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Abstract
In this paper, we consider a Holling type II predator–prey model incorporating time
delay and Allee effect in prey. We discuss the influence of Allee effect on the logistic
equation. By analyzing the characteristic equation of the corresponding linearized
system, we give the threshold condition for the local asymptotic stability of the
system according to the change of birth rate or Allee effect in prey. Using the delay as
a bifurcation parameter, the model undergoes a Hopf bifurcation at the coexistence
equilibrium when the delay crosses some critical values. In addition, we show that if
the Allee effect is large or the birth rate is small, then both predators and prey are
extinct. The Allee effect can influence the stability of the system.
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1 Introduction
The predator–prey model is one of the basic models between different species in nature
which has been widely researched [1–6]. In the natural world, the population generally has
a saturation effect. Based on experiments, in order to explain the phenomenon of preda-
tion for three different kinds of species, Holling [7] proposed different kinds of functional
responses. One of the most important functional responses is Holling type II. For example,
Xu [8] discussed the global dynamics of a delayed predator–prey model with stage struc-
ture and Holling type II functional response for the predator. By constructing a suitable
Lyapunov functional, the permanence and global asymptotic stability of the model were
derived. Scholars have obtained a large number of interesting results about predator–prey
models associated with Holling type II functional response [9–11].

Allee [12] discussed both positive and negative interactions among species, and pro-
posed the concept of the Allee effect. This effect can be caused by difficulties in mate
finding [13], inbreeding depression [14], defense to avoid predators, social dysfunction at
a low-densities [15]. Moreover, the effect is called to be a weak Allee effect if the density at
zero per capita growth is positive, a strong Allee effect if the low-density per capita growth
is negative. In the past decades, the Allee effect has always been introduced to explain some
important biological phenomena by many mathematicians and ecologists [16–25]. It was
shown that the low density population can affect the birth rate of the species [26], but the
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coefficients of the growth rate are irrelevant to the Allee-type function. Hence, let F(x) be
the fertility rate of a species x [27]:

F(x) =
ax

A + x
,

where a denotes the per capita maximum fertility rate of species x; A denotes the Allee
effect constant of the species. If A > 0, the fertility rate of the species is zero if x = 0 and
approaches to a if x is large enough. The value of the parameter A determines the growth
rate of F(x). When A = 0, the fertility rate F(x) = a is density independent. Therefore, when
considering Allee effect, the logistic equation can be rewritten in the following form:

ẋ = x
(

ax
A + x

– d – bx
)

, (1)

where d represents the death rate of the species; the intra-specific competition intensity of
the species is represented by b; ax/(A+x) is a Michaelis–Menten type function. Obviously,
when A = 0, system (1) is reduced to the traditional logistic equation.

Zu [28] studied a predator–prey system with Allee effect as follows:

ẋ = x
(

ax
A + x

– d – bx
)

– mxy,

ẏ = nmxy – δy,
(2)

and investigated the local asymptotic stability of its equilibria. Meanwhile the author
found that the Allee effect of the prey population can bring about unstable or stable peri-
odic fluctuations. Further, Zu and Mimura [29] introduced the Holling type II functional
response into the above system and proposed a system as follows:

ẋ = x
(

ax
A + x

– d – bx
)

–
mxy

1 + hx
,

ẏ =
nmxy
1 + hx

– δy.
(3)

The local asymptotic stability of the equilibria was investigated. Also an explicit algorithm
was obtained to determine the direction of Hopf bifurcations as well as the stability of the
periodic solutions. The phenomenon of periodicity in [29] is similar to that in [28].

In most of ecosystems, maturation, pregnancy, and hunting occur all the time. Hence,
time delay due to gestation has been greatly researched as a focus issue in a predator–prey
system [2–5, 30–32], since the current birth rate of the predator is related to its consump-
tion of prey throughout the past history. Chen and Zhang [33] proposed a predator–prey
model incorporating delay and predator migration, which can be used to describe biolog-
ical control. By the study of the existence of stable equilibria, they showed that delay can
change the stability of the positive equilibrium. But when the positive equilibrium is un-
stable, a Hopf bifurcation occurs. Yuan et al. [34] investigated the dynamics of a delayed
logistic model with both impulsive and stochastic perturbations. They obtained sufficient
conditions for the extinction and global attractivity of the system. Song et al. [35] studied
a ratio-dependent predator–prey model with stage-structure and discussed the stability
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of the positive equilibrium. Chen and Chen [36], Wang and Chen [37] considered the bi-
furcation phenomenon of a ratio-dependent system incorporating a prey refuge.

However, still seldom scholars consider the dynamic behaviors of a delayed predator–
prey system with Allee effect in prey and Holling type II function response. Motivated
by the above papers, the main purpose of this paper is to study the stability and Hopf
bifurcation of system (3) with delay. More precisely, we study the following model:

ẋ = x
(

ax
A + x

– d – bx
)

–
mxy

1 + hx
,

ẏ =
nmx(t – τ )y(t – τ )

1 + hx(t – τ )
– δy,

(4)

where x and y respectively denote the population densities of prey and predators; A, a, b, d,
n, m, h, δ are positive constants; τ demonstrates the time delay because of the gestation of
the predator; m and h measure the effects of capture rate and handling time, respectively; n
is the food conversion rate of the predator; δ is the death rate of the predator; (mxy)/(1+hx)
is the Holling type II functional response. System (4) is restricted to the following initial
conditions:

x(θ ) = φ(θ ) ≥ 0, y(θ ) = ψ(θ ) ≥ 0, θ ∈ [–τ , 0],φ(0) > 0,ψ(0) > 0, (5)

where φ(θ ), ψ(θ ) are continuous bounded functions in the interval [–τ , 0].
The rest of this paper is organized as follows: The dynamic behaviors of model (1) and

the existence of equilibria of system (4) are derived in the next section. In Sect. 3, we study
the local asymptotic stability and Hopf bifurcation of system (4). We end this paper with
some examples and a brief discussion.

2 Boundedness and existence of equilibria
In this section, we shall present some preliminary results. Firstly, we study the dynamical
behavior of system (1).

Define

a1 = Ab + d + 2
√

Abd.

Theorem 2.1 Let x(t) be a positive solution of system (1) with the initial value x(0) > 0.
(1) If a < a1, then limt→+∞ x(t) = 0.
(2) If a > a1, then we obtain the following results:

(i) For 0 < x(0) < x2, limt→+∞ x(t) = 0;
(ii) For x2 < x(0), limt→+∞ x(t) = x1, where x1 and x2 are defined below.

Proof Note that the equation of model (1) can be rewritten as

ẋ = x
(

ax
A + x

– d – bx
)

=
x

A + x
[
–bx2 + (a – Ab – d)x – Ad

]
. (6)
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Denote

f (x) = –bx2 + (a – Ab – d)x – Ad. (7)

Its discriminant is of the form

� = (a – Ab – d)2 – 4Abd = a2 – 2(Ab + d)a + (Ab – d)2 def= Q1. (8)

Clearly, when Q1 = 0, we have

a0 = Ab + d – 2
√

Abd and a1 = Ab + d + 2
√

Abd.

It is easily seen from Eqs. (7), (8) that if a ≤ Ab + d and x > 0, then f (x) < 0; if Ab + d < a < a1

and x > 0, then f (x) < 0. Further, if a > a1, then Q1 > 0, hence, f (x) = 0 has two positive roots

x1 =
k +

√
Q1

2b
, x2 =

k –
√

Q1

2b
, (9)

where k = a – (Ab + d). If 0 < x < x2, then f (x) < 0; if x2 < x < x1, then f (x) > 0; if x1 < x, then
f (x) < 0. The proof is complete. �

Remark 2.1 If A = 0, then system (1) reduces to the traditional logistic equation ẋ = x(a –
d – bx). For this logistic equation, if a > d, then every positive solution will tend to a–d

b
monotonically; if a ≤ d, then every positive solution will tend to 0. Note that a ≤ d implies
that a < a1, then every positive solution of system (1) will tend to 0. Therefore, for system
(1), the species is extinct when the birth rate is less than the death rate. However, we find
that when the death rate is smaller than the birth rate, the species is also extinct when
d < a < a1 due to the influence of Allee effect. Hence only when the birth rate a is larger
than a1, the species maybe not extinct. This shows that the Allee effect may deduce the
instability of system (1).

In (1), assume that A = 0.5, d = 2, b = 5, then a1 = 8.9721.
(i) If a = 6, that is, a < a1, then limt→+∞ x(t) = 0 (see Fig. 1).

(ii) If a = 10, that is, a > a1, further if 0 < x(0) < 0.2298, then limt→+∞ x(t) = 0; if
0.2298 < x(0), then limt→+∞ x(t) = 0.8702 (see Fig. 2).

In the following, we give the positivity and boundedness of a solution of system (4).

Lemma 2.2 Every solution of system (4) with the initial condition (5) is positive and ulti-
mately bounded for all t ≥ 0.

Proof It can be easily proved that every solution of system (4) with (5) remains positive
for all t ≥ 0. Let V (t) = nx(t) + y(t – τ ), calculating the derivative of V (t) with respect to t
along the positive solution of system (4), we then have

V̇ (t) = nẋ(t) + ẏ(t – τ )

= –δy(t + τ ) + nx(t)
(

ax(t)
A + x(t)

– d – bx(t)
)
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Figure 1 Dynamic behaviors of system (1) with
A = 0.5, d = 2, b = 5, and a = 6

Figure 2 Dynamic behaviors of system (1) with
A = 0.5, d = 2, b = 5, and a = 10

= –δV (t) + nδx(t) + nx(t)
(

ax(t)
A + x(t)

– d – bx(t)
)

.

By Theorem 2.1, there exist some positive constants B and T such that V̇ (t) ≤ B – δV (t)
for all t ≥ T . Thus limt→+∞V (t) ≤ δ

B ; consequently, x(t) and y(t) are ultimately bounded.
The proof is complete. �

Let ẋ = ẏ = 0 in system (4), then

⎧⎨
⎩

x( ax
A+x – d – bx) – mxy

1+hx = 0,
nmxy
1+hx – δy = 0.

(10)

There always exists a trivial equilibrium E0(0, 0).
If a > a1, then system (4) has two boundary equilibria E1(x1, 0) and E2(x2, 0), where

x1 =
k +

√
Q1

2b
and x2 =

k –
√

Q1

2b

with k = a – (Ab + d), Q1 = a2 – 2(Ab + d)a + (Ab – d)2.
Further, if

Q0 > 0 and a > a2, (11)
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then system (4) has a positive equilibrium

E∗ =
(
x∗, y∗) =

(
δ

Q0
,

1 + hx∗

m(A + x∗)
[
ax∗ –

(
A + x∗)(d + bx∗)]),

where

Q0 = nm – δh,

a2 = Ab + d +
Ad
x∗ + bx∗.

(12)

Obviously,

a2 = Ab + d +
Ad
x∗ + bx∗ ≥ Ab + d + 2

√
Abd = a1, (13)

where a2 = a1 if and only if A = b(x∗)2

d .
The above analysis can be summarized in Table 1.
Define

A1 =
a + d – 2

√
ad

b
, A2 =

(a – d – bx∗)x∗

bx∗ + d
and x∗

0 =
√

d(
√

a –
√

d)
b

.

If a ≤ d, it follows from Table 1 that there exists only one trivial equilibrium E0 of system
(4) for all A. Hence, in the following, we only consider a > d. When Q0 ≤ 0, there does not
exist a positive equilibrium E∗ of system (4), so we assume that Q0 > 0, that is, x∗ > 0. Note
that a > a1 is equivalent to a > d and A < A1, and a > a2 is equivalent to a > d and A < A2.
When x∗ ≥ a–d

b , A2 ≤ 0, which means that system (4) does not admit a positive equilibrium
E∗. Note that A1 > 0. Hence, to ensure A2 > 0, we must assume that 0 < x∗ < a–d

b . By simple
computation, we have

A1 – A2 =
[bx∗ –

√
d(

√
a –

√
d)]2

b(bx∗ + d)
≥ 0, for all 0 < x∗ <

a – d
b

,

particularly A1 = A2 if and only if x∗ = x∗
0. We summarize the above results in Table 2.

Tables 1 and 2 show that if the birth rate a is relatively small or the Allee effect A is
relatively large, then system (4) only has one trivial equilibrium E0, that is, the predator
and prey will be extinct. If the birth rate a is relatively large or the Allee effect A is relatively
small, then system (4) has a positive equilibrium E∗, which guarantees the coexistence of
system (4).

Table 1 Equilibria of system (4)

0 < a < a1 E0 exists
Q0 ≤ 0 a > a1 E0, E1, E2 exist

Q0 > 0 A 	= b(x∗ )2
d a1 < a ≤ a2 E0, E1, E2 exist

a > a2 E0, E1, E2, E∗ exist
A = b(x∗ )2

d a > a1 E0, E1, E2, E∗ exist
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Table 2 Equilibria of system (4)

a ≤ d A > 0 E0 exists
a > d Q0 ≤ 0 or Q0 > 0, x∗ ≥ a–d

b 0 < A < A1 E0, E1, E2 exist
Q0 > 0, x∗ < a–d

b x∗ 	= x∗0 A2 ≤ A < A1 E0, E1, E2 exist
0 < A < A2 E0, E1, E2, E∗ exist

x∗ = x∗0 0 < A < A1 E0, E1, E2, E∗ exist
A > A1 E0 exists

3 Local stability and Hopf bifurcation
3.1 E0 = (0, 0)
Firstly, we discuss the stability of E0. We obtain the following theorems.

Theorem 3.1 E0 of system (4) is locally asymptotically stable.

Proof The variational matrix of system (4) at E0 is

V (E0) =

[
λ + d 0

0 λ + δ

]
.

Clearly, the characteristic equation of the equilibrium point E0 always has two negative
real roots: λ1 = –d, λ2 = –δ. The proof is complete. �

Therefore, E0 is always a locally stable node, which implies that both predators and prey
will become extinct when their population densities lie in the attraction region of E0. In
particular, if the population density of prey becomes low, then both prey and predators
will become extinct.

According to Theorem 2.1 and the comparison theorem, it is easy to prove the following
theorem.

Theorem 3.2 Assume that a < a1, then E0 of system (4) is globally asymptotically stable.

Remark 3.1 When a ≤ d, it follows from Theorem 3.2 that E0 of system (4) is globally
asymptotically stable for any value of the Allee effect. It is easy to show that the condition
a < a1 of Theorem 3.2 is equivalent to a > d and A > A1, which implies that both prey and
predators will go extinct if the Allee effect is strong. Also, we can see that the Allee effect
of prey species increases the extinction risk of both predators and prey. Only when the
Allee effect is small, the species may not be extinct.

3.2 E1 = (x1, 0)
We study the local stability of the boundary equilibrium E1(x1, 0) and have the following
theorem.

Theorem 3.3
(1) Assume that Q0 > 0 and A < b(x∗)2

d hold.
(i) If a1 < a < a2, then E1 of system (4) is a locally asymptotically stable equilibrium

point.
(ii) If a > a2, then E1 of system (4) is unstable.

(2) Assume that Q0 > 0 and A ≥ b(x∗)2

d hold. If a > a1, then E1 of system (4) is unstable.
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(3) Assume that Q0 ≤ 0 holds. If a > a1, then E1 of system (4) is locally asymptotically
stable.

Proof The variational matrix of system (4) at the equilibrium point E1 is

V (E1) =

⎡
⎣λ – 2Aax1+ax2

1
(A+x1)2 + d + 2bx1

mx1
1+hx1

0 λ + δ – nmx1e–λτ

1+hx1

⎤
⎦ ,

and its associated characteristic equation is

(
λ –

2Aax1 + ax2
1

(A + x1)2 + d + 2bx1

)(
λ + δ –

nmx1e–λτ

1 + hx1

)
= 0. (14)

First, we consider the following equation:

F1(λ) = λ –
2Aax1 + ax2

1
(A + x1)2 + d + 2bx1 = 0. (15)

Then we obtain

λ1 =
2Aax1 + ax2

1
(A + x1)2 – d – 2bx1

=
1

(A + x1)2

[
–2bx3

1 + (a – d – 4Ab)x2
1 + 2A(a – d – Ab)x1 – A2d

]

= –
1

2b2(A + x1)2

[
(a – d)Q1 +

(
a2 – (Ab + 2d)a – Abd + d2)√Q1

]
.

(16)

Obviously, (a – d)Q1 > 0. Further, we consider an equation in a as follows:

f1(a) = a2 – (Ab + 2d)a – Abd + d2. (17)

Since

f1(a1) = f1(Ab + d + 2
√

Abd)

= 2Abd + 2Ab
√

Abd > 0,

and the symmetry axis of f1(a) is a = Ab
2 + d < a1, the inequality f1(a) > 0 holds for all a > a1.

Therefore, we have λ1 < 0, then Eq. (15) has only one negative real root, which implies that
all other roots of Eq. (14) are determined by the following equation:

F2(λ) = λ + δ –
nmx1e–λτ

1 + hx1
= 0. (18)

Denote R0 = N
δ

, N = knm+nm
√

Q1
2b+hk+h

√
Q1

, and a0
1 = Ab+d +2bx∗. We have the following discussion.

(i) Assume that R0 > 1, that is, δ < N , then F2(0) < 0 and F2(+∞) = +∞. Hence F2(λ)
has at least one positive root and E1 is unstable.
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(ii) If R0 < 1, then N < δ. Suppose that there exists an eigenvalue λ with Reλ ≥ 0, then
we have

Reλ = Ne– Re(λ)τ cos(Imλ)τ – δ

≤ Ne– Re(λ)τ – N < 0. (19)

It is a contradiction, so Reλ < 0. This implies that all the real parts of roots of
F2(λ) = 0 are negative. Hence E1 is a locally asymptotically stable equilibrium.

On the one hand, when Q0 > 0, we know a1 = a0
1 = a2 if and only if A = b(x∗)2

d . Thus
a0

1 < a1 < a2 if A > b(x∗)2

d ; if A < b(x∗)2

d , then a1 < a2 < a0
1. By calculation, for any a > a1, we

have

R0 – 1 =
1

Q0δ(2b + hk + h
√

Q1)

[
k –

2bδ

Q0
+

√
Q1

]

=
1

Q0δ(2b + hk + h
√

Q1)
H(a), (20)

where H(a) = a – a0
1 +

√
a2 – 2(Ab + d)a + (Ab – d)2.

Hence, we obtain the following conclusions:
(1) Assume that A < b(x∗)2

d , that is, a1 < a2 < a0
1, then:

(i) Let a1 < a < a0
1. When a1 < a < a2, we have H(a) < 0, that is, R0 < 1. Thus E1 of

system (4) is locally asymptotically stable; if a2 < a < a0
1, then H(a) > 0, that is,

R0 > 1, which means E1 of system (4) is unstable.
(ii) If a0

1 ≤ a, then H(a) > 0, that is, R0 > 1. Therefore, E1 of system (4) is unstable.
(2) If A ≥ b(x∗)2

d , then a1 ≥ a0
1. Therefore, we have H(a) > 0 for any a > a1, that is,

R0 > 1. Hence E1 of system (4) is unstable.
On the other hand, when Q0 ≤ 0, it follows from (20) that

R0 – 1 =
1

δ(2b + hk + h
√

Q1)
[kQ0 – 2bδ + Q0

√
Q1] < 0,

that is, R0 < 1. Hence, if a > a1, then E1 of system (4) is locally asymptotically stable.
Summarizing the above discussion, we prove Theorem 3.3. �

3.3 E2 = (x2, 0)
Theorem 3.4 Let a > a1, then E2 of system (4) is unstable.

Proof The variational matrix of system (4) at the equilibrium point E2 is

V (E2) =

⎡
⎣λ – 2Aax2+ax2

2
(A+x2)2 + d + 2bx2

mx2
1+hx2

0 λ + δ – nmx2e–λτ

1+hx2

⎤
⎦ ,

and its associated characteristic equation is

(
λ –

2Aax2 + ax2
2

(A + x2)2 + d + 2bx2

)(
λ + δ –

nmx2e–λτ

1 + hx2

)
= 0. (21)
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We consider the following equation:

G1(λ) = λ –
2Aax2 + ax2

2
(A + x2)2 + d + 2bx2 = 0. (22)

Then we obtain

λ =
2Aax2 + ax2

2
(A + x2)2 – d – 2bx2

=
1

(A + x2)2

[
–2bx3

2 + (a – d – 4Ab)x2
2 + 2A(a – d – Ab)x2 – A2d

]

= –
1

2b2(A + x2)2

[
(a – d)Q1 +

(
–a2 + Aba + 2da + Abd – d2)√Q1

]

= –G2(Q1) × 1
2b2(A + x2)2 , (23)

where

G2(Q1) = (a – d)Q1 +
(
–a2 + Aba + 2da + Abd – d2)√Q1. (24)

Let
√

Q1 = t, then t > 0. Hence, Eq. (24) can be rewritten as

g(t) = (a – d)t2 +
(
–a2 + Aba + 2da + Abd – d2)t. (25)

Solving the equation g(t) = 0, we can get

t1 = 0 and t2 =
a2 – (Ab + 2d)a – Abd + d2

a – d
=

f1(a)
a – d

, (26)

where f1(a) is defined by (17). Similar to the analysis of Theorem 3.3, we obtain f1(a) > 0,
thus t2 = f1(a)/(a – d) > 0.

Hence, if 0 < t < t2, then g(t) < 0; if t2 ≤ t, then g(t) ≥ 0. That is, if 0 < Q1 < t2
2 , then

G2(Q1) < 0; if t2
2 ≤ Q1, then G2(Q1) ≥ 0. Clearly, the inequality t2

2 ≤ Q1 does not hold, due
to Q1 – t2

2 = – 4A2b2ad
(a–d)2 < 0, which is a contradiction. Thus λ > 0, which implies Eq. (21) has

at least one positive root and E2 is unstable. The proof of the theorem is complete. �

We summarize the results of Theorems 3.3 and 3.4 in Table 3. On the other hand, by the
analysis of Sect. 2 and Theorems 3.3 and 3.4, we also obtain the local asymptotic stability
of equilibria Ei, i = 0, 1, 2 (see Table 4).

By the definition of R0 and simple computation, from the proofs of Theorems 3.3 and
3.4, we can obtain the following corollaries.

Corollary 3.1 Let a > d and 0 < A < A1, then E1 of system (4) is:
(i) unstable if 0 < h < nm

δ
– 1

x1
,

(ii) locally asymptotically stable if h > nm
δ

– 1
x1

.

Corollary 3.2 Let a > d and 0 < A < A1, then E2 of system (4) is unstable.
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Table 3 Equilibria Ei , i = 0, 1, 2, of system (4)

0 < a < a1 E0 GAS, E1 and E2 do not exist

Q0 ≤ 0 a > a1 E0 LAS, E1 LAS, E2 unstable

Q0 > 0 A ≥ b(x∗ )2
d a > a1 E0 LAS, E1 unstable, E2 unstable

A < b(x∗ )2
d a1 < a < a2 E0 LAS, E1 LAS, E2 unstable

a > a2 E0 LAS, E1 unstable, E2 unstable

Table 4 Equilibria Ei , i = 0, 1, 2, of system (4) with a > d

Q0 ≤ 0 0 < A < A1 E0 LAS, E1 LAS, E2 unstable

Q0 > 0 x∗ ≥ a–d
b A < b(x∗ )2

d 0 < A < A1 E0 LAS, E1 LAS, E2 unstable

A ≥ b(x∗ )2
d 0 < A < A1 E0 LAS, E1 unstable, E2 unstable

x∗ < a–d
b , x∗ 	= x∗0 A < b(x∗ )2

d 0 < A < A2 E0 LAS, E1 unstable, E2 unstable

A2 < A < A1 E0 LAS, E1 LAS, E2 unstable

A ≥ b(x∗ )2
d 0 < A < A1 E0 LAS, E1 unstable, E2 unstable

x∗ = x∗0 0 < A < A1 E0 LAS, E1 unstable, E2 unstable

A > A1 E0 GAS, E1 and E2 do not exist

When τ = 0, by computation, the conditions of Corollaries 3.1 and 3.2 are the same as
those of Theorems 1 and 2 [29]. Hence, we extend the local asymptotic stability results
for system (3) to the time delay system (4). It shows that both E1 and E2 of system (4)
are still locally asymptotically stable under the same condition as those for the nondelay
system (3). Therefore, the time delay is harmless for the local stability of E1 and E2. Also,
when considering the birth rate a or the Allee effect A as a parameter, we get the thresh-
old condition for the stability of E0, i = 0, 1, 2, of system (4). Hence, we obtain some more
precise conditions than those of [29].

3.4 E∗ = (x∗, y∗)
The variational matrix of system (4) at E∗ is

V
(
E∗) =

[
λ – 2Aax∗+ax∗2

(A+x∗)2 + d + 2bx∗ + my∗
(1+hx∗)2

mx∗
1+hx∗

– nmy∗e–λτ

(1+hx∗)2 λ + δ – nmx∗e–λτ

1+hx∗

]
.

Now, to determine the local stability of the interior equilibrium E∗, we use the method
introduced by Beretta and Kuang [38]. Then the characteristic equation at E∗ is

D(λ, τ ) =
(

λ –
2Aax∗ + ax∗2

(A + x∗)2 + d + 2bx∗ +
my∗

(1 + hx∗)2

)

×
(

λ + δ –
nmx∗e–λτ

1 + hx∗

)
+

nm2x∗y∗e–λτ

(1 + hx∗)3

= λ2 + p1λ + p0 + (q1λ + q0)e–λτ = 0,

(27)

where

p1 = δ –
2Aax∗

(A + x∗)2 –
ax∗2

(A + x∗)2 + d + 2bx∗ +
my∗

(1 + hx∗)2 ,
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p0 = –
2Aax∗δ

(A + x∗)2 –
ax∗2δ

(A + x∗)2 + dδ + 2bx∗δ +
my∗δ

(1 + hx∗)2 ,

q1 = –
nmx∗

1 + hx∗ ,

q0 =
2Aax∗2nm

(A + x∗)2(1 + hx∗)
+

ax∗3nm
(A + x∗)2(1 + hx∗)

–
dnmx∗

1 + hx∗ –
2bx∗2nm
1 + hx∗ .

For the interior equilibrium E∗, we have

⎧⎨
⎩

my∗
1+hx∗ = ax∗

(A+x∗) – d – bx∗,
nmx∗
1+hx∗ = δ.

(28)

When τ = 0, Eq. (27) reduces to

D(λ, 0) = λ2 + (p1 + q1)λ + p0 + q0. (29)

From (28), we can obtain

p0 + q0 =
my∗δ

(1 + hx∗)2 > 0. (30)

Next, we consider p1 + q1. Using Eq. (28), we have

p1 + q1 = –
2Aax∗

(A + x∗)2 –
ax∗2

(A + x∗)2 + d + 2bx∗ +
my∗

(1 + hx∗)2

=
ax∗2

(A + x∗)2 – d –
my∗

1 + hx∗ –
mhx∗y∗

(1 + hx∗)2

= –B1a + B2,

where

B1 =
hx∗3 + 2hAx∗2 + Ax∗

(A + x∗)2(1 + hx∗)
and B2 =

2bhx∗2 + bx∗ + dhx∗

1 + hx∗ .

Define

a3 =
B2

B1
=

(2bhx∗ + dh + b)(A + x∗)2

2Ahx∗ + hx∗2 + A
,

then

p1 + q1 = B1(a3 – a).

Note that

a3 – a2 =
(2bhx∗ + dh + b)(A + x∗)2

2Ahx∗ + hx∗2 + A
–

(
Ab + d +

Ad
x∗ + bx∗

)

=
(1 + hx∗)(A + x∗)(b(x∗)2 – Ad)

x∗(2Ahx∗ + hx∗2 + A)
.

(31)
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Let A < b(x∗)2

d , then a3 > a2. If a < a3, then p1 + q1 = B1(a3 – a) > 0; if a > a3, then p1 + q1 < 0.
If A ≥ b(x∗)2

d and a > a2, then p1 + q1 < 0. Accordingly, by the Routh–Hurwitz criterion, if
p0 + q0 > 0 and p1 + q1 > 0, then E∗ is locally asymptotically stable when τ = 0. We have the
following theorem.

Theorem 3.5 Let τ = 0 and Q0 > 0 hold.
(1) Assume that A < b(x∗)2

d holds.
(i) If a2 < a < a3, then E∗ of system (4) is locally asymptotically stable.

(ii) If a > a3, then E∗ of system (4) is unstable.
(2) If A ≥ b(x∗)2

d and a > a2, then E∗ of system (4) is unstable.

Next, under the conditions Q0 > 0 and A < b(x∗)2

d , we discuss system (4) with τ > 0. Then,
we discuss (27) has a pair of purely imaginary roots. iω (ω > 0) is a solution of (27) if and
only if ω satisfies

–ω2 + p1ωi + p0 + (q1ωi + q0)(cos τω – i sin τω) = 0,

that is,

–ω2 + p0 = –q1ω sin(τω) – q0 cos(τω), p1ω = q0 sin(τω) – q1ω cos(τω), (32)

which implies

ω4 +
(
p2

1 – 2p0 – q2
1
)
ω2 + p2

0 – q2
0 = 0. (33)

By calculation, we derive that

p2
1 – 2p0 – q2

1 =
(

–
2Aax∗

(A + x∗)2 –
ax∗2

(A + x∗)2 + d + 2bx∗ +
my∗

(1 + hx∗)2

)2

= (p1 + q1)2 > 0, (34)

and from (30) we have

p0 + q0 =
my∗δ

(1 + hx∗)2 > 0. (35)

Further, we consider p0 – q0. From (28) we have

p0 – q0 = δ

(
–

4Aax∗

(A + x∗)2 –
2ax∗2

(A + x∗)2 + 4bx∗ +
my∗

(1 + hx∗)2 + 2d
)

= δ

(
–

4Aax∗

(A + x∗)2 –
2ax∗2

(A + x∗)2 + 4bx∗ +
ax∗ – (A + x∗)(d + bx∗)

(1 + hx∗)(A + x∗)
+ 2d

)

=
δ

(1 + hx∗)(A + x∗)2

(
–aD1

(
x∗) +

(
A + x∗)2D2

(
x∗)), (36)

where

D1
(
x∗) = 2hx∗3 + 4Ahx∗2 + x∗2 + 3Ax∗ > 0,

D2
(
x∗) = 4bhx∗2 + 3bx∗ + d + 2dhx∗ > 0.

(37)
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On the other hand, we denote

a4 =
(A + x∗)2D2(x∗)

D1(x∗)
.

Then we have

p0 – q0 =
δ

(1 + hx∗)(A + x∗)2 D1
(
x∗)(a4 – a).

Note that, due to A < b(x∗)2

d , we derive that

a3 – a4 =
(2bhx∗ + dh + b)(A + x∗)2

2Ahx∗ + hx∗2 + A
–

(A + x∗)2D2(x∗)
D1(x∗)

=
(1 + hx∗)(A + x∗)2(b(x∗)2 – Ad)

x∗(4Ahx∗ + 2hx∗2 + 3A + x∗)(2Ahx∗ + hx∗2 + A)

> 0, (38)

and

a4 – a2 =
(A + x∗)2D2(x∗)

D1(x∗)
–

(
Ab + d +

Ad
x∗ + bx∗

)

=
2(1 + hx∗)(A + x∗)(b(x∗)2 – Ad)

x∗(4Ahx∗ + 2hx∗2 + 3A + x∗)

> 0. (39)

By Theorem 3.5, if a2 < a ≤ a4, p0 – q0 ≥ 0; if a4 < a < a3, p0 – q0 < 0.
When p0 – q0 < 0, ω0 is a unique positive root of Eq. (33), that is, Eq. (27) has the roots

of the form ±iω0, where

ω0 =
(q2

1 + 2p0 – p2
1 +

√
(p2

1 – 2p0 – q2
1)2 – 4p2

0 + 4q2
0

2

) 1
2

.

From (32), we obtain

cos(τω0) =
q0(ω2

0 – p0) – p1q1ω
2
0

q2
1ω

2
0 + q2

0
.

Denote

τ0n =
1
ω0

arccos
q0(ω2

0 – p0) – p1q1ω
2
0

q2
1ω

2
0 + q2

0
+

2nπ

ω0
, n = 0, 1, 2, . . . . (40)

By Theorem 3.4.1 in Kuang [39], if p0 < q0, then E∗ is still stable for τ < τ0 := τ00.
Taking the derivative of Eq. (27) with respect to τ , one has

(
dλ

dτ

)–1

=
2λ + p1

–λ(λ2 + p1λ + p0)
+

q1

λ(q1λ + q0)
–

τ

λ
.
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Hence, a direct calculation shows that

sign

{
d(Reλ)

dτ

}
λ=iω0

= sign

{
Re

(
dλ

dτ

)–1}
λ=iω0

= sign

{
p2

1 + 2(ω2
0 – p0)

p2
1ω

2
0 + (ω2

0 – p0)2 +
–q2

1
q2

1ω
2
0 + q2

0

}
.

We derive from (32) that

p2
1ω

2
0 +

(
ω2

0 – p0
)2 = q2

1ω
2
0 + q2

0,

which yields

sign

{
d(Reλ)

dτ

}
λ=iω0

= sign

{
2ω2

0 + p2
1 – 2p0 – q2

1
q2

1ω
2
0 + q2

0

}
> 0.

When ω = ω0, τ = τ0, a Hopf bifurcation occurs.
The above analysis can be summarized in the following theorem.

Theorem 3.6 Let Q0 > 0 and A < b(x∗)2

d hold.
(i) If a2 < a ≤ a4, then E∗ of system (4) is locally asymptotically stable for all τ ≥ 0.

(ii) If a4 < a < a3 holds, then E∗ is a locally asymptotically stable equilibrium if 0 < τ < τ0

and unstable if τ > τ0.
Further, system (4) undergoes a Hopf bifurcation at E∗ when τ = τ0.

4 Numeric simulations
We present some examples to verify our results.

Example 4.1 In system (4), assume that A = 0.5, d = 1, b = 5, m = 5, n = 1, h = 0.1, τ = 1,
and δ = 6, then a1 = 6.6623.

(i) If a = 5, that is, a < a1, it follows from Theorem 3.2 that E0 is globally asymptotically
stable. Hence, both prey and predators are extinct (see Fig. 3).

(ii) If a = 8, then system (4) has a boundary equilibrium E1 = (0.7702, 0). Note that
A = 0.5 < 9.2975 = b(x∗)2

d , a1 < a < 10.6848 = a2. By Theorem 3.3, E1 is locally
asymptotically stable (see Fig. 4).

Example 4.2 In system (4), assume that A = 0.5, d = 1, b = 5, m = 5, n = 1, h = 0.1, δ = 6,
and τ = 0. By calculation, we have Q0 = 4.4 > 0, A < b(x∗)2

d = 9.2975, a2 = 10.6848, and a3 =
27.2999.

(i) If a = 15, it is easy to show that a2 < a < a3. We can obtain a positive equilibrium
E∗ = (1.3636, 0.7176). By Theorem 3.5, E∗ is locally asymptotically stable (see Fig. 5).

(ii) If a = 30, then a > a3. Also, we can obtain a positive equilibrium
E∗ = (1.3636, 3.2121). By Theorem 3.5, E∗ is unstable (see Fig. 6).

Example 4.3 In system (4), let a = 4, A = 0.02, d = 2, b = 1, m = n = 4, h = 0.1, δ = 3. By
calculation, we have Q0 = 15.7 > 0, A = 0.02 > 0.0183 = b(x∗)2

d , a > a2 = 2.4204, and there is
a positive equilibrium E∗ = (0.1911, 0.4102). By Theorem 3.5, E∗ is unstable, that is, both
the predator and prey species will be extinct (see Fig. 7).
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Figure 3 Dynamic behaviors of system (4) with
A = 0.5, d = 1, b = 5,m = 5, n = 1, h = 0.1, τ = 1, δ = 6,
and a = 5

Figure 4 Dynamic behaviors of system (4) with
A = 0.5, d = 1, b = 5,m = 5, n = 1, h = 0.1, τ = 1, δ = 6,
and a = 8

Example 4.4 In system (4), assume that A = 0.5, d = 1, b = m = 5, n = 1, h = 0.1, δ = 6. By
calculation, we have a2 = 10.6848, a3 = 27.2999, a4 = 18.4738, Q0 = 4.400 > 0, x∗ = 1.3636,
and A < b(x∗)2

d = 9.2975.
(i) If a = 15 and τ = 3. It is easy to show that a2 < a < a4 and the positive equilibrium is

E∗ = (1.3636, 0.7176). By Theorem 3.6, E∗ is locally asymptotically stable (see Fig. 8).
(ii) If a = 15 and τ = 15. It is easy to show that a2 < a < a4 and the positive equilibrium

is E∗ = (1.3636, 0.7176). By Theorem 3.6, E∗ is locally asymptotically stable (see
Fig. 9).

(iii) If a = 20, clearly, a4 < a < a3 and the positive equilibrium is E∗ = (1.3636, 1.5491).
By calculation, we obtain τ0 = 0.1387. According to Theorem 3.6, E∗ is locally
asymptotically stable if 0 < τ < τ0 and unstable if τ > τ0, and system (4) undergoes a
Hopf bifurcation at E∗ when τ = τ0, where τ = 0.07 is shown in Fig. 10 and τ = 0.15
is shown in Fig. 11.

5 Conclusion
In this paper, we investigate the stability and Hopf bifurcation of a delayed Holling type II
predator–prey model when the prey is subject to Allee effect. Considering the birth rate a
or the Allee effect A as a parameter, we get the threshold condition for the stability of the
equilibria of system (4) and find that the Allee effect or the birth rate plays an important
role in the stability of system (4).

Firstly, we analyze the logistic equation (1) with Allee effect, and show that the Allee
effect may lead to the instability of the system. By analyzing the characteristic equations,
we derive the local stability of the equilibria. Table 3 shows that E2 is always unstable if it
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Figure 5 Dynamic behaviors of system (4) with
A = 0.5, d = 1, b = 5,m = 5, n = 1, h = 0.1, δ = 6, τ = 0,
and a = 15

Figure 6 Dynamic behaviors of system (4) with
A = 0.5, d = 1, b = 5,m = 5, n = 1, h = 0.1, δ = 6, τ = 0,
and a = 30

Figure 7 Dynamic behaviors of system (4) with
a = 4, A = 0.02, d = 2, b = 1,m = n = 4, h = 0.1, δ = 3,
and τ = 0

exists. If the Allee effect is relatively small, with the increase of the birth rate a, the equi-
librium E1 changes from the nonexistence to the local asymptotic stability, and eventually
becomes instability. Table 4 shows that the equilibrium E1 changes from instability to local
asymptotic stability, and eventually disappears with the increase of Allee effect.

We also investigate the local asymptotic stability of the coexistence equilibrium E∗ and
show that if the time delay passes through some critical values, the equilibrium E∗ changes
from a stable point to unstable point, and a Hopf bifurcation occurs; further we show
periodic solutions.

Let τ = 0, then system (4) is reduced to system (3). If system (3) has only three equilib-
rium points Ei, i = 0, 1, 2. E0(0, 0) is locally asymptotically stable. Further if E1 and E2 are
unstable, then the trivial equilibrium E0(0, 0) is globally asymptotically stable. When sys-
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Figure 8 Dynamic behaviors of system (4) with
a = 15, A = 0.5, d = 1, b =m = 5, n = 1, h = 0.1, δ = 6,
and τ = 3

Figure 9 Dynamic behaviors of system (4) with
a = 15, A = 0.5, d = 1, b =m = 5, n = 1, h = 0.1, δ = 6,
and τ = 15

Figure 10 Dynamic behaviors of system (4) with
a = 20, A = 0.5, d = 1, b =m = 5, n = 1, h = 0.1, δ = 6,
and τ = 0.07

tem (3) has equilibrium points Ei, i = 0, 1, 2, and E∗. If E1, E2, and E∗ are unstable, then
system (3) admits a limit cycle or E0(0, 0) is globally asymptotically stable. In Table 5,
compared with Zu and Mimura [29], we give the threshold condition for the stability of
E0, i = 0, 1, 2, and E∗ of system (4) with τ = 0. Therefore, our main results complement and
improve those in [29].

In Theorem 3.6, we study the stability and Hopf bifurcation of system (4). The results
of Theorems 3.1–3.6 are shown in Table 6. If the Allee effect is small, the equilibrium E1

changes from the nonexistence to the local asymptotic stability, and eventually becomes
instability with the increase of the birth rate a. On the other hand, the equilibrium E∗

changes from the nonexistence to the local asymptotic stability, and eventually a Hopf
bifurcation occurs with the increase of the birth rate a. When the initial densities of prey
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Figure 11 Dynamic behaviors of system (4) with
a = 20, A = 0.5, d = 1, b =m = 5, n = 1, h = 0.1, δ = 6,
and τ = 0.15

Figure 12 Dynamic behaviors of the prey in
system (4) with A = 0.5, d = 1, b =m = 5, n = 1,
h = 0.1, δ = 6, τ = 0.5, and a = 4 or 8 or 15 or 20

Figure 13 Dynamic behaviors of the predator in
system (4) with A = 0.5, d = 1, b =m = 5, n = 1,
h = 0.1, δ = 6, τ = 0.5, and a = 4 or 8 or 15 or 20

and predators are not low, we show the results of Table 6 in Fig. 12 and Fig. 13 with the
same initial values. Change the values of the birth rate a from zero to a1, the prey species
will stabilize at zero, from a1 to a2, the prey species will stabilize at x1. From a2 to a3, the
prey species will stabilize at x∗. Finally, the prey species becomes oscillation if a4 < a < a3.
The predator species has the similar case. Hence, we find that both the predator species
and the prey species go to extinction when the prey population has a sufficiently small
birth rate a. As a increases, the prey species could survive, but the predator is still extinct.
Keeping the birth rate a increasing, the prey and the predator will coexist and stabilize at
a fixed value. But if it is large enough, the stability of prey and predators will be destroyed,
and the system becomes oscillation. Hence, in this paper, we show that we can choose a
suitable value of the Allee effect or the birth rate to influence the stability of system (4).
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Table 5 Equilibria Ei , i = 0, 1, 2, and E∗ of system (4) with τ = 0

0 < a < a1 E0 GAS, E1, E2, and E∗ do not exist

Q0 ≤ 0 a > a1 E0 LAS, E1 LAS, E2 unstable, E∗ does not exist

Q0 > 0 A ≥ b(x∗ )2
d a1 < a ≤ a2 E0 GAS, E1 and E2 unstable, E∗ does not exist

a > a2 E0 LAS, E1, E2 and E∗ unstable

A = b(x∗ )2
d a > a1 E0 LAS, E1, E2 and E∗ unstable

A < b(x∗ )2
d a1 < a < a2 E0 LAS, E1 LAS, E2 unstable, E∗ does not exist

a2 < a < a3 E0 LAS, E1 and E2 unstable, E∗ LAS
a > a3 E0 LAS, E1, E2, and E∗ unstable

Table 6 System (4) with Q0 > 0 and A < b(x∗)2
d

Birth rate a Equilibria

0 < a < a1 E0 GAS, E1, E2, and E∗ do not exist
a1 < a < a2 E0 and E1 LAS, E2 unstable, E∗ does not exist
a2 < a ≤ a4 E0 LAS, E1 and E2 unstable, E∗ LAS
a4 < a < a3 E0 LAS, E1 and E2 unstable, E∗ exists a Hopf bifurcation
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