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Abstract
In this paper, we consider a weakly coupled sinh-Gordon equation which takes values
in a commutative Frobenius subalgebra of gl(2,C). Then we construct some nonlocal
symmetries of the Frobenius sinh-Gordon system using its Bäcklund transformation
and infinitesimal transformations. Based on the nonlocal symmetries, we show some
conserved densities of the Frobenius sinh-Gordon system. Using these symmetries,
we also construct some new coupled integro-differential systems.
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1 Introduction
The sinh-Gordon equation and sine-Gordon equation are important integrable equations
and they describe many interesting phenomena including dynamics of coupled pendu-
lums, Josephson junction arrays [1], nonlinear excitations in complex systems in physics,
and living cellular structures [2]. These two models have a transformation which links
them together. In [3], Grauel studied the Painlevé property and Bäcklund transformation
of sinh-Gordon equation.

As we know, Lie symmetries are very important in finding solutions of integrable equa-
tions [4–13], particularly the residual symmetries and nonlocal symmetries [14–16]. In
[17], nonlocal symmetries of the (1 + 1)-dimensional sinh-Gordon equation are obtained.
Making advantages of the consistent conditions introduced when solving the nonlocal
symmetries, some new nonlocal conservation laws of the sinh-Gordon equation related
to the nonlocal symmetries are obtained. Some new finite and infinite dimensional non-
linear systems are constructed by taking the nonlocal symmetries as symmetry constraint
conditions imposed on the Bäcklund transformations.

Nonlocal symmetries were first studied rigorously early in 1980 [18] in which a satisfac-
tory geometric formulation was developed, and later a series of works [19, 20] appeared.
A constructive method for deriving nonlocal symmetries of differential equations based
on the Lie–Bäcklund theory of groups was developed in [21]. Systematic procedures were
presented for finding nonlocally related partial differential equations and their many local
and nonlocal conservation laws and nonlocal symmetries in [22]. Nonlocal symmetries
are of interest because they are associated with the existence of linearizing transforma-
tions, Bäcklund transformations, and Darboux transformations. Applying the infinitesi-
mal transformation on the nonlinear system and its lax pair simultaneously, some useful
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nonlocal symmetries involving the eigenfunction can be obtained. These nonlocal symme-
tries are also known as the eigenfunction symmetries [23, 24], and they have been recently
studied to construct explicit solutions [25].

In [26], from the algebraic reductions from the Lie algebra gl(n,C) to its commutative
subalgebra Zn, we construct the general Zn-sine-Gordon and Zn-sinh-Gordon systems
which contain many multi-component sine-Gordon type and sinh-Gordon type equa-
tions. Meanwhile, we give the Bäcklund transformations of the Zn-sine-Gordon and Zn-
sinh-Gordon equations which can generate new solutions from seed solutions. A natu-
ral question is what is the nonlocal symmetry of them, particularly the Z2-sinh-Gordon
equation (also named as Frobenius sinh-Gordon equation in this paper). In this paper, we
will answer this question in detail. This paper is arranged as follows. In Sect. 2, we recall
some basic facts about the Frobenius sinh-Gordon equations and their Bäcklund trans-
formations. In Sect. 3, we construct some coupled integro-differential systems using the
nonlocal symmetries.

2 The Frobenius sinh-Gordon equation and its Bäcklund transformation
In this section, we recall the Frobenius sinh-Gordon equation which was constructed
firstly in our recent paper [26]. The Frobenius sinh-Gordon equation was constructed
in the commutative algebra Z2 = C[�]/(�2) and � = (δi,j+1)ij ∈ gl(2,C). In this section, we
will use a similar method in the last section to consider the Bäcklund transformation of
the Frobenius sinh-Gordon equation. Based on the well-known sinh-Gordon equation

uxt = sinh u, (1)

the following equation in Z2 is the Frobenius sinh-Gordon equation:

⎧
⎨

⎩

uxt = sinh u,

vxt = v cosh u.
(2)

The Frobenius sinh-Gordon equation has the following Bäcklund transformation [26]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

( u′+u
2 )x = a sinh u′–u

2 ,

( v′+v
2 )x = v′–v

2 cosh u′–u
2 ,

( u′–u
2 )t = 1

a sinh u′+u
2 ,

( v′–v
2 )t = 1

a
v′+v

2 cosh u′+u
2 .

(3)

3 Nonlocal symmetries of the Frobenius sinh-Gordon equation
Suppose that the above Frobenius sinh-Gordon equation (2) and the Bäcklund transfor-
mation (3) are invariant up to an infinitesimal transformation

u → u + ετ u, v → v + ετ v, (4)

u′ → u′ + ετ u′
, v′ → v′ + ετ v′

, (5)

a → a – 2εδ, (6)
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we can derive the following identities:

τ u
xt – n2 cosh(u)τ u = 0, (7)

τ u′
xt – n2 cosh

(
u′)τ u′

= 0, (8)

τ u
x – τ u′

x – 2δn sinh

(
u
2

+
u′

2

)

–
a
2

n cosh

(
u
2

+
u′

2

)
(
τ u′ + τ u) = 0, (9)

τ u
t – τ u′

t –
8
a2 δn sinh

(
u
2

–
u′

2

)

+
2
a

n cosh

(
u
2

–
u′

2

)
(
τ u – τ u′)

= 0, (10)

τ v
xt – n2 cosh(u)τ v + n2v sinh(u)τ u = 0, (11)

τ v′
xt – n2 cosh

(
u′)τ v′

+ n2v′ sinh
(
u′)τ u′

= 0, (12)

τ v
x – τ v′

x – 2δn
(

v
2

+
v′

2

)

cosh

(
u
2

+
u′

2

)

+
a
2

n
(

v
2

+
v′

2

)

sinh

(
u
2

+
u′

2

)
(
τ u′ + τ u)

–
a
2

n cosh

(
u
2

+
u′

2

)
(
τ v′

+ τ v) = 0, (13)

τ v
t – τ v′

t –
8
a2 δn

(
v
2

–
v′

2

)

cosh

(
u
2

–
u′

2

)

+
2
a

n cosh

(
u
2

–
u′

2

)
(
τ v – τ v′)

–
2
a

n
(

v
2

–
v′

2

)

sin

(
u
2

–
u′

2

)
(
τ u – τ u′)

= 0. (14)

Similar to [17], we can derive the following three symmetries.
I: If δ = 0, τ u′ = τ v′ = 0, then the Frobenius sinh-Gordon equation has a nonlocal sym-

metry with

τ u = eap, τ v = aqeap, (15)

where

px = cosh

(
u
2

–
u′

2

)

, pt =
1
a2 cosh

(
u
2

+
u′

2

)

, (16)

qx =
(

v
2

–
v′

2

)

sinh

(
u
2

–
u′

2

)

, qt =
1
a2

(
v
2

+
v′

2

)

sinh

(
u
2

+
u′

2

)

. (17)

II: If δ = 1
2n , τ u′ = τ v′ = 0, then the Frobenius sinh-Gordon equation has a nonlocal sym-

metry with

τ u = reap, τ v = seap + raqeap, (18)

where

rx = e–ap sinh

(
u
2

–
u′

2

)

, rt = –
1
a2 e–ap sinh

(
u
2

+
u′

2

)

, (19)

sx = e–ap
(

v
2

–
v′

2

)

sinh

(
u
2

–
u′

2

)

– aqe–ap sinh

(
u
2

–
u′

2

)

, (20)

st = –
1
a2 e–ap

(
v
2

+
v′

2

)

sinh

(
u
2

+
u′

2

)

+
q
a

e–ap sinh

(
u
2

+
u′

2

)

. (21)
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III: If δ = 0, τ u′ = u′
x, τ v′ = v′

x, then the Frobenius sinh-Gordon equation has a nonlocal
symmetry with

τ u = u′
x – nafe– a

2 np, τ v = v′
x – nage– a

2 np +
n2a2

2
qfe– a

2 np, (22)

where

fx = u′
x cos

(
u
2

+
u′

2

)

e
a
2 np, ft =

a
2

nu′
xte

a
2 np, (23)

gx =
[

v′
x – u′

x

(
v
2

+
v′

2

)]

cos

(
u
2

+
u′

2

)

e
a
2 np +

a
2

nqu′
x cos

(
u
2

+
u′

2

)

e
a
2 np, (24)

gt =
a
2

nv′
xte

a
2 np +

a2

4
n2qu′

xte
a
2 np. (25)

It is evident that symmetries of the Frobenius sinh-Gordon equation (2) obtained above
are really nonlocal as they depend on the function u′, v′, which is related to the function
u, v through the Bäcklund transformation (3).

Integrating with respect to x and t will lead to

τ u = –4eaprδ – 2aeap
∫

pxτ
u′

e–ap dx – τ u′
+ eapG0(t), (26)

τ v = –4aqeaprδ – 4eapsδ – 2a2qeap
∫

pxτ
u′

e–ap dx – 2aeap
∫

qxτ
u′

e–ap dx

– 2aeap
∫

pxτ
v′

e–ap dx + 2a2eap
∫

pxτ
u′

qe–ap dx – τ v′

+ aqeapG0(t) + eapG1(t), (27)

and

τ u =
4w
a2 e

h
a δ +

2
a

e
h
a

∫

hxτ
u′

e– h
a dx – τ u′

+ e
h
a G3(x), (28)

τ v =
4w̄
a2 e

h
a δ +

4w
a2

h̄
a

e
h
a δ +

2
a2 h̄e

h
a

∫

hxτ
u′

e– h
a dx +

2
a

e
h
a

∫

h̄xτ
u′

e– h
a dx

+
2
a

e
h
a

∫

hxτ
v′

e– h
a dx –

2
a2 e

h
a

∫

hxτ
u′

h̄e– h
a dx – τ v′ +

h̄
a

e
h
a G3(t) + e

h
a G4(x), (29)

where p, q, r, s, h, w, h̄, w̄ satisfy

px = cosh

(
u
2

–
u′

2

)

, qx =
(

v
2

–
v′

2

)

sinh

(
u
2

–
u′

2

)

, (30)

rx = sinh

(
u
2

–
u′

2

)

e–ap, sx =
(

v
2

–
v′

2

)

sinh

(
u
2

–
u′

2

)

e–ap – aq sinh

(
u
2

–
u′

2

)

e–ap,

ht = cosh

(
u
2

+
u′

2

)

, h̄t =
(

v
2

+
v′

2

)

sinh

(
u
2

+
u′

2

)

, (31)

wt = sinh

(
u
2

+
u′

2

)

e
h
a , w̄t =

(
v
2

+
v′

2

)

sinh

(
u
2

+
u′

2

)

e
h
a +

h̄
a

sinh

(
u
2

+
u′

2

)

e
h
a .
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G0(t), G0(t), G3(x), G4(x) are arbitrary integration functions. The following conditions
should be satisfied:

h = a2p, w = –a2r, h̄ = a2q, w̄ = –a2s, (32)
∫

pxτ
u′

e–ap dx +
∫

pxτ
u′

e–ap dt +
1
a
τ u′

e–ap = 0, (33)
∫

qxτ
u′

e–ap dx +
∫

pxτ
u′

e–ap dx +
∫

pxτ
v′

e–ap dx – a
∫

pxqτ v′
e–ap dx

+
∫

qxτ
u′

e–ap dt +
∫

pxτ
v′

e–ap dt – a
∫

pxqτ u′
e–ap dt +

1
a
τ v′

e–ap – qτ u′
e–ap

= 0. (34)

Then we can get the following corresponding conserved density and flux:

ρ1 = a2 cosh

(
u
2

–
u′

2

)

, J1 = – cosh

(
u
2

+
u′

2

)

, (35)

ρ̄1 = a2
(

v
2

–
v′

2

)

cosh

(
u
2

–
u′

2

)

, J̄1 = –
(

v
2

+
v′

2

)

cosh

(
u
2

+
u′

2

)

, (36)

ρ2 =
a2

eap sinh

(
u
2

–
u′

2

)

, J2 =
1

eap sinh

(
u
2

+
u′

2

)

, (37)

ρ̄2 =
a2

eap

(
v
2

–
v′

2

)

sinh

(
u
2

–
u′

2

)

–
a3q
eap sinh

(
u
2

–
u′

2

)

, (38)

J̄2 =
1
τ u

(
v
2

–
v′

2

)

sinh

(
u
2

–
u′

2

)

–
aq
eap sinh

(
u
2

–
u′

2

)

, (39)

ρ3 = –
a
2

τ u′

eap , J3 = –
τ u′

2eap cosh

(
u
2

+
u′

2

)

, (40)

ρ̄3 = –
a
2

τ v′

eap +
a
2

aqτ u′

eap , (41)

J̄3 =
[

aqτ u′

2eap –
τ u′

2eap

(
v
2

+
v′

2

)

–
τ v′

2eap

]

cosh

(
u
2

+
u′

2

)

. (42)

These conservation laws of the Frobenius sinh-Gordon equation satisfy the identity

∂tρi = ∂xJi, ∂tρ̄i = ∂xJ̄i. (43)

4 Coupled integro-differential systems
From the nonlocal symmetry (16) and (17), we can construct the coupled integro-
differential integrable systems with respect to the variable x:

ux =
m∑

i=1

bi exp

(

a
∫

cosh

(
u
2

–
ui

2

)

dx
)

, (44)

ux + uix = 2ai sinh

(
u
2

–
ui

2

)

, i = 1, 2, . . . , m, (45)

vx =
m∑

i=1

bia
[∫ (

v
2

–
vi

2

)

cosh

(
u
2

–
ui

2

)

dx
]

exp

(

a
∫

cosh

(
u
2

–
ui

2

)

dx
)

, (46)
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vx + vix = 2ai

(
v
2

–
vi

2

)

sinh

(
u
2

–
ui

2

)

, i = 1, 2, . . . , m. (47)

Similarly, from the nonlocal symmetry, we can construct the coupled integro-differential
integrable systems with respect to the variable t:

ut =
m∑

i=1

ci exp

(
1
a

∫

cosh

(
u
2

+
ui

2

)

dx
)

, (48)

ut – uit =
2
ai

sinh

(
u
2

+
ui

2

)

, i = 1, 2, . . . , m, (49)

vt =
m∑

i=1

ci
1
a

[∫ (
v
2

+
vi

2

)

cosh

(
u
2

+
ui

2

)

dx
]

exp

(
1
a

∫

cosh

(
u
2

+
ui

2

)

dx
)

, (50)

vt – vit =
2
ai

(
v
2

+
vi

2

)

sinh

(
u
2

+
ui

2

)

, i = 1, 2, . . . , m. (51)

Of course, these coupled integro-differential systems are integrable systems which might
be taken into our detailed study in the future.
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