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Abstract
In this paper, we investigate a delayed differential algebraic prey–predator system,
where commercial harvesting on predator and additive Allee effect on prey are
considered. A discrete time delay is utilized to represent gestation delay of the
predator population. Positivity of solutions and uniform persistence of system are
discussed. In the absence of time delay, by taking economic interest as a bifurcation
parameter, some sufficient conditions associated with additive Allee effect and
economic interest are derived to show that the proposed system undergoes
singularity-induced bifurcation around the interior equilibrium. In the presence of
time delay, combined dynamic effects of time delay and additive Allee effect on
population dynamics are discussed in the case of positive economic interest of
commercial harvesting. Existence of Hopf bifurcation and local stability switch around
the interior equilibrium are studied as gestation delay crosses the critical value.
Furthermore, properties of Hopf bifurcation are investigated based on the center
manifold theorem and the norm form of a delayed singular system. Existence of
global continuation of periodic solutions bifurcating from interior equilibrium is
discussed by using a global Hopf bifurcation theorem. Numerical simulations are
provided to show consistency with theoretical analysis.
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1 Introduction
In the 1930s, W.C. Allee proposed the concept of Allee effect from experimental stud-
ies and extensively investigated ecological significance of animal aggregations [1]. It is
well known that Allee effect is highly relevant to reduction in mating success, reduced
inbreeding efficiency, suppressed social thermoregulation [2, 3], and some other biolog-
ical or ecological reasons which can be found in [4, 5] and the references therein. It may
cause a positive feedback between a component of individual fitness and either number
or density of conspecifics. From ecological perspective, Allee effect can be categorized as
strong Allee effect and weak Allee effect, respectively. If some population undergoes the
strong Allee effect, then the population must surpass certain threshold to sustainable sur-
vival. However, the population threshold does not exist for the population with weak Allee
effect.
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Generally, a prey–predator system plays a significant role in bioeconomics, which de-
picts the basic interspecies relationships among various populations within an ecological
system. In 1960, P.H. Leslie and J.C. Gower [6] introduced a dynamical model in which
the environmental carrying capacity of the predator population is proportional to the
population density of the prey population. In recent decades, the prey–predator system
with Leslie–Gower functional response has attracted research attentions from both biolo-
gists and mathematicians [7–12]. Complex dynamics and stability analysis of the proposed
model around corresponding equilibria are investigated in [7, 8, 10]. Some diffusive prey–
predator model with modified Leslie–Gower schemes and additive Allee effect on prey
are proposed in [9, 11], and local and global asymptotical stability of the unique positive
constant equilibrium point of the system are analyzed in [9, 11]. In [12], authors establish
the following dynamical prey–predator model with Leslie–Gower functional response:

⎧
⎨

⎩

Ṅ(t) = N(t)(1 – N(t) – m
N(t)+a ) – bN(t)P(t)

N(t)+k1
,

Ṗ(t) = k2P(t)(1 – P(t)
N(t)+k3

),
(1)

where N(t) and P(t) represent the population density of prey and predator, respectively.
1 – N(t) – m

N(t)+a represents the additive Allee effect term, which was first introduced in
[13]. The term m

N(t)+a can cause weak or strong Allee effect without predator. The additive
Allee effect in [12] can be categorized as follows:

• if 0 < m < a, then the Allee effect in (1) is weak Allee effect,
• if m > a, then the Allee effect in (1) is strong Allee effect,

where m and a are Allee effect constants, a denotes the population size at which fitness is
half its maximum value [12], all the parameters mentioned above are positive constants.
By utilizing system (1), authors investigate complex dynamics of a Leslie–Gower predation
model with additive Allee effect on prey, which reveals that Allee effect can increase the
risk of ecological extinction [12].

Generally, commercial harvesting may be affected by various factors such as market
demand, seasonality, revenue, cost, and other factors in a market economy. Based on the
economic theory proposed in [14], an algebraic equation is constructed to study economic
interest of commercial harvesting:

Net Economic Revenue = Total Revenue (TR) – Total Cost (TC). (2)

We will extend the work in [12] by incorporating commercial harvesting on predator
into system (1). E(t) represents the commercial harvesting effort on predator at time t,
w represents the harvesting reward coefficients, c represents the cost per unit harvesting
effort for unit weight of predator. v is the economic interest of commercial harvesting on
predator. Based on system (1) TR and TC in Eq. (2), it is easy to show that TR = wE(t)P(t)
and TC = cE(t).

Remark 1.1 Recently, it has been shown that commercial harvesting on a prey–predator
system with Allee effect has a strong impact on population dynamics (see [7, 10, 15–19]
and the references therein). However, dynamical behavior due to variation of economic
interest of commercial harvesting is not discussed in [7, 10, 15–18]. Only dynamic effects
of strong Allee effect on population dynamics are considered in [19], the weak Allee effect
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case is not investigated in [19]. On the other hand, the reproduction of predator after pre-
dating prey is not instantaneous but will be mediated by some time lag required for gesta-
tion of the predator population. Hence, it is necessary to investigate combined dynamics of
time delay and additive Allee effect on population dynamics of a harvested prey–predator
system with commercial harvesting. Although the harvested prey–predator system with
Allee effect has attracted a great deal of attention, to authors’ best knowledge, little work
has been done on combined dynamic effects of time delay and additive Allee effect on pop-
ulation dynamics of the harvested prey–predator system with commercial harvesting.

In this paper, keeping all these aspects in mind, we extend the work in [12] by incor-
porating commercial harvesting on predator and gestation delay for predator into system
(1), where predator is assumed to be delayed by gestation delay τ . A singular system with
additive Allee effect and time delay is established as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Ṅ(t) = N(t)(1 – N(t) – m
N(t)+a ) – bN(t)P(t)

N(t)+k1
,

Ṗ(t) = k2P(t)(1 – P(t–τ )
N(t–τ )+k3

) – E(t)P(t),

0 = E(t)(wP(t) – c) – v,

(3)

interpretations for parameters and state variables share the same interpretations intro-
duced in systems (1) and (2). Furthermore, the initial conditions for system (3) take the
following form:

N(θ ) ≥ 0, P(θ ) ≥ 0, θ ∈ [–τ , 0], E(0) ≥ 0. (4)

System (3) can be rewritten in the matrix form as follows:

�(t)

⎡

⎢
⎣

Ṅ(t)
Ṗ(t)

0

⎤

⎥
⎦ =

⎡

⎢
⎣

F1(N , P, E)
F2(N , P, E)
F3(N , P, E)

⎤

⎥
⎦ =

⎡

⎢
⎢
⎣

N(t)(1 – N(t) – m
N(t)+a ) – bN(t)P(t)

N(t)+k1

k2P(t)(1 – P(t–τ )
N(t–τ )+k3

) – E(t)P(t)
E(t)(wP(t) – c) – v

⎤

⎥
⎥
⎦ . (5)

Remark 1.2 Since the algebraic equation in (3) includes no differentiated variables, the

third row in matrix �(t) =
[

1 0 0
0 1 0
0 0 0

]

has a corresponding zero row.

The remaining sections of this paper are organized as follows. Positivity of solutions
and uniform persistence of system (3) are investigated in the second section. In the third
section, in the absence of time delay, the existence of singularity-induced bifurcation is
investigated under the case of additive Allee effect on prey. In the absence of time delay,
combined dynamic effects of time delay and additive Allee effect on population dynam-
ics are discussed, local stability switch around interior equilibrium and the existence of
Hopf bifurcation are also discussed. In the fourth section, properties of Hopf bifurcation
are investigated. Existence of global continuation of periodic solutions bifurcating from
interior equilibrium is discussed by using a global Hopf bifurcation theorem. In the fifth
section, numerical simulations are provided to support theoretical findings. Finally, this
paper ends with a conclusion.
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Remark 1.3 The dynamical model proposed in [12] is composed of ordinary differential
equations, and it is utilized to study interaction mechanism of a prey–predator system
with additive Allee effect. Compared with the system established in [12], an algebraic
equation is introduced into system (3), which concentrates on dynamic effect of economic
interest of commercial harvesting on population dynamics and provides a straightforward
way to investigate complex dynamics due to variation of economic interest. Furthermore,
a discrete time delay, which represents gestation delay of the predator population, is in-
corporated into system (3). Consequently, compared with the work done in [12], we can
investigate combined dynamic effects of time delay and additive Allee effect on popula-
tion dynamics by analyzing the local stability and bifurcation phenomenon of system (3)
in this paper.

2 Positivity and uniform persistence
In this section, positivity of solutions and uniform persistence of system (3) with initial
conditions (4) will be studied.

Theorem 2.1 All solutions of system (3) with initial conditions (4) are positive for all t ≥ 0.

Proof For solutions of system (3), it is easy to show that Fi : R3+1
+ → R3 is locally Lipschitz

and satisfies the condition Fi > 0, where Fi (i = 1, 2, 3) can be found in (5). Due to the lemma
in [20] and Theorem A.4 in [21], all solutions of system (3) with initial conditions (4) exist
uniquely, and each component of solution remains within the interval [0, U0) for some
U0 > 0. Standard and simple arguments show that any solution of system (3) always exists
and stays positive. �

Lemma 2.2 ([22]) Consider the following equation:

u̇(t) = a1u(t – σ ) – a2u(t) – a3u2(t),

where a1, a2, a3, and σ are positive constants, u(t) > 0 for t ∈ [–σ , 0],
(i) if a1 > a2, then limt→∞ u(t) = a1–a2

a3
,

(ii) if a1 < a2, then limt→∞ u(t) = 0.

Theorem 2.3 If τ is bounded, e
bτ
k1 < k1 and we2(τ+k2τ ) > c hold, then system (3) with initial

conditions (4) is uniformly persistent.

Proof By taking the Taylor series expansion in [23], for N(t), P(t), and τ > 0, we have

⎧
⎨

⎩

N(t – τ ) = N(t) – τ d
dt (N(t) – τ Ṅ(t) + · · · ),

P(t – τ ) = P(t) – τ d
dt (P(t) – τ Ṗ(t) + · · · ).

Hence, it follows that

N(t – τ ) ≤ N(t), P(t – τ ) ≤ P(t), (6)

where τ is defined in system (3). Based on the first equation of system (3), it follows from
Theorem 2.1 and (6) that Ṅ(t) < N(t – τ ) ≤ N(t), so we derive that N(t) ≤ N(t – τ )eτ for
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t > τ , which is equivalent to N(t – τ ) ≥ N(t)e–τ , since for t > τ , we have

Ṅ(t) < N(t) – N2(t)e–2τ = N(t)
(

1 –
N(t)
e2τ

)

.

It follows from standard comparison arguments that

lim sup
t→∞

N(t) ≤ e2τ := N1. (7)

If τ is bounded, then N1 is bounded and N(t) ≤ N1 holds for t > T1 + τ , where T1 > 0.
On the other hand, from the first equation of system (3), it follows from Theorem 2.1 and
(6) that

Ṅ(t) > –
bN(t)P(t)

N(t) + k1P(t)
≥ –

bN(t)
k1

.

Hence, there exists T2 > T1 such that N(t) ≥ N(t – τ )e– bτ
k1 holds for t > T2 + τ , which is

equivalent to N(t – τ ) ≤ N(t)e
bτ
k1 , for t > T2 + τ , we have

Ṅ(t) > N(t – τ ) – e
2bτ
k1 N2(t) –

e
bτ
k1 N(t)

k1
.

By using Lemma 2.2, if e
bτ
k1 < k1, then

lim inf
t→∞ N(t) ≥ k1 – e bτ

k1

k1e 2bτ
k1

:= M1, (8)

which gives that there exists T3 > T2 such that N(t) > M1 > 0 for t > T3 + τ .
Based on the second equation of system (3), if follows from Theorem 2.1 and (6) that

Ṗ(t) ≤ k2P(t).
Hence there exists T4 > T3 such that P(t) ≤ P(t – τ )ek2τ for t > T4 + τ , which is equivalent

to P(t – τ ) ≥ P(t)e–k2τ . Consequently, for t > T4 + τ ,

Ṗ(t) ≤ k2P(t)
(

1 –
P(t)

e2(τ+k2τ )

)

.

By using standard comparison arguments, we can obtain that

lim sup
t→∞

P(t) ≤ e2(τ+k2τ ) := N2. (9)

If τ is bounded, then it shows that N2 > 0 is bounded, and there exists T5 > T4 such that
P(t) < N2 holds for t > T5 + τ . When v > 0, by solving the third equation of system (3), we
easily obtain that

E(t) =
v

wP(t) – c
.
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By virtue of (9), it follows that there exists T6 > T5 + τ , for t > T6, we have

lim inf
t→∞ E(t) ≥ v

wN2 – c
:= M3. (10)

If we2(τ+k2τ ) > c and τ are bounded, then it is easy to show that M3 > 0 is bounded, and
then there exists T7 > T6 such that E(t) ≥ M3 holds for t > T7.

According to practical biological interpretations, it follows from the second equation of
system (3) that

lim sup
t→∞

E(t) ≤ k2 := N3. (11)

According to the third equation of system (3), it follows from Theorem 2.1 that wP(t) > c
holds for v > 0, which gives that

lim inf
t→∞ P(t) >

c
w

:= M2. (12)

Hence, if τ is bounded, v > 0, e
bτ
k1 < k1, and we2(τ+k2τ ) > c hold, then it is obtained that

Ni > 0 and Mi > 0 (i = 1, 2, 3) are bounded. Therefore

lim sup
t→∞

N(t) ≤ N1, lim sup
t→∞

P(t) ≤ N2, lim sup
t→∞

E(t) ≤ N3,

lim inf
t→∞ N(t) ≥ M1, lim inf

t→∞ P(t) ≥ M2, lim inf
t→∞ E(t) ≥ M3,

which derives that system (3) with initial conditions (4) is uniformly persistent. �

3 Local stability analysis
According to common property resource economic theory in [14, 24], when v = 0, there is
a phenomenon of equilibrium state. An interior equilibrium is as follows: S∗(N∗, P∗, E∗) =
(N∗, c

w , k2(1 – c
w(N∗+k3) )), and N∗ satisfies the following equation:

N3 + ξ1N2 + ξ2N + ξ3 = 0,

where ξ1 = a+k1–1
3 , ξ2 = 1

3 [m – a + k1(a – 1) + bc
w ], ξ3 = k1(m – a) + abc

w .
By using the transformation x = N + ξ1, the above equation can be transformed as fol-

lows:

h(x) = x3 + 3η1x + η2 = 0, (13)

where η1 = ξ2 – ξ 2
1 , η2 = ξ3 – 3ξ1ξ2 + 2ξ 3.

Furthermore, we will investigate the existence of positive roots of Eq. (13).

Lemma 3.1 Existence conditions of positive roots of Eq. (13) are as follows:
(i) If η2 < 0, then Eq. (13) has a single positive root.

(ii) Assuming that η2 > 0 and η1 < 0,
• if η2

2 + 4η3
1 = 0, then Eq. (13) has a positive root of multiplicity two;

• if η2
2 + 4η3

1 < 0, then Eq. (13) has two positive roots.
(iii) If η2 = 0 and η1 < 0, then Eq. (13) has a unique positive root.
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Proof By simple computations, it is easy to show that the maximum and minimum values
of function h(x) are L1 = η2 + 2

√|η1|3 and l1 = η2 – 2
√|η1|3, respectively.

When η3 < 0 and η1 ≥ 0, by virtue of ḣ(x) = 3(x2 + η1) ≥ 0, we have h(x) is strictly in-
creasing and continuous in [0, +∞), which yields h(x) ≥ h(0) = η2. Consequently, h(x) has
a positive root.

When η3 < 0 and η1 ≤ 0, it is easy to show that Eq. (13) has a positive root.
When η2 > 0, it is easy to derive that η1 < 0, otherwise h(x) = x3 + 3η1x + η2 may not be

equal to zero.
If η2

2 + 4η3
1 = 0, then Eq. (13) has a positive root of multiplicity two. Furthermore, if

η2
2 + 4η3

1 < 0, then Eq. (13) has two positive roots.
When η2 = 0, we have that η1 < 0, otherwise h(x) = x3 + 3η1x + η2 may not be equal to

zero. Hence, Eq. (13) has a unique positive root. �

Moreover, simple algebraic computations show that Eq. (13) has two positive roots,
which are given as follows:

x1 =

3

√

(–4η2 + 4
√

4η3
1 + η2

2)2 – 4η1

2 3

√

–4η2 + 4
√

4η3
1 + η2

2

, x2 = –
x1

2
+

√

x3
1 + 4η2

2√x1
.

It should be noted that if the cubic equation (13) has one positive root, it must be

x1 =

3

√

(–4η2 + 4
√

4η3
1 + η2

2)2 – 4η1

2 3

√

–4η2 + 4
√

4η3
1 + η2

2

.

By considering η1 = 0 and η2 = 0, one can determine m = m∗
1, m = m∗

2, where

m∗
1 =

(a + k1 – 1)2

3
+ a + k1(1 – a) –

bc
w

,

m∗
2 =

1
3w(2k1 – a + 1)

[
3(a + k1 – 1)

(
bc – aw + k1w(a – 1) + 9a(wk1 – bc)

)

– 2(a + k1 – 1)2].

Based on the above analysis, sufficient conditions associated with the existence of inte-
rior equilibria of system (3) with strong Allee effect and weak Allee effect can be concluded
in Lemma 3.2 and Lemma 3.3, respectively.

Lemma 3.2 Existence conditions of interior equilibria of system (3) with strong Allee effect
are as follows:

(i) If either of the following inequalities holds:

⎧
⎨

⎩

2k1 + 1 – a – b > 0, 0 < a < m < m∗
2,

2k1 + 1 – a – b < 0, 0 < max{a, m∗
2} < m,

(14)
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then system (3) has a unique interior equilibrium

S∗
s =

(
N∗

s , P∗
s , E∗

s
)

=
(

x1 – ξ1,
c
w

, k2

(

1 –
c

w(x1 – ξ1 + k3)

))

.

(ii) If either of the following inequalities holds:
⎧
⎨

⎩

2k1 + 1 – a – b > 0, 0 < max{a, m∗
2} < m < m∗

1,

2k1 + 1 – a – b < 0, 0 < b < m < min{m∗
1, m∗

2},
(15)

then the following conclusions associated with the existence of interior equilibria of
system (3) hold:

• system (3) has two interior equilibria:

S∗
s1 =

(
N∗

s1, P∗
s1, E∗

s1
)

=
(

x1 – ξ1,
c
w

, k2

(

1 –
c

w(x1 – ξ1 + k3)

))

,

S∗
s2 = (N∗

s2, P∗
s2, E∗

s2) =
(

x2 – ξ1,
c
w

, k2

(

1 –
c

w(x2 – ξ1 + k3)

))

;

• system (3) has a unique interior equilibrium

S∗
s3 =

(
N∗

s3, P∗
s3, E∗

s3
)

=
(√

–η1,
c
w

, k2

(

1 –
c

w(√–η1 + k3)

))

with η2
2 + 4η3

1 = 0.
(iii) If a < m < m∗

1 , system (3) has a unique interior equilibrium

S∗
s =

(
N∗

s , P∗
s , E∗

s
)

=
(
√

–3η1,
c
w

, k2

(

1 –
c

w(
√

–3η1 + k3)

))

.

Lemma 3.3 Existence conditions of interior equilibria of system (3) with weak Allee effect
are as follows:

(i) If either of the following inequalities holds:
⎧
⎨

⎩

2k1 + 1 – a – b > 0, 0 < m < min{a, m∗
2},

2k1 + 1 – a – b < 0, 0 < m∗
2 < m < a,

(16)

then system (3) has a unique interior equilibrium

S∗
w =

(
N∗

w, P∗
w, E∗

w
)

=
(

x1 – ξ1,
c
w

, k2

(

1 –
c

w(x1 – ξ1 + k3)

))

.

(ii) If either of the following inequalities holds:
⎧
⎨

⎩

2k1 + 1 – a – b > 0, 0 < m∗
2 < m < min{a, m∗

1},
2k1 + 1 – a – b < 0, 0 < m < max{a, m∗

1, m∗
2},

(17)

then the following conclusions associated with the existence of interior equilibria of
system (3) hold:
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• system (3) has two interior equilibria as follows:

S∗
w1 =

(
N∗

w1, P∗
w1, E∗

w1
)

=
(

x1 – ξ1,
c
w

, k2

(

1 –
c

w(x1 – ξ1 + k3)

))

,

S∗
w2 =

(
N∗

w2, P∗
w2, E∗

w2
)

=
(

x2 – ξ1,
c
w

, k2

(

1 –
c

w(x2 – ξ1 + k3)

))

;

• system (3) has a unique interior equilibrium

S∗
w3 =

(
N∗

w3, P∗
w3, E∗

w3
)

=
(√

–η1,
c
w

, k2

(

1 –
c

w(
√

–η1 + k3)

))

,

where η2
2 + 4η3

1 = 0.
(iii) If 0 < m < max{a, m∗

1}, then system (3) has a unique interior equilibrium

S∗
w =

(
N∗

w, P∗
w, E∗

w
)

=
(
√

–3η1,
c
w

, k2

(

1 –
c

w(
√

–3η1 + k3)

))

.

In the case of positive economic interest v > 0 and m > a, interior equilibrium can be
obtained as follows: S̃∗

s = (Ñ∗
s , P̃∗

s , Ẽ∗
s ) = ( k2P̃∗

s (wP̃∗
s –c)

k2wP̃∗
s –ck2–v – k3, P̃∗

s , v
wP̃∗

s –c ) and P̃∗
s satisfies the fol-

lowing equation:

P̃∗6
s + ζ1sP̃∗5

s + ζ2sP̃∗4
s + ζ3sP̃∗3

s + ζ4sP̃∗2
s + ζ5sP̃∗

s + ζ6s = 0, (18)

where ζis, i = 1, 2, . . . , 6, are defined as follows:

ζ1s = k1 + a – 1 –
3(c + wk3)

w
+ b,

ζ2s =
3k3(ck2 + v)

k2w
+

3(c + k3w)
w2 –

2(c + k3w)(k1 + a – 1)
w

–
(k1 + a – 1)(ck2 + v)

k2w

+
b(aw – c – k3w)

w
–

2b(ck2 + v)
k2w

,

ζ3s =
(c + k3w)

w3 –
6(ck2 + v)(c + k3w)

w2 +
(k1 + a – 1)(c + k3w)2

w2

+
2k3(k1 + a – 1)(ck2 + v)

k2
2w

+
b

k2
2w2

[
k2w(ck2 + v)(k3 – a) – 2k2(ck2 + v)(aw – c – k3w) + (ck2 + v)2]

+
2(k1 + a – 1)(ck2 + v)(c + k3w)

k2w2 + k1(m – a),

ζ4s =
3k3(c + k2w)

k2
2w3

[
k3(ck2 + v) + k2(c + k3w)

]
–

2k3w(k1 + a – 1)(c + k3w)
k2

2w2

+
k1(a – 1) + m – a

k2
2w2 –

3k1(ck2 + v)(m – a)
k2w

+
b(ck2 + v)2

k3
2w3

[
k2(aw – c – k3w) – 2k2w(k3 – a)

]
–

2b(ck2 + v)2(a – k3)
k2

2w2

–
2k3(k1 + a – 1)(ck2 + v)2

k2
2w2 ,
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ζ5s = –
3k2

3(ck2 + v)2(c + k3w)
k2

2w3 +
k2

3(k1 + a – 1)(ck2 + v)2

k2
2w2

+
2k3(ck2 + v)2(c + k3w)(k1 + a – 1)

k2
2w3 –

[k1(a – 1) + m – a](c + k3w)
k2

2w3

+
3k1(m – a)(ck2 + v)2

k2
2w2 ,

ζ6s =
(ck2 + v)

k3
2w3

{
(ck2 + v)2[k3

3(2 – k1 – a) – k1(m – a)
]

+ k3
[
k1(a – 1) + m – a

]}
.

Based on the Routh–Hurwitz criterion [23], if a simple sufficient condition ζ6s < 0 holds,
then Eq. (18) will have at least one positive root, which derives that

2 – k1 < a < min

{

m,
k1 – m
k1 – 1

}

, 0 < v < wk3(k2 + 1 +
√

k2 + 1).

On the other hand, it follows from practical interpretations and mathematical formula-
tions of S̃∗

s = (Ñ∗
s , P̃∗

s , Ẽ∗
s ) that Ñ∗

s > 0, P̃∗
s > 0, Ẽ∗

s > 0, which derives that

k2wP̃∗2
s – k2(c + k3w)P̃∗

s + k3(ck2 + v) > 0, P̃∗
s >

c
w

.

By using Viete theorem [23], the above inequalities can be derived as follows:

k2(c + k3w)2 < 4wk3(ck2 + v), P̃∗
s >

c
w

.

According to the above analysis, the existence conditions for interior equilibrium in the
case of strong Allee effect are concluded in Lemma 3.4.

Lemma 3.4 When v > 0 and m > a, interior equilibrium S̃∗
s exists provided the following

inequalities hold:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 – k1 < a < min{m, k1–m
k1–1 },

0 < v < wk3(k2 + 1 +
√

k2 + 1),

k2(c + k3w)2 < 4wk3(ck2 + v),

P̃∗
s > c

w .

(19)

Similarly, in the case of positive economic interest v > 0 and 0 < m < a, interior equi-
librium is as follows: S̃∗

w = (Ñ∗
w, P̃∗

w, Ẽ∗
w) = ( k2P̃∗

w(wP̃∗
w–c)

k2wP̃∗
w–ck2–v

– k3, P̃∗
w, v

wP̃∗
w–c

) and P̃∗
w satisfies the

following equation:

P̃∗6
w + ζ1wP̃∗5

w + ζ2wP̃∗4
w + ζ3wP̃∗3

w + ζ4wP̃∗2
w + ζ5wP̃∗

w + ζ6w = 0, (20)

where ζiw, i = 1, 2, . . . , 6, are defined as follows:

ζ1w = k1 + a – 1 –
3(c + wk3)

w
+ b,
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ζ2w =
3k3(ck2 + v)

k2w
+

3(c + k3w)
w2 –

2(c + k3w)(k1 + a – 1)
w

–
(k1 + a – 1)(ck2 + v)

k2w

+
b(aw – c – k3w)

w
–

2b(ck2 + v)
k2w

,

ζ3w =
(c + k3w)

w3 –
6(ck2 + v)(c + k3w)

w2 +
(k1 + a – 1)(c + k3w)2

w2

+
2k3(k1 + a – 1)(ck2 + v)

k2
2w

+
b

k2
2w2

[
k2w(ck2 + v)(k3 – a) – 2k2(ck2 + v)(aw – c – k3w) + (ck2 + v)2]

+
2(k1 + a – 1)(ck2 + v)(c + k3w)

k2w2 + k1(m – a),

ζ4w =
3k3(c + k2w)

k2
2w3

[
k3(ck2 + v) + k2(c + k3w)

]
–

2k3w(k1 + a – 1)(c + k3w)
k2

2w2

+
k1(a – 1) + m – a

k2
2w2 –

3k1(ck2 + v)(m – a)
k2w

+
b(ck2 + v)2

k3
2w3

[
k2(aw – c – k3w) – 2k2w(k3 – a)

]
–

2b(ck2 + v)2(a – k3)
k2

2w2

–
2k3(k1 + a – 1)(ck2 + v)2

k2
2w2 ,

ζ5w = –
3k2

3(ck2 + v)2(c + k3w)
k2

2w3 +
k2

3(k1 + a – 1)(ck2 + v)2

k2
2w2

+
2k3(ck2 + v)2(c + k3w)(k1 + a – 1)

k2
2w3 –

[k1(a – 1) + m – a](c + k3w)
k2

2w3

+
3k1(m – a)(ck2 + v)2

k2
2w2 ,

ζ6w =
(ck2 + v)

k3
2w3

{
(ck2 + v)2[k3

3(2 – k1 – a) – k1(m – a)
]

+ k3
[
k1(a – 1) + m – a

]}
.

Based on the Routh–Hurwitz criterion [23], if a simple sufficient condition ζ6w < 0 holds,
then Eq. (20) will have at least one positive root, which derives that

2 – a – k3
3 < m < a, max{2 – k1, m} < a < 1, 0 < v < wk3(k2 + 1 +

√
k2 + 1).

On the other hand, it follows from practical interpretations and mathematical formula-
tions of S̃∗

w = (Ñ∗
w, P̃∗

w, Ẽ∗
w) that Ñ∗

w > 0, P̃∗
w > 0, Ẽ∗

w > 0, which derives

k2wP̃∗2
w – k2(c + k3w)P̃∗

w + k3(ck2 + v) > 0, P̃∗
w >

c
w

.

According to the above analysis, the existence conditions for interior equilibrium in the
case of weak Allee effect are concluded in Lemma 3.5.
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Lemma 3.5 When v > 0 and 0 < m < a, interior equilibrium S̃∗
w exists provided the follow-

ing inequalities hold:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 – a – k3
3 < m < a, max{2 – k1, m} < a < 1,

0 < v < wk3(k2 + 1 +
√

k2 + 1),

k2(c + k3w)2 < 4wk3(ck2 + v),

P̃∗
w > c

w .

(21)

3.1 Case I: system (3) with strong Allee effect
When τ = 0, system (3) takes the following form:

⎧
⎪⎪⎨

⎪⎪⎩

Ṅ(t) = N(t)(1 – N(t) – m
N(t)+a ) – bN(t)P(t)

N(t)+k1
,

Ṗ(t) = k2P(t)(1 – P(t)
N(t)+k3

) – E(t)P(t),

0 = E(t)(wP(t) – c) – v.

(22)

By taking v as a bifurcation parameter, the existence of singularity-induced bifurcation
and local stability switch around S∗

s and S̃∗
s will be investigated due to variation of v in

Theorem 3.6.

Theorem 3.6 When τ = 0 and m > a, system (22) undergoes singularity-induced bifur-
cation around S∗

s , v = 0 is a bifurcation value. When v increases though 0, system (22) is
unstable around S∗

s and S̃∗
s in the case of zero and positive economic interest, respectively.

Proof Let v be a bifurcation parameter, X1(t) = (N(t), P(t)), X2(t) = E(t), and D be a differ-
ential operator:

g1
(
X1(t), X2(t), v

)
=

[
N(t)(1 – N(t) – m

N(t)+a ) – bN(t)P(t)
N(t)+k1

k2P(t)(1 – P(t)
N(t)+k3

) – E(t)P(t)

]

,

g2
(
X1(t), X2(t), v

)
= E(t)

(
wP(t) – c

)
– v.

It follows from simple computations that

trace
[
(DX2 g1) adj(DX2 g2)DX1 g2

]

S∗
s

= –ck2

(

1 –
c

w(N∗
s + k3)

)

. (23)

It follows from (19) that
∣
∣
∣
∣
∣

DX1 g1 DX2 g1

DX1 g2 DX2 g2

∣
∣
∣
∣
∣
S∗

s

= cE∗
s

(

1 – 2N∗
s –

ma
(N∗

s + a)2 –
bk1c

w(N∗
s + k1)2

)

. (24)

By defining g3(X1(t), X2(t), v) = DX2 g2(X1(t), X2(t), v) = wP(t) – c.
By using (19) and simple computations, we can obtain that

∣
∣
∣
∣
∣
∣
∣

DX1 g1 DX2 g1 Dvg1

DX1 g2 DX2 g2 Dvg2

DX1 g3 DX2 g3 Dvg3

∣
∣
∣
∣
∣
∣
∣
S∗

s
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= –
2cN∗

s w(N∗
s + a)2(N∗

s + k1) + wmac(N∗
s + k2

1)
w(N∗

s + a)2(N∗
s + k1)2

+
bk1c(N∗

s + a)2 – wc(N∗
s + a)2(N∗

s + k1)2

w(N∗
s + a)2(N∗

s + k1)2 < 0. (25)

Based on three items (23), (24), and (25) computed above, the existence theorem of
singularity-induced bifurcation (Theorem in [25]) holds, hence system (22) undergoes
singularity-induced bifurcation around S∗

s and the bifurcation value is v = 0.
Along the line of the above computation, it can be obtained that

G1 = – trace
[
DX2 g1 adj(DX2 g2)DX1 g2)

]

S∗
s

= ck2

(

1 –
c

w(N∗
s + k3)

)

,

G2 =

⎡

⎣Dvg3 – (DX1 g3, DX2 g3)

[
DX1 g1 DX2 g1

DX1 g2 DX2 g2

]–1 [
Dvg1

Dvg2

]⎤

⎦

S∗
s

=
1

wE∗
s

.

By using similar arguments, it can be obtained that

G̃1 = – trace
[
DX2 g1 adj(DX2 g2)DX1 g2)

]

S̃∗
s

=
wvP̃∗

s

wP̃∗
s – c

,

G̃2 =

⎡

⎣Dvg3 – (DX1 g3, DX2 g3)

[
DX1 g1 DX2 g1

DX1 g2 DX2 g2

]–1 [
Dvg1

Dvg2

]⎤

⎦

S̃∗
s

=
1

wẼ∗
s

.

By virtue of (7), (8), and (19) and simple computations, it can be obtained that G1
G2

> 0,
G̃1
G̃2

> 0. Based on Theorem 3 in [25], when v increases through 0, one eigenvalue of system
(22) moves from C

– to C
+ along the real axis by diverging through ∞. Hence, when v

increases through 0, system (22) is unstable around S∗
s and S̃∗

s in the case of zero and
positive economic interest, respectively. �

When τ > 0 and m > a, according to the Jacobian of system (3) evaluated around S̃∗
s and

the leading matrix �(t) in Remark 1.1, the characteristic equation of system (3) around S̃∗
s

is as follows:

λ2 – n1sλ + (n1sn2s + n3s + n4s – n2sλ)e–λτ = 0, (26)

where nis, i = 1, 2, 3, 4, are defined as follows:

n1s = 1 – 2Ñ∗
s –

ma
(Ñ∗

s + a)2
–

bk1P̃∗
s

(Ñ∗
s + k1)2

, n2s = k2 – Ẽ∗
s –

2k2P̃∗
s

Ñ∗
s + k3

,

n3s =
k2v(P̃∗

s )3

(wP̃∗
s – c)2(Ñ∗

s + k3)2
, n4s =

bk2Ñ∗
s (P̃∗

s )2

(Ñ∗
s + k1)(Ñ∗

s + k3)2
.

Substituting λ = iσs, where σs is a positive real number, into Eq. (26) and separating real
and imaginary parts gives

⎧
⎨

⎩

σ 2
s = (n1sn2s + n3s + n4s) cos(σsτ ) – n2sσ sin(σsτ ),

–n1sσs = n2s cos(σsτ ) + (n1sn2s + n3s + n4s) sin(σsτ ),
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which derives that

σ 4
s +

(
n2

1s – n2
2s
)
σ 2

s – (n1sn2s + n3s + n4s)2 = 0. (27)

Theorem 3.7 If a > k3, k1 > k3, c ≤ 1, 0 < v < v1 hold, then system (3) is locally stable around
S∗

s when 0 < τ < τ ∗
1c. System (3) undergoes Hopf bifurcation around S̃∗

s when τ = τ ∗
1c, where

v1 and τ ∗
1c are defined as follows:

⎧
⎨

⎩

v1 = min{wk3(k2 + 1 +
√

k2 + 1), k2 – wP̃∗
s – ck2, (1 – c)k2 + ck2 – k2w – wP̃∗

s },
τ ∗

1c = 1
σ∗

s
arccos{ [(n1sn2s+n3s+n4s)–n1sn2s]σ∗2

s
(n2sσ∗

s )+(n1sn2s+n3s+n4s)2 }.

Proof If 2 – k1 < a < min{m, k1–m
k1–1 }, 0 < v < wk3(k2 + 1 +

√
k2 + 1) hold, then system (3) has

at least an interior equilibrium S̃∗
s . Furthermore, if a > k3, k1 > k3, c ≤ 1, and 0 < v < (1 –

c)k2 + ck2 – k2w – wP̃∗
s hold, then it is obtained that n2

2s – n2
1s < 0, which guarantees that

Eq. (27) has a pair of purely imaginary roots of the form ±iσ ∗2
s .

By eliminating sin(σsτ ) from the transcendental equation, it can be obtained that τ ∗
1c

corresponding to σ ∗
s is as follows:

τ ∗
1c =

1
σ ∗

s
arccos

{
[(n1sn2s + n3s + n4s) – n1sn2s]σ ∗2

s
(n2sσ ∗

s ) + (n1sn2s + n3s + n4s)2

}

. (28)

By using Butler’s lemma [26], system (3) is locally asymptotically stable around P̃∗
s when

0 < τ < τ ∗
1c.

Let λ = iσ ∗
s represent a purely imaginary root of Eq. (26), we will determine the direction

of motion of λ as τ varied, namely we determine


 = sign

[
d(Reλ)

dτ

]

λ=iσ∗
s

= sign

[

Re

(
dλ

dτ

)–1]

λ=iσ∗
s

.

Further computations show that


 = sign

[
n2

1s + 2σ ∗2
s

(n1sσ ∗
s )2 + (σ ∗2

s )2 –
n2

2s
(n2sσ ∗

s )2 + (n1sn2s + n3s + n4s)2

]

.

By differentiating Eq. (26) with respect to τ , it can be obtained that

(
dλ

dτ

)–1

=
–2λ + n1s

λ2(λ – n1s)
–

n2s

λ(n1sn2s + n3s + n4s – n2sλ)
–

τ

λ
.

If 0 < v < min{k2 – wP̃∗
s – ck2, (1 – c)k2 + ck2 – k2w – wP̃∗

s }, then it follows from simple com-
putations that 
 > 0. Consequently, if 0 < v < v1 holds, where v1 is defined in Theorem 3.7,
then the transversality condition holds and system (3) undergoes Hopf bifurcation around
S̃∗

s when τ = τ ∗
1c. �

3.2 Case II: system (3) with weak Allee effect
When τ = 0 and 0 < m < a, by taking v as a bifurcation parameter, the existence of
singularity-induced bifurcation and local stability switch around S∗

w and S̃∗
w will be inves-

tigated due to variation of v in Theorem 3.8.
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Theorem 3.8 When τ = 0 and 0 < m < a, system (22) undergoes singularity-induced bi-
furcation around S∗

w, v = 0 is a bifurcation value. When v increases though 0, system (22) is
unstable around S∗

w and S̃∗
w in the case of zero and positive economic interest, respectively.

Proof By using a proof similar to that in Theorem 3.6, it is easy to show Theorem 3.8. �

When τ > 0 and 0 < m < a, according to the Jacobian of system (3) evaluated around
S̃∗

w and the leading matrix �(t) in Remark 1.1, the characteristic equation of system (3)
around P̃∗

w is as follows:

λ2 – n1wλ + (n1wn2w + n3w + n4w – n2wλ)e–λτ = 0,

where niw, i = 1, 2, 3, 4, are defined as follows:

n1w = 1 – 2Ñ∗
w –

ma
(Ñ∗

w + a)2
–

bk1P̃∗
w

(Ñ∗
w + k1)2

,

n2w = k2 – Ẽ∗
w –

2k2P̃∗
w

Ñ∗
w + k3

,

n3w =
k2v(P̃∗

w)3

(wP̃∗
w – c)2(N∗

w + k3)2
,

n4w =
bk2Ñ∗

w(P̃∗
w)2

(Ñ∗
w + k1)(Ñ∗

w + k3)2
.

Theorem 3.9 If 2 – a – k3
3 < m < a, max{2 – k1, m} < a < 1, k3

3 < k1, 0 < v < v2 hold, then sys-
tem (3) is locally stable around S̃∗

w when 0 < τ < τ ∗
1d . System (3) undergoes Hopf bifurcation

around S̃∗
w when τ = τ ∗

1d , where v2 and τ ∗
1d are defined as follows:

⎧
⎨

⎩

v2 = min{wk3(k2 + 1 +
√

k2 + 1), k2 – wP̃∗
w – ck2, (1 – a)k2 + ck2 – k2w – wP̃∗

w},
τ ∗

1d = 1
σ∗

w
arccos{ [(n1wn2w+n3w+n4w)–n1wn2w]σ∗2

w
(n2wσ∗

w)+(n1wn2w+n3w+n4w)2 },

and σ ∗
w satisfies the following equation:

σ 4
w +

(
n2

1w – n2
2w
)
σ 2

w – (n1wn2w + n3w + n4w)2 = 0.

Proof By using a proof similar to that in Theorem 3.7, it is easy to show Theorem 3.9. �

4 Properties of Hopf bifurcation
In this section, τ is regarded as a bifurcation parameter. Properties of Hopf bifurcation
around interior equilibrium S̃∗

w in the case of weak Allee effect are discussed. By using
the similar analysis, symmetric analysis about the properties of Hopf bifurcation around
interior equilibrium S̃∗

s in the case of strong Allee effect can be also obtained, which is
omitted in this section.

Bars of variables are dropped for simplicity of notation, system (3) is transformed to
the following functional delayed differential equation in the Banach space of continuous
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functions mapping C = C([–τ , 0],R). Based on E(t) = v
wP–c and a normal form of delayed

differential-algebraic system [19], by using the following transformations:

y1(t) = N(t) – Ñ∗
w, y2(t) = P(t) – P̃∗

w,

system (3) can be rewritten as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dy1(t)
dt = b11y1(t) + b12y2(t) + b13y1(t – τ ) + b14y2

1(t) + b15y2
2(t) + b16y1(t)y2(t),

dy2(t)
dt = b21y2(t) + b22y1(t – τ ) + b23y2(t – τ ) + b24y2(t)2 + b25y1(t)y2(t)

+ b26y1(t – τ )2 + b27y2(t)y2(t – τ ) + b28y1(t – τ )y2(t – τ ),

(29)

where bij (i = 1, 2, j = 1, 2, . . . , 8) are as follows:

b11 = 1 –
ma

(Ñ∗
w + a)2

–
bk1P̃∗

w – Ñ∗
w(Ñ∗

w + k1)
(Ñ∗

w + k1)2
, b12 = –

bÑ∗
w

Ñ∗
w + k1

, b13 = 0,

b14 = 2 +
ma

(Ñ∗
w + a)3

+
bk1P̃∗

w

(Ñ∗
w + k1)3

, b15 = 0, b16 = –
bÑ∗

w

(Ñ∗
w + k1)2

,

b21 = k2 –
k2P̃∗

w

Ñ∗
w + k3

+
vc

(wP̃∗
w – c)2

, b22 =
k2(P̃∗

w)2

(Ñ∗
w + k3)2

, b23 = –
k2P̃∗

w

Ñ∗
w + k3

,

b24 = –
vcw

wP̃∗
w – c

, b25 = –
bk1

(Ñ∗
w + k1)2

, b26 = –
2k2P̃∗

w

(Ñ∗
w + k3)3

, b27 = –
k2

Ñ∗
w + k3

,

b28 =
k2P̃∗

w

(Ñ∗
w + k3)2

.

According to the Riesz representation theorem [27], there exists a 2 × 2 matrix function
η(ϑ ,μ) of bounded variation for ϑ ∈ [–τ , 0] such that

Dυ(ϕ) =
∫ 0

–τ

dη(ϑ ,υ)ϕ(ϑ), (30)

where ϕ(ϑ) = (ϕ1(ϑ),ϕ2(ϑ)) ∈ C([–τ , 0],R2), η : [–τ , 0] → R
2 × R

2 is a real-valued
bounded function in [–τ , 0] with Dirac delta function δ,

η(ϑ ,υ) =

(
b11 b12

0 b21

)

δ(ϑ) +

(
0 0

b22 b23

)

δ(ϑ + τ + υ). (31)

If ϕ is a given function in C([–τ , 0],R2) and Y (ϕ) is the unique solution of linearized
equation Ẏ (t) = Lυ(Yt) of Eq. (29) with initial function ϕ at zero, then the solution operator
T̃(t) : C→ C is defined as T̃(t)ϕ = Yt(ϕ), t ≥ 0.

It follows from Lemma 7.11 in [23] that T̃(t), t ≥ 0 is a strongly continuous semigroup
of linear transformation on [0, +∞) and the infinitesimal generator Bυ of T̃(t), t ≥ 0, is as
follows:

Bυ (ϕ) =

⎧
⎨

⎩

dϕ(ϑ)
dϑ

, ϑ ∈ [–τ , 0),
∫ 0

–τ
dη(υ, s)ϕ(s), ϑ = 0,

(32)
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for ϕ ∈ C
1([–τ , 0],R2), the space of a function mapping the interval [–τ , 0] into R

2 which
has a continuous first derivative, and also define

P(υ)(ϕ) =

⎧
⎨

⎩

0, ϑ ∈ [–τ , 0),

V (υ,ϕ), ϑ = 0,

where V (υ,ϕ) = (V1(υ,ϕ), V2(υ,ϕ))T , and

⎧
⎨

⎩

V1(υ,ϕ) = b14ϕ
2
1 (0) + b16ϕ1(0)ϕ2(0),

V2(υ,ϕ) = b24ϕ
2
2 (0) + b26ϕ

2
1 (–τ ) + b27ϕ2(0)ϕ2(–τ ) + b28ϕ1(–τ )ϕ2(–τ ).

(33)

Hence, system (29) is equivalent to

Ẏt = B(υ)Yt + P(υ)Yt . (34)

For φ ∈ C
1([–τ , 0], (R2)∗), the space of functions mapping interval [–τ , 0] into two-

dimensional row vectors which have continuous first derivative, let

B∗ϕ(s) =

⎧
⎨

⎩

– dφ(s)
ds , s ∈ (0, τ ],

∫ 0
–τ

dηT (t, 0)φ(–t), s = 0,

and a bilinear inner product

〈
φ(s),ϕ(ϑ)

〉
= φ̄(0)ϕ(0) –

∫ 0

–τ

∫ 0

ν=0
φ̄(ν – ϑ) dη(ϑ)ϕ(ν) dν, (35)

where η(ϑ) = η(ϑ , 0). It is easy to show that B(0) and B∗ are adjoint operators, and ±iσ ∗
wτ ∗

1d
are eigenvalues of B(0) and B∗.

Suppose that r(ϑ) = (1,β)T eiσ∗
wτ∗

1dϑ is an eigenvector of B(0) corresponding to iσ ∗
wτ ∗

1d ,
which derives B(0)r(0) = iσ ∗

wτ ∗
1dr(ϑ). By virtue of B(0), (30), (31), and (32), it follows from

r(–1) = r(0)e–iσ∗
wτ∗

1d that β = iσ∗
w–(b11+b13)e–iσ∗wτ∗

1d
b12

.
Similarly, it follows from simple computations that the eigenvector of B∗ corresponds to

–iσ ∗
wτ ∗

1dϑ , which gives that β∗ = iσ∗
w

b22
.

In order to assume 〈r∗(s), r(ϑ)〉 = 1, we need to determine the value of H in the following
part. By virtue of (35), it is obtained that

〈
r∗(s), r(ϑ)

〉
= H̄

(
1, β̄∗)(1,β)T –

∫ 0

–τ∗
1d

∫ ϑ

ν=0
H̄
(
1,β∗)e–iσ∗

wτ∗
1d(ρ–ϑ) dη(ϑ)(1,β)T eiσ∗

wτ∗
1dν dν

= H̄
(
1 + ββ̄∗) – H̄

∫ 0

–τ∗
1d

(
1, β̄∗)ϑeiσ∗

wτ∗
1dϑ dη(ϑ)(1,β)T

= H̄
[
1 + ββ̄∗ + τ ∗

1de–iσ∗
wτ∗

1d
(
b13 + b14 + b22ββ̄∗)].

Hence, we can choose H̄ = 1
1+ββ̄∗+τ∗

1de–iσ∗wτ∗
1d (b13+b14+b22ββ̄∗)

. Next, we will compute the co-

ordinate to describe the center manifold C0 at υ = 0. Let Yt be the solution of Eq. (34)
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when υ = 0. We define

ς (t) =
〈
r∗, Yt

〉
, U(t,ϑ) = Yt(ϑ) – 2 Re

{
ς (t)r(ϑ)

}
. (36)

On the center manifold C0, it derives that U(t,ϑ) = U(ς (t), ς̄ (t),ϑ), and

U
(
ς (t), ς̄ (t),ϑ

)
= U20(ϑ)

ς2

2
+ U11(ϑ)ςς̄ + U02

ς̄2

2
+ · · · (37)

ς and ς̄ are local coordinates for C0 in the direction of r∗ and r̄∗.
It is noted that U is real if Yt is real, and we only consider real solutions. For solution

Yt ∈ C0 of Eq. (34), since υ = 0, it derives that

ς̇ (t) = iσ ∗
wτ ∗

1dς + r̄∗(0)V
(
0, U(ς , ς̄ , 0) + 2 Re

{
ςr(ϑ)

})

� iσ ∗
wτ ∗

1dς + r̄∗(0)V0(ς , ς̄ ). (38)

Equation (38) can be rewritten as ς̇ (t) = iσ ∗
wτ ∗

1dς (t) + f (ς , ς̄ ), where

f (ς , ς̄ ) = r̄∗(0)V0(ς , ς̄ ) = f20
ς2

2
+ f11ςς̄ + f02

ς̄2

2
+ f21

ς2ς̄

2
+ · · · . (39)

By virtue of (29), (30), and (31), it derives that

f (ς , ς̄ ) = r̄∗(0)V0(ς , ς̄ ) = r̄∗(0)V (0, Yt),

and the detailed form of f (ς , ς̄ ) can be found in Appendix A of this paper.
By comparing the coefficients with (39) and (44), we have that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f20 = 2τ ∗
1dH̄[b14 + b15 + b16 + β̄∗(b24 + b26 + b27 + b28)],

f11 = τ ∗
1dH̄[b14 + b15 + b16 + β̄∗(b24 + b26 + b27 + b28)],

f02 = 2τ ∗
1dH̄[b14 + b15 + b16 + β̄∗(b24 + b26 + b27 + b28)],

f21 = 2τ ∗
1dH̄{b14[U1

11(0) + U1
20(0)
2 ]}

+ 2τ ∗
1dH̄{b16[U (1)

11 (0) + U(1)
20 (0)

2 ] + b16[U (2)
11 (0) + U(2)

20 (0)
2 ]}

+ 2τ ∗
1dH̄β̄∗{b24[U (2)

20 (0) + 2U (2)
11 (0)] + b26[U (1)

20 (–τ ∗
1d) + 2U (1)

11 (–τ ∗
1d)]}

+ 2τ ∗
1dH̄β̄∗{(b27 + b28)[U (1)

20 (–τ ∗
1d) + 2U (1)

11 (–τ ∗
1d)]}

+ 2τ ∗
1dH̄β̄∗{b27[U (2)

20 (0) + 2U (2)
11 (0)] + b28[U (2)

20 (–τ ∗
1d) + 2U (2)

11 (–τ ∗
1d)]} + · · · .

(40)

Since f21 is associated with U20(ϑ) and U11(ϑ), which can be found in Appendix B of this
paper, hence the following values can be computed as follows:

⎧
⎨

⎩

l1(0) = i
2σ∗

wτ∗
1d

(f20f11 – 2|f11|2 – |f02|2
3 ) + f21

2 , γ2 = – Re{l1(0)}
Re{λ̇(τ∗

1d)} ,

ι2 = 2 Re{l1(0)}, T = Im{l1(0)}+ι2 Im{λ̇(τ∗
1d)}

σ∗
wτ∗

1d
.

(41)

Theorem 4.1 Properties of a bifurcating periodic solution in the center manifold at the
critical value τ ∗

1d are determined based on the values computed in Eq. (41):
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(i) If γ2 > 0 (γ2 < 0), then Hopf bifurcation is supercritical (subcritical), and the
bifurcating periodic solutions exist for τ > τ ∗

1d (τ > τ ∗
1d);

(ii) Bifurcating periodic solutions are stable (unstable) if ι2 < 0 (ι2 > 0);
(iii) Period increases (decreases) if T > 0 (T < 0).

By using the global Hopf bifurcation theorem for general functional delayed differential
equations introduced in [28], the existence of global continuation of periodic solutions
bifurcating from interior equilibrium S̃∗

w will be discussed in the following part. In order to
facilitate the following analysis, system (29) is rewritten as the following functional delayed
differential system:

Żt = F(Zt , τ1,μ), (42)

where Zt = (z1(t), z2(t))T , Zt(θ ) ∈ Y � C([–τ ∗
1d, 0],R2).

Following the work done in [28], some definitions are given as follows. Let � =
Cl{(Zt , τ ,μ) ∈ Y ×R×R

+},N {(Z̄t , τ ,μ) | F(Z̄t , τ ,μ) = 0}, where Z̄ and Z denote an interior
equilibrium and a nonconstant periodic solution of (42), respectively. The characteristic
matrix of system (42) around Z̄ is as follows:

�(Z̄, τ ,μ)(λ) = λI – DF(Z̄, τ ,μ)eλI, (43)

where I denotes the identity matrix and DF(Z̄, τ ,μ) represents the Fréchet derivative of F
with respect to Zt evaluated at (Z̄, τ ,μ).

We define (Z̄, τ ,μ) as a center provided that (Z̄, τ ,μ) ∈N and �(Z̄, τ ,μ) = 0. The center
�(Z̄, τ ,μ) is relevant to be isolated when it is the only center in some neighborhood of it.
The global Hopf bifurcation theorem for general functional delayed differential equations
introduced in [28] is stated as follows.

Lemma 4.2 If (Z̄, τ ,μ) is an isolated center satisfying assumptions (A1–A4) in [28], let
L(Z̄,τ1,μ) be a connected component of (Z̄, τ1,μ) in �, then either item (i) or (ii) holds:

(i) L(Z̄,τ ,μ) is unbounded,
(ii) L(Z̄,τ ,μ), L(Z̄,τ ,μ) ∩ � is finite and

∑
(Z̄,τ ,μ)∈L(Z̄,τ ,μ)∩N γm(Z̄, τ ,μ) = 0 for m = 1, 2, . . . ,

γm(Z̄, τ ,μ) is the mth crossing number of (Z̄, τ ,μ).

It is easy to show that if (ii) of Lemma 4.2 is not true, then L is unbounded. Hence, if
the projections of L(Z̄,τ ,μ) onto z-space and onto μ-space are bounded, then the projection
of L(Z̄,τ ,μ) is unbounded. Furthermore, if we can show that the projection of L(Z̄,τ ,μ) onto
τ -space is away from zero, then the projection of τ -space must include [τ ,∞).

Theorem 4.3 If 2 – a – k3
3 < m < a, max{2 – k1, m} < a < 1, k3

3 < k1, 0 < v < v2 hold (v2 has
been defined in Theorem 3.9), then for τ1 > τ ∗

1d and σ ∗
w defined in Theorem 3.9, system (29)

has at least one periodic solution.

Proof It is easy to show that (S̃∗
w, τ , 2π

σ∗
w

) is an isolated center of system (29). LetL(S̃∗
w ,τ , 2π

σ∗w ) de-

note a connected component passing through (S̃∗
w, τ , 2π

σ∗
w

) in �. It follows from Theorem 3.9
of this paper that L(S̃∗

w ,τ , 2π
σ∗w ) is nonempty.
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Let �(S̃∗
w, τ ,ρ)(λ) represent the characteristic matrix of system (29) around S̃∗

w. Based
on the discussion in Sect. 3.2 of this paper, it can be verified that (S̃∗

w, τ , 2π
σ∗

w
) is an iso-

lated center, and there exist ε > 0, δ1 > 0, a smooth curve λ : (τ – δ1, τ + δ1) → C such that
|�(s̃∗

w, τ ,μ)(λ)| = 0, |λ(τ ) – iσ ∗
w| < ε for all τ ∈ [τ ∗

1d – δ1, τ ∗
1d + δ1].

Let

�ε, 2π
σ∗w

=
{

(η,μ)
∣
∣
∣ 0 < η < ε,

∣
∣
∣
∣ρ –

2π

σ ∗
w

∣
∣
∣
∣ < ε

}

.

It is easy to show that |�(S̃∗
w, τ1,μ)(η + 2π i

μ
)| = 0 if and only if η = 0, τ1 = τ ∗

1d , μ = 2π
σ∗

w
.

Hence, assumptions (A1–A4) in [28] all hold. Moreover, if we define

H±
(

S̃∗
w, τ ∗

1d,
2π

σ ∗
w

)

(η,μ) =
∣
∣
∣
∣�
(
S̃∗

w, τ ∗
1d ± δ1,μ

)
(

η +
2π i
μ

)∣
∣
∣
∣,

then a crossing number of the isolated center (S̃∗
w, τ ∗

1d ± δ1,μ) is as follows:

γm

(

S̃∗
w, τ ∗

1d,
2π

σ ∗
w

)

= degB

(

H–
(

S̃∗
w, τ ∗

1d,
2π

σ ∗
w

)

,�ε

)

–degB

(

H+
(

S̃∗
w, τ ∗

1d,
2π

σ ∗
w

)

,�ε

)

= –1.

By using Theorem 2.1 in [28], it can be concluded that L(S̃∗
w ,τ∗

1d , 2π
σ∗w ) passing through

(S̃∗, τ ∗
1d, 2π

σ∗
w

) in � is nonempty. Consequently, we have

∑

(Z̄,τ ,μ)∈L(S̃∗ ,τ∗
1d , 2π

σ∗w
)

γ (X̄, τ ,μ) < 0.

It follows from Lemma 4.2 of this paper that the connected component L(S̃∗ ,τ∗
1d , 2π

σ∗w ) pass-

ing through (S̃∗, τ ∗
1d, 2π

σ∗
w

) in � is unbounded.
Next, we will show that the projection L(S̃∗ ,τ∗

1d , 2π
σ∗w ) onto τ -space is [τ̄ ,∞), where τ̄ < τ ∗

1d .

If 2 – a – k3
3 < m < a, max{2 – k1, m} < a < 1, k3

3 < k1, 0 < v < v2, then system (29) without
time delay has no nontrivial periodic solution. Hence, the projection of L(S̃∗ ,τ∗

1d , 2π
σ∗w ) onto

τ -space is away from 0.
It is assumed that the projection of L(S̃∗ ,τ∗

1d , 2π
σ∗w ) onto τ -space is bounded, which implies

the projection of L(S̃∗ ,τ∗
1d , 2π

σ∗w ) onto τ -space is included in a bounded interval (0, τ ∗
1d). By

using 2π
σ∗

w
< τ ∗

1d , we have μ < τ ∗
1d for (Z, τ ,μ) belonging to L(S̃∗ ,τ∗

1d , 2π
σ∗w ), which implies that the

projection of connected component L(S̃∗ ,τ∗
1d , 2π

σ∗w ) onto μ-space is bounded. Hence, it leads
to a contradiction, which means that the projection of L(S̃∗ ,τ∗

1d , 2π
σ∗w ) onto τ -space is [τ ∗

1d,∞),
where τ̄ ≤ τ ∗

1d . �

5 Numerical simulation
Numerical simulations are carried out to show combined dynamic effects of time delay
and additive Allee effect on population dynamics. Parameters are partially taken from the
numerical simulations in [12].

Numerical simulation I: strong Allee effect. Parameters are taken as follows: a = 0.25, b =
0.1, k1 = 0.035, k2 = 0.1, k3 = 0.2, w = 4, c = 1, and m = 0.3 with appropriate units. By simple
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Figure 1 In the case of strong Allee effect, dynamical variations of prey, predator biomass, and harvest
amount with the increasing time with τ = 0.5 and τ = 1.3657, which are indicated in Fig. 1(i) and Fig. 1(ii),
respectively. The limit cycle around S̃∗

s = (0.6029, 0.2891, 0.0640) corresponding to Fig. 1(ii) is plotted in Fig. 1(iii)

computations, it can be obtained that there exists a unique interior equilibrium provided
that 0 < v < 0.0264. In the following numerical simulation, v = 0.01 is arbitrarily selected
within (0, 0.0264) which is enough to merit theoretical analysis in this paper. By using given
parameters and simple computations, the unique interior equilibrium of system (3) with
strong Allee effect is as follows: S̃∗

s = (0.6029, 0.2891, 0.0640).
When v = –0.01, the eigenvalues of system (3) are –0.314, –7.687; when v = 0.01, the

eigenvalues of system (3) are –0.314, 570.2. Obviously, one eigenvalue remains almost con-
stant and another moves from C– to C+ along the real axis by diverging through ∞. It fol-
lows from Theorem 3.7 that system (3) is locally stable around S̃∗

s = (0.6029, 0.2891, 0.0640)
when 0 < τ < τ ∗

1c = 1.3657. In the case of strong Allee effect, dynamical variations of
prey, predator biomass, and harvest amount with the increasing time with τ = 0.5 and
τ = 1.3657, which are indicated in Fig. 1(i) and Fig. 1(ii), respectively. The limit cycle
around S̃∗

s = (0.6029, 0.2891, 0.0640) corresponding to Fig. 1(ii) is plotted in Fig. 1(iii). The
bifurcation diagram of system (3) with respect to τ is also provided in Fig. 2.

Numerical simulation II: weak Allee effect. Parameters are taken as follows: a = 0.4,
b = 0.5, k1 = 0.3, k2 = 0.125, k3 = 0.2, w = 5, c = 1, and m = 0.24 with appropriate units.
By simple computations, it can be obtained that there exists a unique interior equilibrium
provided that 0 < v < 0.0194. In the following numerical simulation, v = 0.01 is arbitrar-
ily selected within (0, 0.0194) which is enough to merit theoretical analysis in this paper.
By using given parameters and simple computations, the unique interior equilibrium of
system (3) with weak Allee effect is as follows: S̃∗

w = (0.2643, 0.4226, 0.0089).
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Figure 2 In the case of strong Allee effect, bifurcation diagram of system (3) with respect to τ

When v = –0.005, the eigenvalues of system (3) are –0.529, –14.591; when v = 0.005,
the eigenvalues of system (3) are –0.529, 375.8. Obviously, one eigenvalue remains al-
most constant and another moves from C

– to C
+ along the real axis by diverging

through ∞. It follows from Theorem 3.9 that system (3) is locally stable around S̃∗
w =

(0.2643, 0.4226, 0.0089) when 0 < τ < τ ∗
1d = 1.6429. In the case of weak Allee effect, dy-

namical variations of prey, predator biomass, and harvest amount with the increasing
time with τ = 0.8 and τ = 1.6429, which are indicated in Fig. 3(i) and Fig. 3(ii), respec-
tively. The limit cycle around S̃∗

w = (0.2643, 0.4226, 0.0089) corresponding to Fig. 3(ii) is
plotted in Fig. 3(iii). The bifurcation diagram of system (3) with respect to τ is also pro-
vided in Fig. 4. Further computations show that γ2 = 1.0329 > 0, ι2 = –0.4127 < 0, and
T = 1.4193 > 0, it follows from Theorem 4.1 that the Hopf bifurcation is supercritical, the
direction of the Hopf bifurcation is τ > τ ∗

1d and these bifurcating periodic solutions from
the interior equilibrium S̃∗

w at τ ∗
1d are stable.

6 Conclusion
In this paper, a delayed singular biological system with additive Allee effect and commer-
cial harvesting is established, which extends the work done in [12] by incorporating gesta-
tion delay for the predator population. Positivity of solutions and uniform persistence of
the proposed system are discussed in Theorem 2.1 and Theorem 2.3, respectively. Some
sufficient conditions for the existence of interior equilibrium in the case of strong and weak
Allee effect are investigated in Lemma 3.2 to Lemma 3.5. In the absence of time delay, on
account of variation of economic interest of commercial harvesting, we reveal that system
(3) undergoes singularity-induced bifurcation around interior equilibrium, and the pro-
posed system is unstable when economic interest increases through zero, which can be
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Figure 3 In the case of weak Allee effect, dynamical variations of prey, predator biomass, and harvest amount
with the increasing time with τ = 0.8 and τ = 1.6429, which are indicated in Fig. 3(i) and Fig. 3(ii), respectively.
The limit cycle around S̃∗

w = (0.2643, 0.4226, 0.0089) corresponding to Fig. 3(ii) is plotted in Fig. 3(iii)

Figure 4 In the case of weak Allee effect, bifurcation diagram of system (3) with respect to τ
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found in Theorem 3.6 and Theorem 3.8 in the case of strong Allee effect and weak Allee
effect, respectively. In the presence of time delay, by analyzing the associated characteris-
tic equation of system (3), we reveal that when gestation delay crosses the corresponding
critical value, the interior equilibrium of the system loses local stability, and system (3)
undergoes Hopf bifurcation, which can be found in Theorem 3.7 and Theorem 3.9 in the
case of strong Allee effect and weak Allee effect, respectively. By using the center manifold
theorem and the norm form of a delayed singular system, we investigate the properties of
Hopf bifurcation in Theorem 4.1. The global continuation of Hopf bifurcation is investi-
gated in Theorem 4.3. Finally, numerical simulations are provided to validate theoretical
analysis obtained in this paper.

It follows from the analytical findings in Theorem 3.6 and Theorem 3.8 that a singularity-
induced bifurcation occurs and local stability switches when economic interest increases
through zero, and it can be practically interpreted that the population density dramatically
increases beyond environment capacity during a short time period. It follows from the an-
alytical findings in Theorem 3.7 and Theorem 3.9 that local stability will switch when time
delay crosses critical value. It can be practically interpreted that commercially harvested
population density shows periodic fluctuation and may even arrive at a very low popula-
tion density during some time, which is disadvantageous to sustainable survival of each
population and sustainable exploitation of certain economic population.

The dynamical model proposed in [12], composed of ordinary differential equations,
is utilized to study the interaction mechanism of a prey–predator system with additive
Allee effect. Compared with the system established in [12], an algebraic equation is in-
troduced into system (3), which concentrates on dynamic effect of economic interest of
commercial harvesting on population dynamics and provides a straightforward way to in-
vestigate complex dynamics due to variation of economic interest. Furthermore, a discrete
time delay, which represents gestation delay of the predator population, is incorporated
into system (3). Consequently, compared with the work done in [12], we can investigate
combined dynamic effects of time delay and additive Allee effect on population dynamics
by analyzing the local stability and bifurcation phenomenon of system (3) in this paper,
which makes this paper have some new and positive features.

Appendix A

f (ς , ς̄ ) = τ ∗
1dH̄b14

[

ς + ς̄ + U (1)
20 (0)

ς2

2
+ U (1)

11 (0)ςς̄ + U (1)
02 (0)

ς̄2

2
+ o
(∣
∣(ς , ς̄ )

∣
∣3
)
]2

+ τ ∗
1dH̄b15

[

ς + ς̄ + U (2)
20 (0)

ς2

2
+ U (2)

11 (0)ςς̄ + U (2)
02 (0)

ς̄2

2
+ o
(∣
∣(ς , ς̄ )

∣
∣3
)
]2

+ τ ∗
1dH̄

[

ς + ς̄ + U (1)
20 (0)

ς2

2
+ U (1)

11 (0)ςς̄ + U (1)
02 (0)

ς̄2

2
+ o
(∣
∣(ς , ς̄ )

∣
∣3
)
]2

×
{

b16

[

ς + ς̄ + U (2)
20 (0)

ς2

2
+ U (2)

11 (0)ςς̄ + U (2)
02 (0)

ς̄2

2
+ o
(∣
∣(ς , ς̄ )

∣
∣3
)
]2}

+ τ ∗
1dH̄β̄∗b24

[

ς + ς̄ + U (2)
20 (0)

ς2

2
+ U (2)

11 (0)ςς̄ + U (2)
02 (0)

ς̄2

2
+ o
(∣
∣(ς , ς̄ )

∣
∣3
)
]2

+ τ ∗
1dH̄β̄∗

[

ς + ς̄ + U (1)
20
(
–τ ∗

1d
)ς2

2
+ U (1)

11
(
–τ ∗

1d
)
ςς̄ + U (1)

02
(
–τ ∗

1d
) ς̄2

2
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+ o
(∣
∣(ς , ς̄ )

∣
∣3
)
]

×
{

b26

[

ς + ς̄ + U (1)
20
(
–τ ∗

1d
)ς2

2
+ U (1)

11
(
–τ ∗

1d
)
ςς̄ + U (1)

02
(
–τ ∗

1d
) ς̄2

2

+ o
(∣
∣(ς , ς̄ )

∣
∣3
)
]

+ b27

[

ς + ς̄ + U (2)
20 (0)

ς2

2
+ U (2)

11 (0)ςς̄ + U (2)
02 (0)

ς̄2

2
+ o
(∣
∣(ς , ς̄ )

∣
∣3
)
]}

+ b28

[

ς + ς̄ + U (2)
20
(
–τ ∗

1d
)ς2

2
+ U (2)

11
(
–τ ∗

1d
)
ςς̄ + U (2)

02
(
–τ ∗

1d
) ς̄2

2
+ o
(∣
∣(ς , ς̄ )

∣
∣3
)
]

= τ ∗
1dH̄

[
b14 + b15 + b16 + β̄∗(b24 + b26 + b27 + b28)

][
ς2 + 2ςς̄ + ς̄2]

+ τ ∗
1dH̄

{
b14
[
U (1)

20 (0) + 2U (1)
11 (0)

]
+ b15

[
U (2)

20 (0) + 2U (2)
11 (0)

]}
ς2ς̄

+ τ ∗
1dH̄

{

b16

[

U (2)
11 (0) +

U (2)
20 (0)
2

]

+ b16[U (1)
11 (0) +

U (1)
20 (0)
2

}

ς2ς̄

+ τ ∗
1dH̄β̄∗{b24

[
U (2)

20 (0) + 2U (2)
11 (0)

]
+ b26

[
U (1)

20
(
–τ ∗

1d
)

+ 2U (1)
11
(
–τ ∗

1d
)]}

ς2ς̄

+ τ ∗
1dH̄β̄∗{(b27 + b28)

[
U (1)

20
(
–τ ∗

1d
)

+ 2U (1)
11
(
–τ ∗

1d
)]}

ς2ς̄

+ τ ∗
1dH̄β̄∗{b27

[
U (2)

20 (0) + 2U (2)
11 (0)

]
+ b28

[
U (2)

20
(
–τ ∗

1d
)

+ 2U (2)
11
(
–τ ∗

1d
)]}

ς2ς̄

+ · · · . (44)

Appendix B
By virtue of (34) and (36), we have

U̇ = Ẏt – ς̇r – ˙̄ς r̄ =

⎧
⎨

⎩

BU – 2 Re{r̄∗(0)V0r(ϑ)}, ϑ ∈ [–1, 0),

BU – 2 Re{r̄∗(0)V0r(0) + V0}, ϑ = 0

� BU + M(ς , ς̄ ,ϑ), (45)

where

M(ς , ς̄ ,ϑ) = M20(ϑ)
ς2

2
+ M11(ϑ)ςς̄ + M02(ϑ)

ς2

2
+ · · · . (46)

Substituting the corresponding series into (45) and comparing coefficients, we have

(
B – 2iσ ∗

wτ ∗
1d
)
U20(ϑ) = –M20(ϑ), BU11(ϑ) = –M11(ϑ), . . . . (47)

It follows from (45) that for ϑ ∈ [–τ ∗
1d, 0),

M(ς , ς̄ ,ϑ) = –f (ς , ς̄ )r(ϑ) – f̄ (ς , ς̄ ) ¯r(ϑ). (48)

By comparing coefficients in (46) with those in (40), we derive that

M20(ϑ) = –f20r(ϑ) – f̄02r̄(ϑ), (49)

M11(ϑ) = –f11r(ϑ) – f̄11r̄(ϑ). (50)
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Based on the definition of B, (47) and (49), it can obtained that

U̇20(ϑ) = 2iσ ∗
wτ ∗

1dU20(ϑ) + f20r(ϑ) + f̄02r̄(ϑ),

U20(ϑ) =
if20

σ ∗
wτ ∗

1d
r(0)eiσ∗

wτ∗
1dϑ +

if̄02

3σ ∗
wτ ∗

1d
r̄(0)e–iσ∗

wτ∗
1dϑ + Q1e2iσ∗

wτ∗
1dϑ ,

(51)

where Q1 = (Q(1)
1 , Q(2)

1 ) is a constant vector, and r(ϑ) = (1,β)T eiσ∗
wτ∗

1dϑ .
Similarly, it follows from (47) and (50) that

U11(ϑ) = –
if11

σ ∗
wτ ∗

1d
r(0)eiσ∗

wτ∗
1dϑ +

if̄11

σ ∗
wτ ∗

1d
r̄(0)e–iσ∗

wτ∗
1dϑ + Q2, (52)

where Q2 = (Q(1)
2 , Q(2)

2 ) is a constant vector, and r(ϑ) = (1,β)T eiσ∗
wτ∗

1dϑ .
By using the definition of B and (45), we have

∫ 0

–τ∗
1d

dηU20(ϑ) = 2iσ ∗
wτ ∗

1dU20(0) – M20(0), (53)

∫ 0

–τ∗
1d

dη(ϑ)U11(ϑ) = –M11(0), (54)

where η(ϑ) = η(0,ϑ). Based on (45), it derives that in the case of ϑ = 0,

M(ς , ς̄ , 0) = –2 Re
{

r̄∗(0)V0r(0)
}

+ V0(0)

= –f (ς , ς̄ )r(0) – f̄ (ς , ς̄ )r̄(0) + V0,

from which it follows that

M20(ϑ)
ς2

2
+ M11(ϑ)ςς̄ + M02(ϑ)

ς̄2

2
+ · · ·

= –r(0)
(

f20
ς2

2
+ f11ςς̄ + f02

ς̄2

2
+ · · ·

)

– r̄(0)
(

f̄20
ς̄2

2
+ f̄11ςς̄ + f̄02

ς2

2
+ · · ·

)

+ V0. (55)

By virtue of (29) and (36), it can be obtained that

Yt(ϑ) = U(t,ϑ) + ς (t)r(ϑ) + ς̄ (t)r̄(ϑ)

= U20(ϑ)
ς2

2
+ U21(ϑ)ςς̄ + ς (t)r(ϑ) + ς̄ (t)r̄(ϑ) + · · · ,

then we have

V0 = τ ∗
1d

[
b14 + b15 + b16

b27e–iσ∗
wτ∗

1d + (b26 + b28)e–2iσ∗
wτ∗

1d + b25

]

ς2

+ 2τ ∗
1d

[
b14 + b15 + b16

b27 cos(σ ∗
wτ ∗

1d) + (b26 + b28) cos(2σ ∗
wτ ∗

1d) + b25

]

ςς̄ + · · · . (56)
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According to (55) and (56), we have

M20(0) = –f20r(0) – f̄02r̄(0) + τ ∗
1d

[
b14 + b15 + b16

b27e–iσ∗
wτ∗

1d + (b26 + b28)e–2iσ∗
wτ∗

1d + b25

]

, (57)

M11(0) = –f11r(0) – f̄11r̄(0)

+ 2τ ∗
1d

[
b14 + b15 + b16

b27 cos(σ ∗
wτ ∗

1d) + (b26 + b28) cos(2σ ∗
wτ ∗

1d) + b25

]

. (58)

Since iσ ∗
wτ ∗

1d is the eigenvalue of B(0) and r(0) is the corresponding eigenvector, for I is the
identity matrix, we obtain that

[

iσ ∗
wτ ∗

1dI –
∫ 0

–τ∗
1d

eiσ∗
wτ∗

1d(ϑ) dη(ϑ)
]

r(0) = 0,

[iσ ∗
wτ ∗

1dI +
∫ 0

–τ∗
1d

e–iσ∗
wτ∗

1d(ϑ) dη(ϑ)]r̄(0) = 0.

By substituting (51) and (57) into (53), Q(1)
1 and Q(2)

1 are as follows:

Q(1)
1 =

∣
∣
∣

b14+b15+b16 –b12

b27e–iσ∗wτ∗
1d +(b26+b28)e–2iσ∗wτ∗

1d +b25 2iσ∗
w–(b21+b23)

∣
∣
∣

(2iσ ∗
w – b11 – b12)(2iσ ∗

w – b21 – b23) – b12b22
,

Q(2)
1 =

∣
∣
∣

2iσ∗
w–(b11+b12) b14+b15+b16

–b22 b27e–iσ∗wτ∗
1d +(b26+b28)e–2iσ∗wτ∗

1d +b25

∣
∣
∣

(2iσ ∗
w – b11 – b12)(2iσ ∗

w – b21 – b23) – b12b22
.

By substituting (52) and (58) into (54), Q(1)
2 and Q(2)

2 are as follows:

Q(1)
2 = –

2
∣
∣
∣

b14+b15+b16 b12
b27 cos(σ∗

wτ∗
1d)+(b26+b28) cos(2σ∗

wτ∗
1d)+b25 b21+b23

∣
∣
∣

(b11 + b12 + b13)(b21 + b23) – b12b22
,

Q(2)
2 = –

2
∣
∣
∣

b11+b12+b13 b14+b15+b16
b22 b27 cos(ω1dτ∗

1d)+(b26+b28) cos(2σ∗
wτ∗

1d)+b25

∣
∣
∣

(b11 + b12 + b13)(b21 + b23) – b12b22
.
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