments
The numerical experiments were performed on the Intel Core i3 CPU in the Matlab
R2012b environment.

Example 1 ([30]) Consider the European call option with expiration dates of 3 months, 6
months, 9 months, and 12 months. The stock price S is 97 dollars, the final price K is 50
dollars, the risk rate r = 0.01 per annum, and the volatility σ = 0.2 per year.
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We consider the following time-space-fractional B-S equation:

⎧
⎨

⎩

P(α)
t = ( r

�(2–α) P – rSαP(α)
S )t1–α – �3(1+α)

�(1+2α)�
2(2 – α)σ 2S2αP(2α)

S ,

P(S, T) = max{S – K , 0}.
(11)

To make a comparison with C–N scheme in [30], we use PASE-I and PASI-E schemes to
calculate the option prices. We take M = 1001, N = 100, L = 200, Q = M–1

L = 5, N+ = ln 100,
N– = ln 0.1, α = 0.7, T = 12. The surface plots of the C–N scheme solution, PASE-I scheme
solution, and PASI-E scheme solution are as follows. It can be seen from Figs. 2–4 that the
shapes of three schemes are consistent and their surfaces are smooth.

The numerical solutions of the C–N scheme, PASE-I scheme, and PASI-E scheme for
time-space-fractional B-S equation are compared as follows.

Figure 2 The surface plot of the C–N scheme
solution

Figure 3 The surface plot of the PASE-I scheme
solution

Figure 4 The surface plot of the PASI-E scheme
solution
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Table 1 Numerical solutions of three schemes (α = 0.7)

Scheme T = 3 T = 6 T = 9 T = 12

C–N 48.3561 48.5284 48.6589 48.7636
PASE-I 48.1602 48.2883 48.4144 48.5403
PASI-E 48.1603 48.2883 48.4144 48.5402

Figure 5 numerical solutions of three schemes

Figure 6 The curves of the SRET at time layer

It can be seen from Table 1 and Fig. 5 that the numerical solutions obtained by these
three schemes for the time-space-fractional B–S equation are very similar.

To verify the stability of PASE-I and PASI-E schemes, the relative errors over time are
given: V n

i is the C–N scheme solution, and Ṽ n
i is the PASE-I (PASI-E) scheme solution.

The SRET presents the change of relative errors with time, and the DTE presents the dis-
tribution of relative errors at space grid. We take M = 1001, N = 1000, α = 0.7. The SRET
and DTE results of equation (11) are as follows:

SRET(n) =
M∑

i=1

|V n
i – Ṽ n

i |
V n

i
,

DTE(i) =
1
2

N∑

j=1

(
Ṽ j

i – V j
i
)2.

It can be seen from Fig. 6 that the SRET is larger at the beginning; as the time step in-
creases, the relative errors decrease rapidly and gradually keep at a constant level. Figure 7
shows that the DTE is between 0 and 0.045; the solutions of PASE-I and PASI-E schemes
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Figure 7 The curves of the DTE at space layer

Table 2 The space-convergent orders and errors of PASE-I scheme solution (N = 1000)

M α L2h,k Order1 α L2h,k Order1

10 0.03163555 – 0.01483056 –
20 0.00784561 2.011587 0.00367798 1.989704
40 0.3 0.00196925 1.997240 0.7 0.00092317 2.017417
80 0.00049034 2.005782 0.00022987 1.954373
160 0.00012307 1.994240 0.00005769 1.979276

Table 3 The time-convergent orders and errors of PASE-I scheme solution (M = 1001)

N α L2h,k Order2 α L2h,k Order2

10 0.00811943 – 0.00212298 –
20 0.01146685 1.693260 0.00297101 1.260633
40 0.3 0.01621534 1.699625 0.7 0.00419697 1.295841
80 0.02293472 1.700592 0.00593832 1.301835
160 0.03243612 1.700231 0.00839981 1.300784

are almost the same with that of C–N scheme, and they have good accuracy to solve time-
space-fractional B–S equation.

To verify whether the space-convergent orders and the time-convergent orders are con-
sistent with theoretical analysis, we define L2 as errors, Order1 as space-convergent orders,
and Order2 as time-convergent orders [31]. The PASI-E scheme is similar to the PASE-I
scheme. For convenience, we only consider the time- and space-convergent orders of the
PASE-I scheme. The results are presented in Tables 2 and 3.

E2(h, k) = max
0≤n≤N

∥
∥V n

i – Ṽ j
i
∥
∥

2,

Order1 = log2

(
E2(2h, k)
E2(h, k)

)

, Order2 = log2

(
E2(h, 2k)
E2(h, k)

)

.

Table 2 shows that the space-convergent order of the PASE-I scheme is 2. Table 3 shows
that the time-convergent order of the PASE-I scheme is 2 –α. The numerical results agree
with theoretical analysis.

To better compare the computational efficiency of the C–N and PASE-I schemes, we
take T = 12, the space layer is fixed as M = 1001, the selected time grid number is
N = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000. The results of the computing time and
speedup ratio [15] are given as follows.
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Table 4 The computing time and speedup ratio of C–N scheme and PASE-I scheme

Time/(s) 100 300 500 700 900 1100

C–N scheme 0.5508 4.2394 6.6865 13.4169 23.5131 40.5403
PASE scheme 0.2245 1.5764 2.5042 4.9042 8.0990 11.7430
Sp 2.4538 2.6893 2.6697 2.7358 2.9032 3.4529

Table 5 Comparison of numerical solutions of PASE-I scheme

Month 3 6 9 12

α=1 47.1332 47.2577 47.3821 47.5071
α=2/3 47.6891 48.0175 48.2657 48.4767
α=1/2 48.2288 48.5263 48.7499 48.9423
α=1/3 48.7917 49.0020 49.1681 49.3166

Figure 8 The option price calculated by PASE-I
scheme

As we can see from Table 4, with the increase of the number of grids, the computing
time of the two schemes is increasing, Sp is greater than 1 and gradually increases. That
is to say, the PASE-I parallel scheme has obvious advantages over the serial C–N scheme,
and the computational efficiency is higher.

Above all, the C–N and PASE-I schemes have similar numerical solutions; they both
have good accuracy to solve time-space-fractional B–S equation, but the computational
efficiency of the PASE-I scheme is much higher than that of the C–N scheme.

Example 2 Let α = 2/3, α = 1/2, α = 1/3, M = 1001, N = 1000. We use the PASE-I scheme
to calculate the price of options and make a comparison with classic B–S model (α = 1).

From Table 5 and Fig. 8 we can see that the option price calculated by the PASE-I scheme
is higher than that obtained by the standard B–S model. Generally speaking, for options
with maturities of twelve months, the price calculated by the classic B–S model is lower
than in the actual financial market [32]. This shows that the time-space-fractional B–S
model can better describe the change process of the asset price. Therefore, to be more
in line with the actual financial market, the parameter α in the time-space-fractional B-S
equation should be properly selected according to actual data.

6 Conclusions
Two intrinsic parallel difference schemes of PASE-I and PASI-E for time-space-fractional
B–S equation are unconditionally stable, the schemes have unique solutions and converge
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with second-order spatial accuracy and (2 – α)th-order time accuracy. The numerical ex-
periments verify the theoretical analysis and show that the PASE-I and PASI-E difference
methods have ideal computational precision and obvious parallel computing properties.
They are suitable for various types of parallel computing systems. Especially, when the
space points are large enough, the two schemes have obvious localization characteristics
in terms of calculation and communication, They are very suitable for use on distributed
storage large-scale parallel computing systems. Meanwhile, it is confirmed that the frac-
tional B–S equation is more consistent with the actual financial market.
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